

SUCCESSFULLY MIGRATING A SNOWFLAKE DATA WAREHOUSE TO THE DATABRICKS DATA INTELLIGENCE PLATFORM



**Kevin Barlow Sr. Solution Architect, Databricks** 



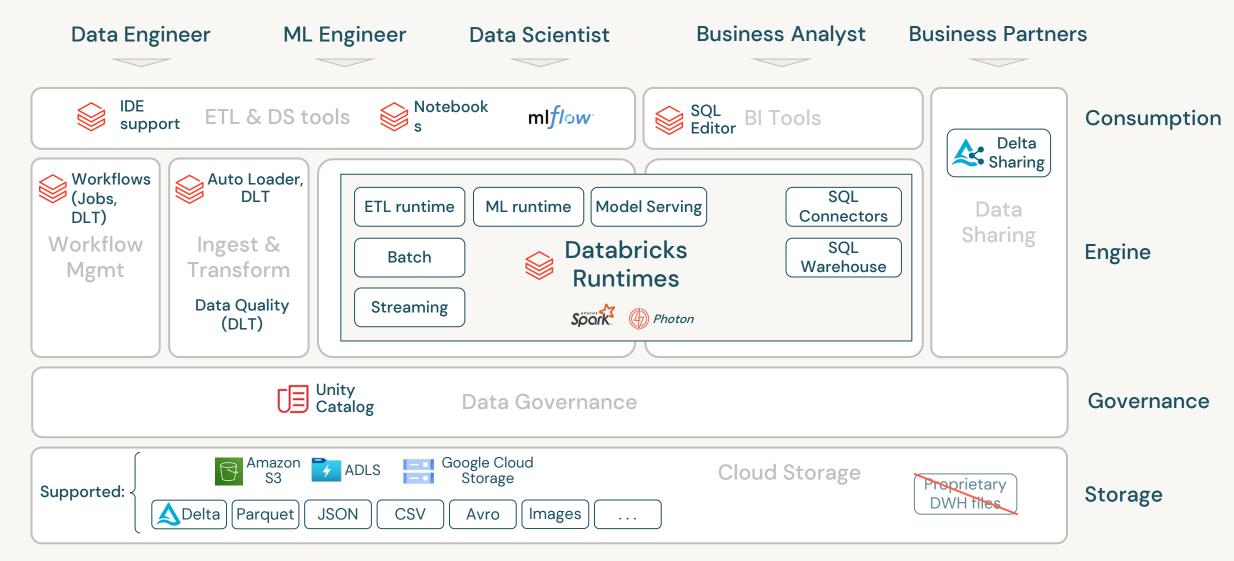
# Product safe harbor statement

This information is provided to outline Databricks' general product direction and is **for informational purposes only.** Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all.



# Snowflake Data Warehouse Migrations to Databricks




# Cloud Data Analytics Framework

Data Engineer ML Engineer **Business Analyst Business Partners Data Scientist ETL & DS tools BI Tools** Consumption Data Sharing Workflow Ingest & Advanced Analytics, Data Engine Transform Mgmt ML & Al Warehouse **Data Governance** Governance **Cloud Storage** Storage

# Common situation with Snowflake CDW

**Business Analyst Business Partners** Data Engineer ML Engineer Data Scientist **Third Party** ETL & DS tools **BI Tools** Consumption **Services Third Party** \$\$\$ \$\$\$ **Services** Data Sharing Workflow Ingest & Advanced Analytics, Engine Transform ML & Al Mgmt Data Warehouse **Third Party** \$\$\$ **Third Party Services Proprietary Proprietary** Services **Third Party** \$\$\$ **Data Governance** Governance **Services Duplicate Cloud Storage** Storage **Storage** 

# Cloud Data Analytics Framework with Databricks



# Areas of optimization and best practices



# Prefer open data formats

# Use the Delta data format

Data stored in a proprietary data warehouse format leads to high storage costs and lock-in



Open formats like Delta Lake (now with UniForm) allow for access across your organization

### **Actions**

During data migration convert your data from the proprietary warehouse format it is currently stored in to Delta

## **Pro Tip**

Use the COPY INTO command to offload data from Snowflake warehouses to object storage in parquet format



# Unify data management & data security

# Migrate to Unity Catalog (UC)



According to IDC Research -

"People spend 60% to 80% of their time trying to find data. It's a huge productivity loss."

