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• Motivation

• Variant Data Type Overview

• Using Variant

• Deep Dive: Variant Binary Format

• Performance
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OUTLINE
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• Semi-structured data is partially structured
• Doesn't fully adhere to relational table model

• Schema may be unknown, or incompatible, or evolving

• JSON is very popular semi-structured data format
• Flexible, and supported in most programming languages

How do we store and process semi-structured data in the lakehouse?
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Semi-Structured Data in the Lakehouse
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• On ingestion, read data and infer schema (structs, arrays, scalars, etc.)

• Read queries use the relational schema

• Performance same as structured/relational data
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Schema Inference
Option 1
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• Inference must determine a schema that works with all the data
• If data is diverse, can produce huge, but sparse schemas

• Schema enforcement is strict
• Incoming data must be compatible with schema

• Accessing missing field may produce exceptions
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Challenges with Schema Inference

TOO STRICT
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• On ingestion, data is stored as string
• No schema enforcement on ingestion

• Read queries parse the string during execution

• Maximum flexibility for any data
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Treat Data as String
Option 2
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• Parsing String in queries is slow
• Typically, data is read more than it is written, so expensive parsing is repeated for 

every query
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Challenges with using String type

TOO SLOW
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Your Choices

TOO STRICT TOO SLOW
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VARIANT:
OPEN, FLEXIBLE,
PERFORMANT TYPE FOR 
SEMI-STRUCTURED 
DATA
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Open Flexible Performant
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Variant Data Type

• Spark & Delta data type

• Spark Variant expressions

• Open-source library for Variant 
binary encoding

• No schema on ingestion

• Schema-on-read access

• Offset-based binary encoding 
speeds up navigation

Open, Flexible, Performant Data Type for Semi -Structured Data
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• Code merged for Spark 4.0 and Delta Lake 4.0
• Released in Spark 4.0 PREVIEW and Delta Lake 4.0 PREVIEW

• Open source library for encoding and decoding Variant binary format
• Make it easier for other projects to support Variant

• Future Variant support for other engines and table formats
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Open Source
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• parse_json: Constructs a VARIANT from a JSON string

• to_json: Converts a VARIANT to a JSON string

• variant_get: Extracts the path of a specified type, from the VARIANT

• cast: Cast to and from VARIANT

• schema_of_variant: Returns the schema string of a VARIANT

• variant_explode: Table function for un-nesting a VARIANT
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Variant Expressions
New/Updated Expressions
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Variant Usage Examples

-- Create a table with a Variant column
CREATE TABLE T (variant_col Variant)

-- Use PARSE_JSON() to convert JSON string to Variant
SELECT PARSE_JSON(json_str_col) variant_col FROM T

-- Variant path navigation
SELECT variant_col:a.b.c::int, variant_col:arr[1].field::double FROM T

-- Un-nest Variant objects
SELECT key, value FROM T, LATERAL VARIANT_EXPLODE(T.variant_col:obj)
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VARIANT
BINARY
FORMAT
DEEP-DIVE
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• Binary encoding (instead of plain text) to represent semi-structured data

• Uses offsets to enable skipping for faster navigation

• 2 binary "blobs" used to encode
• METADATA holds dictionary of keys

• VALUE holds Variant data and structure, referring to dictionary in METADATA

• On-disk and in-memory binary formats are identical

• Typically smaller size than String representation
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Variant Binary Format
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Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)METADATA
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Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key nMETADATA
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Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE
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Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE field 
id 1 ... field 

id k

field id values refer 
to dictionary keys
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Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE field 
id 1 ... field 

id k
field 

offset 1 ... field 
offset k

field 
value 1 ... field 

value k

field id values refer 
to dictionary keys
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Variant Binary Format
Simplified Example of a Variant Object

header dictionary 
size (n)

key 
offset 1 ... key 

offset n key 1 ... key n

header num 
fields (k)

METADATA

VALUE field 
id 1 ... field 

id k
field 

offset 1 ... field 
offset k

field 
value 1 ... field 

value k

field id values refer 
to dictionary keys

fields are lexicographically 
ordered by dictionary key
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Variant Binary Format

JSON String [{“key1”: 1, “key2”: 2}, {“key1”: 3, “key2”: 4}]

VALUE [{0: 1, 1: 2}, {0: 3, 1: 4}]

METADATA [“key1”, “key2”]

Example of Key Deduplication
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

Sequential and linear processing of JSON string
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Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891
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Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891

Binary search over the fields to find desired field
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Variant Binary Navigation
Example of Binary Search

field001 field100... field075field050 ... ...field088... ...

...
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Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891

Jump to the desired field's offset value
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Variant Binary Navigation
Simplified Example of Navigation

header 100
(dict size)

VARIANT 
METADATA

{"field001":"value001",...,"field100":"value100"}JSON 
STRING

0
(offset 1) ... 792

(offset 100)"field001" "field100"...

header 100
(obj size)

VARIANT 
VALUE 0 ... "value001" "value100"...99 0 ... 891

Jump to the desired field's value data
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VARIANT
PERFORMANCE
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• TPCDS-JSON
• Rows of each table is converted to flat JSON records or Variant records

• TPCH-NESTED
• Dataset is denormalized to nested JSON records or nested Variant records

40

Performance Benchmarks
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Variant vs JSON String Performance

8x faster

20x faster
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• Certain paths are stored in separate columns in file

• Shredded paths are removed from binary representation

• Faster to access shredded paths
• Less IO required to fetch path

• Less CPU required to decode values

• min/max statistics available for data skipping

• Performance nearly equivalent to fully structured, relational data
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Sneak Peak: Variant Shredding
Work-in-Progress: Performance Optimizations



©2024 Databricks Inc. — All rights reserved

Without Shredding
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Variant Shredding Storage

Variant Binary

Variant Binary

Variant Binary
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Without Shredding With Shredding
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Variant Shredding Storage

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Shredded paths are removed 
from binary and stored in 

separate columns
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Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Query wants

Without Shredding
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Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

Without Shredding
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Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

parse each Variant 
binary and extract 

desired path

Without Shredding
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Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

parse each Variant 
binary and extract 

desired path

Without Shredding With Shredding
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Querying Variant Shredded Data

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Variant Binary

Query wants

Variant Binary

fetch all Variant binary values

Variant Binary

parse each Variant 
binary and extract 

desired path

fetch only desired
shredded path

Without Shredding With Shredding
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Open

Flexible

Performant

50

Variant 
Data Type
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