
©2024 Databricks Inc. — All rights reserved General - Corning (L4)

BUILDING ENTERPRISE-
GRADE GENERATIVE AI
APPLICATIONS WITH
MLFLOW AND DATABRICKS
VECTOR SEARCH

Denis Kamotsky and Pulkit Chadha
06/11/2024

1

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Principal Software Engineer

• Part of Corning since 2020

• Focused on ML Engineering

• Interested in NLP and information retrieval

• Senior Enterprise Solutions Architect at Databricks

• Part of Databricks since 2021

• Author of “Data Engineering with Databricks
Cookbook”

Denis Kamotsky Pulkit Chadha

2

ABOUT US

Agenda

• Mosaic AI Overview

• About Corning

• GenAI at Corning

• Corning + Databricks Journey on GenAI

• Future Direction of Corning + Databricks

©2024 Databricks Inc. — All rights reserved General - Corning (L4)©2024 Databricks Inc. — All rights reserved 4

Mosaic AI
The Architecture View

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

Gen AI Architecture Patterns
Databricks Mosaic AI is the only provider that enables
every architectural pattern

5

● Foundation Model
Adaptation
(Private Preview)

●Model Serving
●MLflow
● DBRX

(or customer’s chosen
model)

● Model Evaluation
(coming soon)

●Foundation Model
Training

●Model Serving
● DBRX

(or customer’s chosen
model)

●Model Serving
●Vector Search
●MLflow
● DBRX

(or customer’s chosen
model)

● [Mosaic AI RAG
Framework]
(coming soon)

●Model Serving
●MLflow
● DBRX

(or customer’s chosen
model)

Unity Catalog | Lakehouse Monitoring

● Foundation Model
Adaptation
(Private Preview)

●Model Serving
●Vector Search
●MLflow
● DBRX

(or customer’s chosen
model)

● Model Evaluation
(coming soon)

* Retrieval Augmented Generation

Use An Existing LLM
Customize LLM with Data:

RAG* Fine-Tuning Fine-Tuning + RAG*
Build your own LLM:

Pre-training

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

Data Serving

AI Orchestrator & Tools *

Retrieval-Augmented Generation (RAG)

6

Compute
Embeddings

5

Preparation

Load
Embedding

model

Prompt construction
Users

Prompt execution

Preparation
(e.g cleanse,

summarize, …)
2Ingest

docs

Spark

4

Vector Search

Vector libs

3rd party DB

Save
Embeddings

Files

1

Tables

Notebooks

Model
Hub

3

Compute

GPU cluster

Volumes

Ensure to use a
production grade DB
for production use

cases

* Tools for this use case will run on the compute cluster

AI App

Create
Prompts

3

Response61Query

Templates

Prompts

Similar docs
(from)2

2Create
embedding

for the
query and
retrieve

similar docs

Web App

Load
Embedding

Model (same as
for)

Choose and
serve LLM

SQL
(AI functions)

Notebooks
(e.g. Python)

Model
Serving

Monitoring Lakehouse
Monitoring

Inference
Tables

Custom
Models

(CPU/GPU)
Foundation

Models
External
Models

Log query, response, metrics5

4

0

0

3

Send prompts
and receive
response

Models in
Unity Catalog

Models in
Marketplace Hugging

Face Hub

…

Pipeline Pipeline

©2024 Databricks Inc. — All rights reserved General - Corning (L4)©2024 Databricks Inc. — All rights reserved 7

About Corning

Who
are we?

Display
Optical
Communications

Mobile Consumer
Electronics

Life
SciencesAutomotive

The
industries
we help
shape

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• LLMs are string-input/string-
output functions

• Very powerful, but cannot
perform actions

• Require additional information
besides the user’s question

• GenAI applications orchestrate
information flow between user,
LLM and Enterprise systems

• ChatGPT is a great example

10

GENERATIVE AI APPLICATIONS
Isn’t AI intelligent enough?

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Unstructured data (“talk to PDF”)

• May contain images/tables

• Structured data (“talk to a
Markdown table”)

• Full dataset rarely fits into the
LLM’s context window

• Model collaboration for semantic
search and summarization

• Vector database for semantic
search

• Structured data (“talk to
database”, “talk to API”)

• Query language or API spec

• Full data set does not fit into
the LLM’s context window

• Another system is responsible
for query processing

• Model collaboration for
structured query building

• Unpredictable number of steps of
querying and refining data

• Chain of thought Agents

• Different types of information
retrieval are represented by Tools

• Structured queries are typically
declarative

• Imperative code generation and
sandbox execution is imaginable

Retrieval-Augmented Generation (RAG) Structured Query Building (Text2SQL) Mixed

11

COMMON USE CASES
(for interactive assistants)

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• GenAI application is another
interface to enterprise data

• UX is conversational, but NFRs
are no different from other
types of enterprise apps

• Data security is paramount

• SSO and access controls

• New types of restricted data:
conversation history, vector
databases, inference tables,
prompts

12

ENTERPRISE NEEDS
Did you talk with your Architect?