Dan Vesset Group Vice President, IDC

## **Actions**

Have a data lake governance strategy while you plan for migration

Migrate to Unity Catalog, track and understand the usage

### **Pro Tip**

Plan and build your security and data policies on UC before you migrate data

Leverage UC integration with catalog providers from Databricks Partner Connect

# Define standards for integration

Use Databricks Delta Live Tables (DLT) & Autoloader



Often more time is spent on tooling than the actual transformation of data in Data Warehouse Extract Transform & Load (ETL) pipelines

# **Actions**

Microbatch or streaming is the best way to do ingestion (files, Kafka, Kinesis, Change Data Capture, ...)

Automatically manage infrastructure and accelerate ETL development using DLT

## Pro Tip

Use Autoloader for both historical data migration and incremental data from sources and use DLT for SCD Type 2 requirements

# Design workloads for performance

# Using Databricks features for performance efficiency



A common reason for high costs and performance issues on data warehouse platforms is using a SQL based compute approach for all purposes

Using the correct engine for ETL pipelines, data science apps, streaming and so on allows for better performance & cost control

## **Actions**

Split workloads by type and use optimal compute resources to get best performance and lower cost

Use Unity Catalog for a single data governance model irrespective of the engine used

## **Pro Tip**

Use SQL Warehouses for interactive analysis and dashboarding
Use clusters for Data Science and Engineering



# Eliminate orchestration struggles

# **Using Databricks Workflows**



"Data pipelines are growing in size, volume, and complexity, with multistage processing and dependencies between various data assets."

> Gartner Data Engineering Essentials, Patterns and Best Practices, September 2022

Orchestrate processes across all data, analytics and Al use cases

## Actions

Use Databricks Workflows either alone or combined with Airflow or other external orchestration tools

Integrate with your favorite IDEs

# **Pro Tip**

Use Databricks Jobs to orchestrate workloads composed of a single task or multiple data processing and analysis tasks This can include Delta Live Tables (DLT) ingestion and transformation

# Developer Experience

# Using Databricks IDE support and partner connect



Engineers want the full power of lakehouse from their favorite IDEs and development tools.

Do not compromise and have your engineers to choose one tool. Instead provide flexibility with any programming language based on personas.

# **Actions**

Databricks Partner Connect supports native integration with many Data Management tools - dbt, Fivetran, etc.

Use Databricks IDE plugins such as VS Code Extension to build locally and manage CI/CD

### **Pro Tip**

Data ingestion jobs in DBT, Fivetran, Matillion can be refactored easily to write to Delta instead of Snowflake or other cloud warehouses

# Migration Approach



# Migration Planning

# Some key guidelines

### Governance

Build a Lakehouse governance model with Unity Catalog at its core

# Use cases & prioritisation

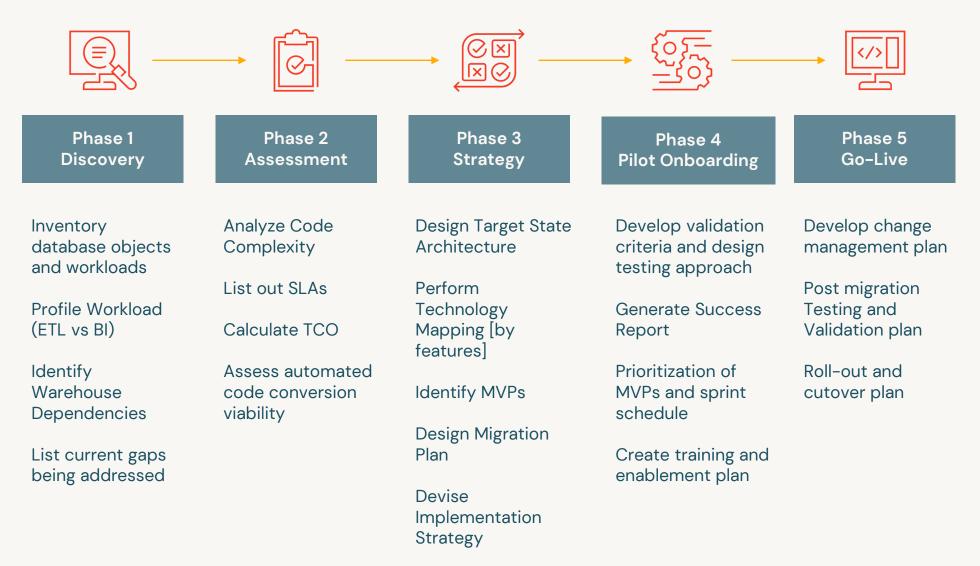
Migrate use cases and business value, not tables and pipelines. Use this to drive the implementation strategy

