
©2024 Databricks Inc. — All rights reserved

Variant Data Type

Making Semi-Structured 
Data Fast and Simple

Gene Pang, Chenhao Li
2024-06-13

1



©2024 Databricks Inc. — All rights reserved

• Motivation

• Variant Data Type Overview

• Using Variant

• Deep Dive: Variant Binary Format

• Performance

2

OUTLINE



©2024 Databricks Inc. — All rights reserved

• Semi-structured data is partially structured
• Doesn't fully adhere to relational table model

• Schema may be unknown, or incompatible, or evolving

• JSON is very popular semi-structured data format
• Flexible, and supported in most programming languages

How do we store and process semi-structured data in the lakehouse?

3

Semi-Structured Data in the Lakehouse



©2024 Databricks Inc. — All rights reserved

• On ingestion, read data and infer schema (structs, arrays, scalars, etc.)

• Read queries use the relational schema

• Performance same as structured/relational data

4

Schema Inference
Option 1



©2024 Databricks Inc. — All rights reserved

• Inference must determine a schema that works with all the data
• If data is diverse, can produce huge, but sparse schemas

• Schema enforcement is strict
• Incoming data must be compatible with schema

• Accessing missing field may produce exceptions

5

Challenges with Schema Inference

TOO STRICT



©2024 Databricks Inc. — All rights reserved

• On ingestion, data is stored as string
• No schema enforcement on ingestion

• Read queries parse the string during execution

• Maximum flexibility for any data

6

Treat Data as String
Option 2



©2024 Databricks Inc. — All rights reserved

• Parsing String in queries is slow
• Typically, data is read more than it is written, so expensive parsing is repeated for 

every query

7

Challenges with using String type

TOO SLOW



©2024 Databricks Inc. — All rights reserved 8

Your Choices

TOO STRICT TOO SLOW



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 9

VARIANT:
OPEN, FLEXIBLE,
PERFORMANT TYPE FOR 
SEMI-STRUCTURED 
DATA



©2024 Databricks Inc. — All rights reserved

Open Flexible Performant

10

Variant Data Type

• Spark & Delta data type

• Spark Variant expressions

• Open-source library for Variant 
binary encoding

• No schema on ingestion

• Schema-on-read access

• Offset-based binary encoding 
speeds up navigation

Open, Flexible, Performant Data Type for Semi -Structured Data



©2024 Databricks Inc. — All rights reserved

• Code merged for Spark 4.0 and Delta Lake 4.0
• Released in Spark 4.0 PREVIEW and Delta Lake 4.0 PREVIEW

• Open source library for encoding and decoding Variant binary format
• Make it easier for other projects to support Variant

• Future Variant support for other engines and table formats

11

Open Source



©2024 Databricks Inc. — All rights reserved

• parse_json: Constructs a VARIANT from a JSON string

• to_json: Converts a VARIANT to a JSON string

• variant_get: Extracts the path of a specified type, from the VARIANT

• cast: Cast to and from VARIANT

• schema_of_variant: Returns the schema string of a VARIANT

• variant_explode: Table function for un-nesting a VARIANT

12

Variant Expressions
New/Updated Expressions



©2024 Databricks Inc. — All rights reserved 13

Variant Usage Examples

-- Create a table with a Variant column
CREATE TABLE T (variant_col Variant)

-- Use PARSE_JSON() to convert JSON string to Variant
SELECT PARSE_JSON(json_str_col) variant_col FROM T

-- Variant path navigation
SELECT variant_col:a.b.c::int, variant_col:arr[1].field::double FROM T

-- Un-nest Variant objects
SELECT key, value FROM T, LATERAL VARIANT_EXPLODE(T.variant_col:obj)



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 14

VARIANT
BINARY
FORMAT
DEEP-DIVE



©2024 Databricks Inc. — All rights reserved

• Binary encoding (instead of plain text) to represent semi-structured data

• Uses offsets to enable skipping for faster navigation

• 2 binary "blobs" used to encode
• METADATA holds dictionary of keys

• VALUE holds Variant data and structure, referring to dictionary in METADATA

• On-disk and in-memory binary formats are identical

• Typically smaller size than String representation

15

Variant Binary Format



©2024 Databricks Inc. — All rights reserved 16

Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)METADATA



©2024 Databricks Inc. — All rights reserved 17

Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key nMETADATA



©2024 Databricks Inc. — All rights reserved 18

Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE



©2024 Databricks Inc. — All rights reserved 19

Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE field 
id 1 ... field 

id k

field id values refer 
to dictionary keys



©2024 Databricks Inc. — All rights reserved 20

Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE field 
id 1 ... field 

id k
field 

offset 1 ... field 
offset k

field 
value 1 ... field 

value k

field id values refer 
to dictionary keys



©2024 Databricks Inc. — All rights reserved 21

Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE field 
id 1 ... field 

id k
field 

offset 1 ... field 
offset k

field 
value 1 ... field 

value k

field id values refer 
to dictionary keys

fields are lexicographically 
ordered by dictionary key



©2024 Databricks Inc. — All rights reserved 22

Variant Binary Format

JSON String [{“key1”: 1, “key2”: 2}, {“key1”: 3, “key2”: 4}]

