
©2024 Databricks Inc. — All rights reserved 1

Explore the New
Functionality of
Apache Spark 3.5

Data + AI Summit 2024

1

Daniel Tenedorio dtenedor

©2024 Databricks Inc. — All rights reserved 2

Transforming and Querying
Data for Everyone!

©2024 Databricks Inc. — All rights reserved 3

100+
Data Sources

1+ Billion
Annual Downloads

100K+
Stack Overflow Questions

41K+
Commits

3700+
GitHub Contributors

©2024 Databricks Inc. — All rights reserved 4

Still #1 in developer activity for over ten years!
3,700 contributors, 41,000 commits

©2024 Databricks Inc. — All rights reserved 5

©2024 Databricks Inc. — All rights reserved

About Us

Daniel Tenedorio
(GitHub: dtenedor)

Wenchen Fan
(GitHub: cloud-fan)

Xiao Li
(GitHub: gatorsmile)

6

The Spark team at

https://github.com/dtenedor
https://github.com/cloud-fan
https://github.com/gatorsmile

©2024 Databricks Inc. — All rights reserved 7

Agenda

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLogLog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

©2024 Databricks Inc. — All rights reserved 88

Spark Connect

©2024 Databricks Inc. — All rights reserved

How to embed Spark in applications?
Up until Spark Connect: Hard to support today’s developer
experience requirements

Applications

IDEs / Notebooks

Programming Languages / SDKs

No JVM InterOp

Close to REPL

SQL only
Spark’s Monolith Driver

Application Logic

Analyzer

Optimizer

Scheduler

Distributed Execution Engine

Modern data application

©2024 Databricks Inc. — All rights reserved

Spark Connect General Availability
Thin client, with full power of Apache Spark

Sp
ar

k
C

on
ne

ct
 C

lie
nt

 A
PI

Spark’s Driver

Application Gateway

Analyzer

Optimizer

Scheduler

Distributed Execution Engine

Applications

IDEs / Notebooks

Programming Languages / SDKs

Modern data application

©2024 Databricks Inc. — All rights reserved

Connect to Spark from Any Application

pip install pyspark>=3.5.0

in your favorite IDE!

Interactively develop &
debug from your IDE

Check out Databricks Connect,
use & contribute the Go client

New Connectors and
SDKs in any language!

1
1

Build interactive Data
Applications

Get started with our GitHub
example!

Databricks
Connect

Scala3

https://docs.databricks.com/dev-tools/databricks-connect.html
https://github.com/apache/spark-connect-go
https://github.com/databricks-demos/dbconnect-plotly
https://github.com/databricks-demos/dbconnect-plotly

©2024 Databricks Inc. — All rights reserved

New Spark Connect Scala Client Features!
SPARK-42554

● The Scala client now supports more
features in Spark 3.5!

● Part of this work was a major refactoring
to split the sql submodule to into client
(sql-api) and server-compatible (sql)
modules to reduce the set of
dependencies needed on the client for
classpath isolation (SPARK-44273).

New!

https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-44273

©2024 Databricks Inc. — All rights reserved

New Spark Connect Scala Client Features!
SPARK-42554

● It is now possible to use MLlib directly
with Spark Connect to do distributed
training and inference (design doc).

● This supports logistic regression
classifiers, basic feature transformers,
basic model evaluators, and more!

● This also integrates with Spark’s
vectorized Python UDF framework.

New!

https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-42554
https://docs.google.com/document/d/1LHzwCjm2SluHkta_08cM3jxFSgfF-niaCZbtIThG-H8/edit#heading=h.x8uc4xogrzbk

©2024 Databricks Inc. — All rights reserved

New Spark Connect Scala Client Features!
SPARK-42554

https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-42554

©2024 Databricks Inc. — All rights reserved

New Spark Connect Scala Client Features!
SPARK-42497

● Parity of the Pandas API on Spark using
Spark Connect has improved.

● The Spark Connect client for structured
streaming workloads both in Python and
Scala now also supports all available
features.