©2024 Databricks Inc. — All rights reserved General - Corning (L4)©2024 Databricks Inc. — All rights reserved 13

OUR JOURNEY

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Unified governance for all traditional types of
data

• Extends to new data specific to GenAI
applications: vector stores, prompts, inference
tables, models, deployments, secrets

• Mlflow can act as a package manager with built-
in UC governance

• Databricks External Model Serving brings even
3rd party LLMs under UC governance (test added
latency)

UNITY CATALOG PRIVATE LLM DEPLOYMENT

14

•On-Prem

•Azure OpenAI (enterprise account)

•Databricks Foundation Models
(serverless)

DATA GOVERNANCE
Ensuring that corporate secrets stay secure

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Most popular

• License: MIT

• Supports Azure OpenAI

• Supports Databricks

• Supports Databricks Vector Store

• Mlflow Flavor

• Databricks RAG Studio (private
preview)

• Very popular

• License: MIT

• Supports Azure OpenAI

• Supports Databricks

• Supports Databricks Vector
Store

• No Mlflow Flavor

• Haystack (deepset.ai)

• Well-documented, small
community

• License: Apache 2.0

• AutoGen (Microsoft++)

• Niche, more like LangGraph

• License: Creative Commons 4.0

• Promptflow, MiniChain,
Promptify etc

• DSPy

• Prompt learning

LangChain LlamaIndex Others

15

CHAIN FRAMEWORKS
Which to choose?

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Use LangChain to build GenAI services

• Package in Mlflow using
mlflow.langchain flavor

• Deploy GenAI applications as Databricks
Serverless Model Serving endpoints

• Use Databricks Vector Search for large
volume of unstructured data

• Use in-memory vector database for
small datasets

• Use Databricks SQL Warehouse for
structured queries

• Use Databricks Secrets for key
management and token rotation

16

DATABRICKS-CENTRIC DESIGN
Our choices

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Hundreds of thousands of large
documents

• 25 million chunks

• Ingest data from public API into a Data
Lake Bronze table

• Leverage Databricks Vector Search

US PATENT SEARCH INTERNAL DOCUMENT SEARCH

17

• Hundreds to thousands of documents

• Diverse document formats

• Land files from SMB shares in UC Volumes

• Ingest document content into Data Lake
Bronze tables

• Store vector database as Mlflow artifact

• Use in-memory vector search compatible
with cloudpickle (FAISS)

RAG EXAMPLES
Large and small

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Even RAG applications require switching to Agent-
based implementation for more flexibility

• Example: US Patent Search uses semantic search
when user asks an abstract question…

• …but it needs to perform lookup by Patent ID if user
asks specific question about a patent or to
summarize a patent

• Different modes of querying Patent Database are
expressed as different tools

• Databricks Vector Search supports Hybrid Search,
i.e., restricting search space by a set of filters

• Requires high-end LLMs, such as GPT-4 to make
fewer mistakes

• We use langchain.agents.StructuredChatAgent
with a few modifications

18

CHAIN OF THOUGHT
Lessons learned

Image credit: https://python.langchain.com/v0.1/docs/use_cases/tool_use/

©2024 Databricks Inc. — All rights reserved General - Corning (L4)©2024 Databricks Inc. — All rights reserved 19

LESSONS LEARNED

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Separate content extraction from
content analysis and chunking

• Leverage medallion architecture

• Unstructured library is great for
content extraction!

• Use GPU to speed up extraction
from images

• Standard Databricks data
engineering best practices apply

• Need to implement self-serve file
landing for business users

20

DOCUMENT INGESTION
Lessons learned

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• API-based vectorization is expensive and rate-limited

• Use open-source transformer models for vectorization
(we like WhereIsAI/UAE-Large-V1 “AnglE” model)

• Keep track of MTEB leaderboard

• Make sure chunks aren’t longer than embedding
context!