VALUE [{0: 1, 1: 2}, {0: 3, 1: 4}]

METADATA [“key1”, “key2”]

Example of Key Deduplication



©2024 Databricks Inc. — All rights reserved 23

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING



©2024 Databricks Inc. — All rights reserved 24

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING



©2024 Databricks Inc. — All rights reserved 25

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 26

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 27

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 28

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 29

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 30

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 31

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 32

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 33

Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string



©2024 Databricks Inc. — All rights reserved 34

Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891



©2024 Databricks Inc. — All rights reserved 35

Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891

Binary search over the fields to find desired field



©2024 Databricks Inc. — All rights reserved 36

Variant Binary Navigation
Example of Binary Search

field001 field100... field075field050 ... ...field088... ...

...



©2024 Databricks Inc. — All rights reserved 37

Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891

Jump to the desired field's offset value



©2024 Databricks Inc. — All rights reserved 38

Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891

Jump to the desired field's value data



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 39

VARIANT
PERFORMANCE



©2024 Databricks Inc. — All rights reserved

• TPCDS-JSON
• Rows of each table is converted to flat JSON records or Variant records

• TPCH-NESTED
• Dataset is denormalized to nested JSON records or nested Variant records

40

Performance Benchmarks



©2024 Databricks Inc. — All rights reserved 41

Variant vs JSON String Performance

8x faster

20x faster



©2024 Databricks Inc. — All rights reserved

• Certain paths are stored in separate columns in file

• Shredded paths are removed from binary representation

• Faster to access shredded paths
• Less IO required to fetch path

• Less CPU required to decode values

• min/max statistics available for data skipping

• Performance nearly equivalent to fully structured, relational data

42

Sneak Peak: Variant Shredding
Work-in-Progress: Performance Optimizations



©2024 Databricks Inc. — All rights reserved

Without Shredding

43

Variant Shredding Storage

Variant Binary

Variant Binary

Variant Binary



©2024 Databricks Inc. — All rights reserved

Without Shredding With Shredding

44

Variant Shredding Storage

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Shredded paths are removed 
from binary and stored in 

separate columns



©2024 Databricks Inc. — All rights reserved 45

Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Query wants

Without Shredding



©2024 Databricks Inc. — All rights reserved 46

Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

Without Shredding



©2024 Databricks Inc. — All rights reserved 47

Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

parse each Variant 
binary and extract 

desired path

Without Shredding



©2024 Databricks Inc. — All rights reserved 48

Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

parse each Variant 
binary and extract 

desired path

Without Shredding With Shredding



©2024 Databricks Inc. — All rights reserved 49

Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

parse each Variant 
binary and extract 

desired path

fetch only desired
shredded path

Without Shredding With Shredding



©2024 Databricks Inc. — All rights reserved

Open

Flexible

Performant

50

Variant 
Data Type


	Variant Data TypeMaking Semi-Structured Data Fast and Simple
	OUTLINE
	Semi-Structured Data in the Lakehouse
	Schema Inference
	Challenges with Schema Inference
	Treat Data as String
	Challenges with using String type
	Your Choices
	VARIANT:OPEN, FLEXIBLE,PERFORMANT TYPE FOR SEMI-STRUCTURED DATA
	Variant Data Type
	Open Source
	Variant Expressions
	Variant Usage Examples
	VARIANTBINARYFORMATDEEP-DIVE
	Variant Binary Format
	Variant Binary Format
	Variant Binary Format
	Variant Binary Format
	Variant Binary Format
	Variant Binary Format
	Variant Binary Format
	Variant Binary Format
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	Variant Binary Navigation
	VARIANTPERFORMANCE
	Performance Benchmarks
	Variant vs JSON String Performance
	Sneak Peak: Variant Shredding
	Variant Shredding Storage
	Variant Shredding Storage
	Querying Variant Shredded Data
	Querying Variant Shredded Data
	Querying Variant Shredded Data
	Querying Variant Shredded Data
	Querying Variant Shredded Data
	Slide Number 50