### Personas C

Understand the various data users and their preferred methods of working & tools

### Code

Reuse working code and refactor where needed. Leverage automated tooling.


# **Progress & Deliverables**

Tangible deliverables along the process (assessments, mappings, architecture, delivery kit, MVPs)

### **Enablement**

Leverage training, best practices and migration guides

# Migration Methodology



# Migration Execution Pillars



















### **Architecture &** Infrastructure

Establish deployment Architecture

Implement Security and Governance framework

Map legacy features to Databricks capabilities

### **Data Migration**

Map Data Structures and Layout

Complete One time load

Implement incremental load approach

## **Code Migration**

Migrate transformation and pipeline code, orchestration and jobs

Speedup your migration using Automation tools

Validate your results with On Prem data and expected results

Cut-over plan

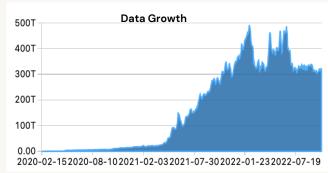
### **BI & Analytics**

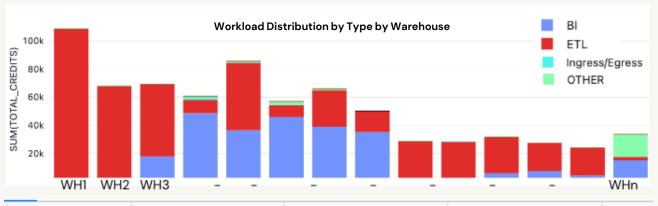
Re-point reports and analytics for Business **Analysts and Business** Outcomes

Connect to reporting and downstream applications

### **Data Science & ML**

Onboard Data Science teams


Implement AI.ML use cases using data in the Lakehouse


Technical Enablement, Onboarding and Change Management



# Profile usage and assess size and complexity







| ANSI_STATUS        | SNOWFLAKE_STATUS - | FUNCTION_STATUS -          | available_in_spark_sql | counts |
|--------------------|--------------------|----------------------------|------------------------|--------|
| Not Ansi Compliant | Snowflake Built-in | Available in Spark SQL     | true                   | 53     |
| Ansi Compliant     | Snowflake Built-in | Not available in Spark SQL | false                  | 7      |
| Ansi Compliant     | Snowflake Built-in | Available in Spark SQL     | true                   | 30     |
| Not Ansi Compliant | Snowflake Built-in | Not available in Spark SQL | false                  | 50     |

Profile the usage in your environment to answer core questions

What is the breakdown of my warehouse usage by category?

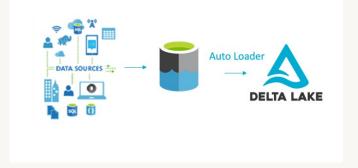
Where are these workloads running? (Which warehouse, which users?)

How do we expect these costs to grow over time?

What are the long running jobs and queries?

What is the level of compatibility of the legacy SQL functions in Databricks?