New!

https://issues.apache.org/jira/browse/SPARK-42497
https://issues.apache.org/jira/browse/SPARK-42497

©2024 Databricks Inc. — All rights reserved

New Spark Connect Scala Client Features!
SPARK-43351

● The community also started a client for Spark
Connect in Golang in a separate repository
here: github.com/apache/spark-connect-go.

New!

https://issues.apache.org/jira/browse/SPARK-43351
https://github.com/apache/spark-connect-go

©2024 Databricks Inc. — All rights reserved

Pandas API Support for Spark Connect
SPARK-42497

● Spark Connect now includes the capability
to execute Pandas functions and logic as
needed in your PySpark programs.

New!

https://issues.apache.org/jira/browse/SPARK-42497

©2024 Databricks Inc. — All rights reserved 18

Agenda

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLogLog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

©2024 Databricks Inc. — All rights reserved 1919

SQL Features

©2024 Databricks Inc. — All rights reserved

The IDENTIFIER Clause
SPARK-41231

● The new IDENTIFIER clause provides flexibility to
avoid risk of SQL injection attacks.

● Using this feature to specify
table/column/function names is powerful when
paired with the query parameter feature added in
the previous Spark release.

https://issues.apache.org/jira/browse/SPARK-41231

©2024 Databricks Inc. — All rights reserved

The IDENTIFIER Clause
SPARK-41231

● The new IDENTIFIER clause provides flexibility to
avoid risk of SQL injection attacks.

spark.sql(
“CREATE TABLE IDENTIFIER(:tbl)(col INT)”,
args = {

“tbl”: “my_schema.my_tbl”
}

}

https://issues.apache.org/jira/browse/SPARK-41231

©2024 Databricks Inc. — All rights reserved

The IDENTIFIER Clause
SPARK-41231

● The new IDENTIFIER clause provides flexibility to
avoid risk of SQL injection attacks.

spark.sql(
“SELECT IDENTIFIER(:col) FROM IDENTIFIER(:tbl)”,
args = {

“col”: “col”,
“tbl”: “my_schema.my_tbl”

}
}

https://issues.apache.org/jira/browse/SPARK-41231

©2024 Databricks Inc. — All rights reserved

Named Argument Syntax for Function Calls
SPARK-44059

● Spark SQL now lets users call functions with
parameter names preceding their values.

SELECT mask(
'AbCD123-@$#',
lowerChar => 'q',
upperChar => 'Q',
digitChar => 'd');

https://issues.apache.org/jira/browse/SPARK-44059
https://issues.apache.org/jira/browse/SPARK-44059

©2024 Databricks Inc. — All rights reserved

HyperLogLog Approx. Aggregate Functions
SPARK-16484

● New SQL functions count unique values within
groups with precision and efficiency, including
storing the result of intermediate computations to
sketch buffers which can be persistent into
storage and loaded back later.

https://issues.apache.org/jira/browse/SPARK-16484
https://issues.apache.org/jira/browse/SPARK-16484

©2024 Databricks Inc. — All rights reserved

HyperLogLog Approx. Aggregate Functions
SPARK-16484

● These implementations use the Apache
Datasketches library for consistency with the
open-source community and easy integration.

https://issues.apache.org/jira/browse/SPARK-16484
https://issues.apache.org/jira/browse/SPARK-16484

©2024 Databricks Inc. — All rights reserved

HyperLogLog Approx. Aggregate Functions
SPARK-16484

● These implementations use the Apache
Datasketches library for consistency with the
open-source community and easy integration.

SELECT hll_sketch_estimate(
hll_sketch_agg(col))

FROM VALUES
(”abc”), (”def”), (”abc”), (”ghi”), (”abc”) tab(col);

> 4

https://issues.apache.org/jira/browse/SPARK-16484
https://issues.apache.org/jira/browse/SPARK-16484

©2024 Databricks Inc. — All rights reserved

New Functions for Manipulating Arrays
SPARK-41231

SELECT array_append(array(1, 2, 3), ”HELLO”);
> [1, 2, 3, “HELLO”]

SELECT array_prepend(array(1, 2, 3), 99);
> [99, 1, 2, 3]

SELECT array_insert(array(1, 2, 3), 0, 4);
> [4, 1, 2, 3]