• GPU is necessary for vectorizing large datasets

• OSS models run fast enough on CPU at query time

• Implemented custom LangChain VectorStore:
DatabricksVectorStore capable of vectorizing in parallel
on a multi-GPU node

• Used Direct Access index with pre-scaled endpoints

• Decouple GPU parallelism from indexing API parallelism

21

DOCUMENT VECTORIZATION
Lessons learned

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Serving for OSS vectorizer models

• Delta Sync vector search with precalculated
embeddings

• from langchain_community.vectorstores
import DatabricksVectorSearch

• (search only: does not use parallel indexing)

22

DOCUMENT VECTORIZATION
New from Databricks

Inage credit: https://docs.databricks.com/en/generative-ai/vector-search.html

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• GenAI applications are essentially microservice
deployments

• Mlflow can act as a (very basic) package repository

• Python sources can be attached, but we recommend
using Python wheels distributed through private
package repository

• Make sure to store all dependent wheels as Mlflow
Artifacts!

• Difficult to develop code when Mlflow flavor is
evolving at the same time, lots of workarounds…

• ...but you get full transparency of chain internals

• Streaming support is in private preview

• Always unit-test model loading

23

APPLICATION PACKAGING
Lessons learned

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• GenAI applications are interactive by nature

• Databricks Notebooks are a great development
environment for interactive testing

• LangChain verbose mode is very helpful for chain of
thought debugging

• RAG Studio has Mlflow Tracing UI (like a basic
version of LangSmith) in private preview

• We control the entire GenAI runtime through the
dependency list of our single internal library

• That same library is passed as
extra_pip_requirements to Mlflow

• CI/CD support via metadata embedded directly into
the notebook as a Python dict

24

APPLICATION DEVELOPMENT
Lessons learned

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

PYTHON

Step 1: set up

Install Corning GenAI runtime: similar to Databricks RAG Studio
%pip install --no-cache --extra-index-url https://*****gitlab.toolchain.corning.com***** -U ”******"

Metadata for submitting the notebook from CI/CD to register the application in Production
CI/CD can use Corning tool to submit the notebook as follows:
dbxx smart-submit –-subconf prod -–profile prod notebook.py
__DBXX__ = {
'job_type': 'PROD',
'flavor': 'SCALE',
'custom_tags.*****': '*****',
'emails': '*****',
'timeout_seconds': 1800, #30 minutes
‘prod': {
'databricks_environment': '*****'

}
}

SIMPLE BOT

25

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

PYTHON

Step 2: vectorize text

Create serializable in-memory vector index
texts = process_documents()

embedding_model = create_embedding_model("all-MiniLM-L6-v2", use_api_management=False)

db = FAISS.from_documents(texts, embedding_model)

retriever = db.as_retriever(search_kwargs={"k": 10})

SIMPLE BOT

26

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

PYTHON

Step 3: create LangChain

Saveable version comes from Corning; “saveable” refers to ability to persist in MLflow
llm = create_langchain_llm(ModelType.APIM)

chain = SaveableConversationalRetrievalChain.from_llm(llm=llm, condense_question_llm=llm, retriever=retriever)

Test bot
input_example = {

"question": "What were top 5 things on President's mind?",
"chat_history": """[["What was the speech about?", "The speech was the State of the Union address."]]"""

}

chain.invoke(input_example)

SIMPLE BOT

27

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

PYTHON

Step 4: register in MLflow

Loader function will load vector store from Mlflow artifacts

def loader(persist_dir):
from langchain_community.vectorstores import FAISS
db = FAISS.load_local(
persist_dir,
embeddings=create_embedding_model("all-MiniLM-L6-v2")

)
return db.as_retriever(search_kwargs={"k": 10})

SIMPLE BOT

28

PYTHON

Register in Mlflow using Corning enhancements
to the mlflow.langchain flavor

with TemporaryDirectory() as persist_directory:
db.save_local(persist_directory)
model_info = log_langchain(chain=chain,

name=REGISTER_LANGCHAIN_AS,
input_example=input_example,
persist_directory=persist_directory,
loader_fn=loader,
gpu_serving=False,
uses_api_management=True,
mlflow_params={

"llm_adapter": type(llm).__name__
})

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

PYTHON

Step 5: test and deploy

Locally test model loading from MLflow

loaded_model=mlflow.pyfunc.load_model(f"models:/{REGISTER_LANGCHAIN_A
S}/latest")

loaded_model.predict(input_example)

SIMPLE BOT

29

PYTHON

Create Serving endpoint

print("Deploying to Databricks Serverless Model Serving...")

deployed = deploy_endpoint(REGISTER_LANGCHAIN_AS,
uses_api_management=True)

print(deployed)

©2024 Databricks Inc. — All rights reserved General - Corning (L4)©2024 Databricks Inc. — All rights reserved 30

FUTURE DIRECTION

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• mlflow.langchain flavor is evolving in parallel with
LangChain itself: not easy to predict what is
currently supported and what is not

• LLM latency and Agent latency

• Streaming feedback in chain of thought

• Vectorizing very large datasets at reasonable
throughput and cost

• Using frameworks other than LangChain (e.g.
LlamaIndex Packs)

DEVELOPMENT PRODUCTION

31

• Data Engineering

•Token rotation and management

•UC permissions management

• Streaming support in Model Serving

• GenAI application evaluation and human feedback
collection

• Scaling of the Databricks Vector Search infrastructure

• MLOps environment flow

CHALLENGES
What is hard?