# Snowflake to Databricks: Technical Mapping


| Feature                                             | Snowflake                                                      |                                   | Databricks                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compute                                             | One type of compute for all<br>Warehouse                       | workloads called <b>Snowflake</b> | Virtual  Databricks Managed Clusters optimized for workload types runtime:  • All-purpose for interactive/developer use  • Jobs for scheduled pipelines  • SOI warehouse for BI workloads | with a                                                                                                                                                                                                                                                                                  |  |
| Storage                                             | Snowflake's own storage lay                                    | Feature                           | Snowflake                                                                                                                                                                                 | Databricks                                                                                                                                                                                                                                                                              |  |
| Format                                              | Snowflake FDN format (pro                                      | Data Types                        | Data Types in Snowflake                                                                                                                                                                   | Data Types in Databricks                                                                                                                                                                                                                                                                |  |
| Architecture Layers                                 | Cloud services layer<br>Query processing<br>Database storage   | Workload Management Security      | Load monitoring chart, custom query tags  System defined roles and custom roles.  Hierarchy of roles                                                                                      | Cluster configuration (policies), ganglia metrics  System roles: account admins, workspace admins, metastore admin, account users and workspace users  Users, groups and service principals  Object based controls using access control lists (ACLs)  Table-/column-/row-level security |  |
| Stages/Tables                                       | External stage, Internal stag<br>External tables, Internal tab |                                   | Table-/column-/row-level security                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |  |
|                                                     | Snowpark                                                       | Data Clustering                   | Clustering                                                                                                                                                                                | Z-ordering                                                                                                                                                                                                                                                                              |  |
|                                                     | Snowsight<br>SnowSQL CLI                                       | Programming Language              | SQL, Java, JavaScript, Python, Scala                                                                                                                                                      | SQL, Python, R, Scala, Java                                                                                                                                                                                                                                                             |  |
| Views, materialized vi<br>Stored procedures<br>UDFs | Tables, temporary tables, to<br>Views, materialized views      | Data Integration                  | External tools (dbt, Matillion, Talend, Pentaho, Informatica, etc.)                                                                                                                       | Delta Live Tables Databricks Jobs External tools (dbt, Matillion, Prophecy, Informatica, Talend, etc.)                                                                                                                                                                                  |  |
|                                                     | UDFs                                                           | Orchestration                     | Snowflake Tasks External third-party tools (e.g., Airflow)                                                                                                                                | Databricks Workflows External third-party tools (e.g., Airflow)                                                                                                                                                                                                                         |  |
| Metadata Catalog                                    | No native cataloging feature<br>Third-party tools such as C    | Machine Learning                  | Python tools on Snowpark, external third-party tools (e.g., Alteryx, DataRobot)                                                                                                           | Databricks ML (Runtime with OSS ML packages, MLflow, Feature Store, AutoML)                                                                                                                                                                                                             |  |
| Data Ingestion                                      | COPY INTO, Snowpipe                                            | Change Data Capture               | Snowflake Streams                                                                                                                                                                         | Delta Change Data Feed                                                                                                                                                                                                                                                                  |  |
|                                                     |                                                                | Time Travel                       | Snowflake Time Travel                                                                                                                                                                     | Delta Time Travel                                                                                                                                                                                                                                                                       |  |
|                                                     |                                                                | Data Sharing                      | Snowflake Secure Data Sharing<br>Snowflake Marketplace                                                                                                                                    | Delta Sharing Delta Sharing Marketplace                                                                                                                                                                                                                                                 |  |
|                                                     |                                                                | Pricing Unit                      | Snowflake credits Snowflake storage                                                                                                                                                       | Databricks units (DBUs)                                                                                                                                                                                                                                                                 |  |

This shows example set of features between both platforms. A similar exercise comparing all features relevant for you environment must be performed. Taken from the <a href="mailto:snowflake-to-databricks-migration-guide">snowflake-to-databricks-migration-guide</a>

# Strategies for Data Migration

# One-time loads, catch-up loads, Real-time vs Batch Ingestion

- **I.** [Recommended] Leveraging Snowflake's <u>COPY INTO command</u> to push data out of Snowflake and into cloud storage (S3, ADLS, GCS) in *Parquet* format, then reading this data into Databricks using one of these methods:
  - Auto Loader
  - Databricks COPY INTO command
  - Spark batch/streaming APIs
- Leveraging the <u>Snowflake Connector for Spark</u> to read data from Snowflake and write to Delta Lake format tables.
- Leveraging the <u>Snowflake Stream Reader library</u> to ingest data from Snowflake in a CDC fashion in cloud storage and into Delta Lake format tables using Auto Loader
- 1. For sophisticated synchronization requirements and accelerate data migration, leverage Real-Time CDC Ingestion using **Arcion** (now part of Databricks)



### Use cloudFiles source

You use a cloudFiles source in the same way as other streaming sources:

```
Python Scala

df = spark.readStream.format("cloudFiles") \
    .option(<cloudFiles-option>, <option-value>) \
    .schema(<schema>) \
    .load(<input-path>)

df.writeStream.format("delta") \
    .option("checkpointLocation", <checkpoint-path>) \
    .start(<output-path>)
```