SELECT array_compact(array(1, NULL, 3));
> [1, 3]

https://issues.apache.org/jira/browse/SPARK-41231
https://issues.apache.org/jira/browse/SPARK-41231

©2024 Databricks Inc. — All rights reserved

SQL Functions ⇒ Scala, Python, R APIs
SPARK-43907

● Before Spark 3.5, there were many SQL functions
that were not available in the Scala, Python, or R
DataFrame APIs.

https://issues.apache.org/jira/browse/SPARK-43907

©2024 Databricks Inc. — All rights reserved

SQL Functions ⇒ Scala, Python, R APIs
SPARK-43907

● Before Spark 3.5, there were many SQL functions
that were not available in the Scala, Python, or R
DataFrame APIs.

● This presented difficulties invoking the functions
within DataFrames as users found it necessary to
type the function name in string literals without
any help from auto-completion.

https://issues.apache.org/jira/browse/SPARK-43907

©2024 Databricks Inc. — All rights reserved

SQL Functions ⇒ Scala, Python, R APIs
SPARK-43907

● Spark 3.5
removes this
problem by
making 150+
SQL functions
available in the
DataFrame APIs.

https://issues.apache.org/jira/browse/SPARK-43907

©2024 Databricks Inc. — All rights reserved

SQL Functions ⇒ Scala, Python, R APIs
SPARK-43907

spark.conf.set(
“spark.sql.session.timeZone”,
“America/Los_Angeles”)

df = spark.createDataFrame(
[(”2015-07-22 10:00:00”,)],
[“t”])

● Spark 3.5 removes this problem by making 150+
SQL functions available in the DataFrame APIs.

https://issues.apache.org/jira/browse/SPARK-43907

©2024 Databricks Inc. — All rights reserved

SQL Functions ⇒ Scala, Python, R APIs

df.select(
unix_micros(
to_timestamp(df.t))

.alias(“n”)

.collect()

> [Row(n=1437584400000000)]

SPARK-43907

● Spark 3.5 removes this problem by making 150+
SQL functions available in the DataFrame APIs.

New!

https://issues.apache.org/jira/browse/SPARK-43907

©2024 Databricks Inc. — All rights reserved

SQL Functions ⇒ Scala, Python, R APIs
SPARK-43907

https://issues.apache.org/jira/browse/SPARK-43907

©2024 Databricks Inc. — All rights reserved 34

Agenda

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLogLog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

©2024 Databricks Inc. — All rights reserved 3535

PySpark

©2024 Databricks Inc. — All rights reserved

Arrow-Optimized Python UDFs
SPARK-40307

spark.conf.set(
“spark.sql.execution.pythonUDF.arrow.enabled”,
True)

@udf(“integer”)
def my_len_udf(s: str) -> int:
return len(s)

● Python UDFs run 2X faster on modern CPU
architectures, thanks to vectorized I/O!

https://issues.apache.org/jira/browse/SPARK-40307

©2024 Databricks Inc. — All rights reserved

Arrow-Optimized Python UDFs
SPARK-40307

@udf(“integer”, useArrow=True)
def my_len_udf(s: str) -> int:
return len(s)

● You can also specify useArrow=True at
registration time instead of using the config.

https://issues.apache.org/jira/browse/SPARK-40307

©2024 Databricks Inc. — All rights reserved

Arrow-Optimized Python UDFs
SPARK-40307

https://issues.apache.org/jira/browse/SPARK-40307

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

This is a new kind of function that
returns an entire table as output instead
of a single scalar result value

○ Once registered, they can appear
in the FROM clause of a SQL
query

Spark
3.5

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

This is a new kind of function that
returns an entire table as output instead
of a single scalar result value

○ Once registered, they can appear
in the FROM clause of a SQL
query

○ Or use the DataFrame API to call
them

Spark
3.5

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

from pyspark.sql.functions import udtf

@udtf(returnType="num: int, squared: int")
class SquareNumbers:

def eval(self, start: int, end: int):
for num in range(start, end + 1):

yield (num, num * num)

Spark
3.5

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

SELECT *
FROM SquareNumbers(

start => 1,
end => 3);

