Neuralake

Simple systems for complex data

s

GAUTHAM ACHARYA

Software Engineering Lead @ Neuralink

Data engineering
Full-stack development
Manufacturing software
Lab management tools

gautacharya@gmail.com

A,

NEURALINK'S MISSION

Create a generalized brain interface to restore autonomy to those with
unmet medical needs today and unlock human potential tomorrow.

A,

THE NEURALINK STACK

Invisible device with all power and
compute on head

Surgical robot to implant threads
with micron precision

-]

Let's get your cursor set up!

Imagine moving your hand towards FigREGRIE targets.
©)

Neural decoding software to
translate brain signals into useful
outputs

A,

RESTORE AUTONOMY

DDDDDDDDDDDDDDD

Telepathy Blindsight

Data (@ Neuralink

A,

COMPLEX DATA SOURCES

HISTOPATHOLOGY MANUFACTURING BCI SESSIONS SURGERIES

..AND MORE

A,

SIMPLE SYSTEMS

Our design philosophy:
1. Systems that scale down to a single developer machine and up to stateless clusters.
2. Prioritize local development experience - use composable libraries instead of distributed services.
3. No large, stateful distributed clusters for data lakes/warehousing.

4. Code as a catalog — define tables in code, generate a catalog and APIs without databases

1. Ingestion

Low-latency streaming ingestion pipelines.

Elegant schema versioning and backfilling of data lakes.

1. Ingestion
2. Discovery
3. Access

Simple data catalog, generated from source

Low-code dashboards generated from catalog definitions

1. Ingestion
2. DiSCOVEIY | e o caer
3. Access

4,

The Neuralake Data Platform

P N
Data Catalog
4 I
Offline Batch NG J
Writers - N
e J Delta Lake,
Data Sources """"""""" = e - Relational IIIIIIIIIIIII - Neuralake
4 \ Stores ete. Python CIient
Low-Latency - /
Writers N
NG J
Visualization
Tools
. J

Data Ingestion Data Discovery & Data Access

A,

The Neuralake Data Platform

Writers

Delta Lake,
Data Sources | - - Relational
Stores, etc.

Low-Latency

Data Ingestion

A,

Real-time Data Ingestion in Neuralake

-

Delta Lake

~

Parquet files

Transaction log

/

Delta Lake protocol
implemented by delta-rs

................... -

Delta Rust API (delta-rs)

Rust implementation

Python bindings

Delta Lake is an open source project that enables a Lakehouse
architecture on top of data lakes.

Delta Lake provides ACID transactions, scalable metadata handling, and
unifies streaming and batch data processing on top of existing blob
stores.

Delta Lake \

Delta Lake protocol

Parquet files implemented by delta-rs

Transaction log

/

https://www.vldb.org/pvldb/vol13/p3411-armbrust.pdf

delta-rs implements the Delta Lake protocol in

Rust
/ Delta Rust API (delta-rs)
Delta Lake protocol (
implemented by delta-rs Rust implementation
................... - .

Python bindings

https://github.com/delta-io/delta-rs/tree/main

A,

Real-time Data Ingestion in Neuralake

f{ /ﬁk H.\\\
“ A L Message Rust-based
\ » — | Ingestion API Queug Delta Lake query
engines

Labeled data available for model training

A,

Real-time Data Ingestion in Neuralake

- - i -
Queue

A,

Real-time Data Ingestion in Neuralake

/ Neuralake Writer Instance (delta-rs) \

e I
................ - Writer Process
_ J
e I

Compaction Process

Vacuum Process

N)/

Writer and compaction write async, and only
acquire an interprocess lock to commit

4 I
Writer Process
& v
4 A
Compaction Process

Partial writes are resolved via a custom PUT-if-absent semantic.

4 I
Writer Process
& v
4 A
Compaction Process

on the use case for PUT-if-absent.

4,

The Neuralake Data Platform

Data Catalog

Neuralake
Python Client

- /
Y

Visualization
Tools

. v

Data Discovery & Data Access

The Neuralake Python client consists of catalogs, databases, and tables
for easy discovery and querying

[nmarmmonn)

[Catalog, DB, and table structure }

‘ NLK Catalog

‘ o0 H o |

Y

Table | ‘ Table \ I Table l

Clean, uniform API for retrieving tables

/ Neuralske Python Clent \ from neuralake.catalogs import NlkCatalog
from neuralake.core import Filter

df = NlkCatalog.db('bci').table(

Uniform API to retrieve data as | . I
[dataframes] (no rmalized_band_power',
Filter('implant_id', '==', 4595),
Filter('date', '==', '2024-04-28'),
Filter('hour', '==', 23),

)

)
print(df.collect())

Developers can easily add new tables with a declarative syntax

K Neuralake Python Cllnt \

Catalog, DB, and table structure

Uniform API to retrieve data as
dataframes

[Flexible syntax for defining tables

~

J

Auto-generated catalog

Auto-generated API for visualization

tools

.

J,

normalized_binned_spikes = ParquetTable(
name="normalized_binned_spikes",
uri="s3://neuralake-bucket/spikes",
partitioning=(
Partition("implant_id", pa.string()),
Partition("date", pa.string()),
Partition("hour", pa.string())
),
partitioning_scheme=PartitioningScheme.HIVE,
docs_filters=[
Filter("implant_id", "==", 4595),
Filter("date", "==", "2024-04-28"),
Filter("hour", "==", 14),
1,

Developers can easily add new tables with custom function definitions

f Neuralake Python Clien \

Catalog, DB, and table structure

Uniform API to retrieve data as
dataframes

Flexible syntax for defining tables

Auto-generated catalog

Auto-generated API for visualization

tools

S

J,

@table
def robot_insertions() —> NlkDataFrame:

nmun

Context—driven table for Robot insertions, backed by data from logs.