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Adopt latest RAG Studio (private preview)
changes: keep deleting code!

• Adopt modern LangChain coding style: LCEL and
LangGraph

• Use simpler open-source LLMs for simpler tasks:
reduce latency

• Migrate from Direct Access Index to Delta Sync
with precomputed embeddings

• Make it easier for non-developers to contribute
prompts (Mlflow Prompt Engineering UI?)

• Multi-modal applications!

DEVELOPMENT PRODUCTION

32

• Improve streaming feedback to the user

• Incorporate RAG Studio model evaluation into CI/CD

• Build flexible document ingestion pipelines

• UC permission management automation

• Automatic discovery of new Model Serving
endpoints in the UI Portal

• Expand the use of Inference Tables for tracking
model performance

NEXT STEPS
What are we working on?

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

• Automated data ingestion

• Automated model deployment

• Human in the loop feedback harvesting

• Expert-crafted prompts

33

OUR VISION
Closed-loop architecture

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

[Mosaic AI
Agent Framework]

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

Where are we? What is the pain? What is the gain?

BACKGROUND

Production -quality
GenAI is difficult.

Organizations are struggling to put
GenAI application into production

Don’t know when the app is producing
responses that are not accurate, safe,
or governed(no evaluation tools), and

how to fix it (dev tools).

[Mosaic AI RAG Framework] makes it
easy to evaluate the quality of the

app, iterate quickly and test
hypothesis, and redeploy the

application easily

[Mosaic AI RAG Framework]

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

HOW DOES IT WORK?
[Mosaic AI RAG Framework]

RAG is a complicated process…

[Mosaic AI RAG Framework] helps deploy with a workflow and evaluation tools
Upgrades to Mosaic AI to help deploy RAG easier

Quality Lab with AI-assisted judges and human review UI

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

[Mosaic AI RAG Framework] has
built-in proprietary AI-assisted
evaluation that can automatically
determine if outputs are high quality
as well as an intuitive UI to get
feedback from human stakeholders.

[Mosaic AI RAG Framework] makes
it easy for developers to take
feedback, and rapidly iterate on
changes to test every hypothesis.
They can then redeploy their
application into production with no
code changes using an end-to-end
LLMOps workflow. Developers can
iterate on all aspects of the RAG
process.

[Mosaic AI RAG Framework] is
seamlessly integrated with the rest
of the Databricks Data Intelligence
Platform. This means you have
everything you need to deploy an
end-to-end RAG system from
security and governance, to data
integration, vector databases,
quality evaluation, and one-click
optimized deployment.

Understand Quality Rapid Development Governance

BENEFITS
[Mosaic AI RAG Framework] helps deploy production -quality Generative AI
applications

1 2 3

©2024 Databricks Inc. — All rights reserved General - Corning (L4)

25DEDC

38

Giveaway

25DEDC
25% Discount Code

(Valid June 10th - 25th)

©2024 Databricks Inc. — All rights reserved General - Corning (L4)
39

	BUILDING ENTERPRISE-GRADE GENERATIVE AI APPLICATIONS WITH MLFLOW AND DATABRICKS VECTOR SEARCH
	ABOUT US
	Agenda
	Mosaic AI�The Architecture View

	Gen AI Architecture Patterns
	Retrieval-Augmented Generation (RAG)
	About Corning

	Slide Number 8
	Slide Number 9
	GENERATIVE AI APPLICATIONS
	COMMON USE CASES
	ENTERPRISE NEEDS
	OUR JOURNEY

	DATA GOVERNANCE
	CHAIN FRAMEWORKS
	DATABRICKS-CENTRIC DESIGN
	RAG EXAMPLES
	CHAIN OF THOUGHT
	LESSONS LEARNED

	DOCUMENT INGESTION
	DOCUMENT VECTORIZATION
	DOCUMENT VECTORIZATION
	APPLICATION PACKAGING
	APPLICATION DEVELOPMENT
	SIMPLE BOT
	SIMPLE BOT
	SIMPLE BOT
	SIMPLE BOT
	SIMPLE BOT
	FUTURE DIRECTION

	CHALLENGES
	NEXT STEPS
	OUR VISION
	[Mosaic AI �Agent Framework]
	BACKGROUND
	HOW DOES IT WORK?
	BENEFITS
	Giveaway
	Slide Number 39