# A Well Architected Lakehouse

# **Dimensional Modeling**

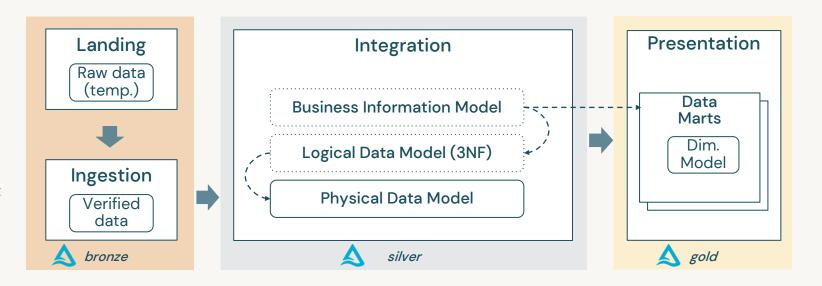
### **Staging**

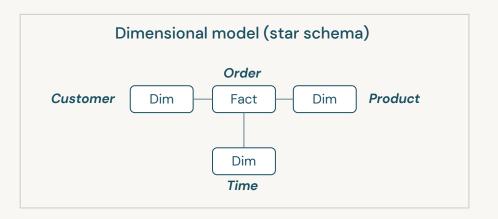
Raw data in its original format (temporarily)

### Ingestion

 Raw data converted to Delta (from Avro, CSV, parquet, XML, JSON format in Landing)

### Integration -Physical data model


- Detailed information covering multiple subject areas
- Integrates all data sources
- Does not necessarily use a dimensional model but feeds dimensional models.


### **Data Mart**

- Subset of the Integrated layer, sometimes or aggregated data
- Focus on dimensional modeling with star schema
- Typically oriented to a specific business line or team

<u>Implementing Data Modeling Techniques in the Databricks</u> Lakehouse Platform

<u>Data Modeling Best Practices in the Databricks</u> Lakehouse Platform





# **Code Migration**

# **Core Components**

# PIPELINE MIGRATION

# MANAGING INGESTION

# QUERY MIGRATION & REFACTORING

## **TESTING**

Consider re-engineering using Databricks Notebooks or Delta Live Tables with Databricks Workflows for orchestration

Or use GUI-based ETL tool Partners: Matallion, Prophecy, etc.

If continuing to use external tools (airflow, Matallion, dbt) – repoint existing pipelines to Databricks SQL Warehouses Simply re-configure ingestion pipelines (custom or tools such as Fivetran) to save data in Delta format

Ingestion pipelines using Snowpipe can be replaced with Databricks Auto Loader

Native Spark integrations (i.e. Kafka) are leveraged to refactor the streams.

Spark SQL supports ANSI SQL allowing a lot of code to work as-is

Use automation tools from vendors (BladeBridge, LeapLogic) or open source tools such as SQLGlot

Identify code inefficiencies and refer to best join strategies and practices in Spark and Delta Lake Keep pipelines as-is to simplify testing and evolve pipelines after migration

Establish unit testing for sink-to-sink comparison

Run pipelines in parallel for a week or two to ensure successful migration



# Report modernization to Databricks

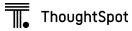
# Run Semantic Layer & Analytics directly on your data in the Lakehouse

As easy as repointing your reports to schemas in Databricks using JDBC/ODBC driver connections

Use Photon and Cloudfetch technology

Use PowerBI or Power BI Premium Large Models

Integration with Tableau


Integration with OLAP cube providers like Microstrategy, Atscale etc.

# Reporting and Semantic layer partner options in Databricks partner connect

















# Walkthrough



# Summary

# Delivering a Successful Migration

# **PROFILE**

"workload types, size, use cases, complexity, costs, roadmap, dependencies, integrations,...."

# **PLATFORM**

"governance with Unity Catalog, open format, native orchestration, ingestion with DLT,...."

# **PLAN**

"prioritize use cases, tangible deliverables, automation, training and change management,..."

# Value realized in migrating to Databricks













All your data: Structured, Semistructured, Unstructured

# databricks