Available data includes insertion parameters, locations,
and notes from data review.

The LIMS-portion of this data source is refreshed every 30 minutes.
The Robot logs portion of this data source is refreshed daily.

logs_1f: NlkDataFrame = robot_logs()
insertion_notes_1f: pl.LazyFrame = pl.scan_parquet(
"s3://n7k-neuralake-bucket/insertion-notes/data.parquet"

)

return (

logs_1f.filter(
pl.col("message_type") == "INSERTION_EVENT",
pl.col("NLInsertionSummary").is_not_null()

)

.select("surgery_id", "timestamp", "NLInsertionSummary")

.explode("NLInsertionSummary")

.with_columns (

Auto-generated catalog allows for easy browsing.

[nmarmmonn)

Ny /

Neuralake

NlkCatalog
Databases

bci

NlkCatalog v

[implant

charger

robot

Q_ Search NlkCatalog...

implant

Tables

impedance_series

implant_diagnostics

implant_events

spike_rate_series

Code can be copied into JupyterHub with a single click.

Neuralake Python Client

Auto-generated catalog

implant_diagnostics

Online telemetry collected from implants while they are actively connected to a client.

from neuralake.catalogs import NlkCatalog © copy
from neuralake.core import Filter

df = NlkCatalog.db('implant').table(
'implant_diagnostics’,

(

Filter('implant_id', '==', 4595},

Filter('date',

)l
)

print(df.collect())

Partitions
implant_id

date

Schema
local_ts_us

ticks_since_boot

int

str

=', '2024-04-14'),

Datetime(time_unit="ns', time_zone=None)

Int64

https://github.com/roapi/roapi

Read-only APIs are generated using ROApi, allowing for SQL queries and
visualization via tools such as Grafana

[nmarmmonn)

tools

[Auto-generated API for visualization }

Ny /

e e b “rmamr

94 94+gd2f38ac 15mn

sty wmtage

50.4%

P

User scripts, custom applications,

JupyterHub
Grafana dashboard,
l user scripts
Python Client l
Generated Catalog -— { Table Definition J —_— ROAPI Query Layer

l

[Query Layer J

Delta Table or Parquet Files on blob store

A, The Python client uses polars and pyarrow to query delta tables and parquet files. Developers
can create tables with a single declarative command or use custom functions.

Python Client

{ Table Definition J

l

[Query Layer J

[Delta Table or Parquet Files on blob store

The catalog is auto-generated from the table definitions. Table definitions are serialized to
JSON, which generates a stateless web app

Python Client

{ Generated Catalog } —

Users can import the neuralake library into their scripts and applications.
JupyterHub is loaded with the neuralake library.

User scripts, custom applications,
JupyterHub

Python Client

Delta Table or Parquet Files on blob store

A, ROAPI config is generated from table definitions.
ROAPI executes interactive FlightSQL queries with Apache Datafusion. See it on github.com/roapi.

Python Client

. [ROAPI Query Layer]

[Delta Table or Parquet Files on blob store }

ROAPI can be queried via PostgreSQL clients, SQL over HTTP, or GraphQL.
Neuralake is configured as a Grafana data source for low-code dashboarding.

Grafana dashboard,
user scripts

{ ROAPI Query Layer]

Delta Table or Parquet Files on blob store }

A,

Conclusion

e Define tables in code, auto-generate a catalog, API, and dashboarding tools without needing to
maintain a catalog database.

e Read and write scale down to a laptop without Java Virtual Machine (JVM) overhead, and scale up
to a stateless cluster.

e Flexible design allows for easy extensions, e.g. adding offline batch processing and image/video
storage.

e Rust-based systems such as polars, Apache Datafusion, and delta-rs allow for high-performance
data access.

e Delta Lake allows for ACID transactionality on blob stores without the overhead of a database
server.

A,

The Neuralake team

Peter Ke Natalie Cygan Emilienne Repak

“[The Link] has helped me reconnect with the world, my
friends, and my family. It's given me the ability to do things
on my own again without needing my family at all hours of
the day and night.”

— PRIME Study participant

“Y'all are giving me too much, it's like a luxury overload, |
haven't been able to do these things in 8 years and now |
don't know where to even start allocating my attention.”

— PRIME Study participant

neuralink careers

Q/A

	Neuralake
Simple systems for complex data
	Neuralake
Simple systems for complex data
	NEURALINK’S MISSION
	THE NEURALINK STACK
	Slide Number 5
	Data @ Neuralink
	Slide Number 7
	SIMPLE SYSTEMS
	Slide Number 9
	Slide Number 10
	Slide Number 11
	The Neuralake Data Platform
	The Neuralake Data Platform
	Real-time Data Ingestion in Neuralake
	Delta Lake is an open source project that enables a Lakehouse architecture on top of data lakes.
	delta-rs implements the Delta Lake protocol in Rust
	Real-time Data Ingestion in Neuralake
	Real-time Data Ingestion in Neuralake
	Real-time Data Ingestion in Neuralake
	Writer and compaction write async, and only acquire an interprocess lock to commit
	Backﬁlling & Schema Migrations (TODO)
	The Neuralake Data Platform
	The Neuralake Python Client consists of catalogs, databases, and tables for easy discovery and querying
	Clean, uniform API for retrieving tables
	Developers can easily declare new tables and automatically have them available for query
	Developers can easily declare new tables and automatically have them available for query
	Auto-generated catalog allows for easy browsing. Code can be copied into JupyterHub with a single click.
	An API is auto-generated using ROApi, allowing for SQL queries and visualization via tools such as Grafana
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41