+-----+--------+
| num | squared|
+-----+--------+
1	1
2	4
3	9
+-----+--------+

Spark
3.5

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

SquareNumbers(
lit(1), lit(3))
.show()

+-----+--------+
| num | squared|
+-----+--------+
1	1
2	4
3	9
+-----+--------+

Spark
3.5

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

class ReadFromConfigFile:
@staticmethod
def analyze(filename: AnalyzeArgument):

with open(os.path.join(
SparkFiles.getRootDirectory(),
filename.value), ”r”) as f:

Compute the UDTF output schema
based on the contents of the file.
return AnalyzeResult(

from_file(f.read()))
...

Polymorphic Analysis
Compute the output schema for each call depending on arguments, using analyze

Spark 4.0

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions
Polymorphic Analysis
Compute the output schema for each call depending on arguments, using analyze

ReadFromConfigFile(lit(“config.txt”)).show()

+------------+-------------+
| start_date | other_field |
+------------+-------------+
| 2024-04-02 | 1 |
+------------+-------------+

Spark 4.0

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

class CountAndMax:
def __init__(self):

self._count = 0
self._max = 0

def eval(self, row: Row):
self._count += 1
self._max = max(self._max, row[0])

def terminate(self):
yield self._count, self._max

Input Table Partitioning
Split input rows among instances: eval runs once per row, then terminate runs last

Spark 4.0

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

WITH t AS (SELECT id FROM RANGE(0, 100))
SELECT * FROM CountAndMax(
TABLE(t) PARTITION BY id / 10 ORDER BY id);

+-------+-----+
| count | max |
+-------+-----+
| 10 | 0 |
| 10 | 1 |
...

Input Table Partitioning
Split input rows among instances: eval runs once per row, then terminate runs last

Spark 4.0

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions
Variable Keyword Arguments
The analyze and eval methods may accept *args or **kwargs

class VarArgs:
@staticmethod
def analyze(**kwargs: AnalyzeArgument):

return AnalyzeResult(StructType(
[StructField(key, arg.dataType)
for key, arg in sorted(

kwargs.items())]))

def eval(self, **kwargs):
yield tuple(value for _, value

in sorted(kwargs.items()))

Spark 4.0

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions
Variable Keyword Arguments
The analyze and eval methods may accept *args or **kwargs

SELECT * FROM VarArgs(a => 10, b => ‘x’);

+----+-----+
| a | b |
+----+-----+
| 10 | “x” |
+----+-----+

Spark 4.0

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions
Custom Initialization
Create a subclass of AnalyzeResult and consume it in each subsequent __init__

class SplitWords:
@dataclass
class MyAnalyzeResult(AnalyzeResult):

numWords: int
numArticles: int

def __init__(self, r: MyAnalyzeResult):
...

Spark 4.0

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions
Custom Initialization
Create a subclass of AnalyzeResult and consume it in each subsequent __init__

@staticmethod
def analyze(text: str):

words = text.split(” ”)
return MyAnalyzeResult(

schema=StructType()
.add(”word”, StringType())
.add(”total”, IntegerType()),

withSinglePartition=true,
numWords=len(words)
numArticles=len((

word for word in words
if word in (”a”, ”an”, ”the”)))

Spark 4.0

©2024 Databricks Inc. — All rights reserved

● Previously, the set of exceptions thrown from
the Python Spark driver did not leverage the
error classes introduced in Apache Spark 3.3.

● All of the errors from DataFrame and SQL have
been migrated, and contain the appropriate
error classes and codes.

New!

Enhanced error messages in PySpark
SPARK-42986

https://issues.apache.org/jira/browse/SPARK-42986

©2024 Databricks Inc. — All rights reserved

Enhanced error messages in PySpark
SPARK-42986

https://issues.apache.org/jira/browse/SPARK-42986

©2024 Databricks Inc. — All rights reserved

DataFrame Equality Testing API
SPARK-44042

● New DataFrame equality test utility functions
including detailed, color-coded test error
messages, which clearly indicate differences
between DataFrame schemas and data within
DataFrames.

https://issues.apache.org/jira/browse/SPARK-44042

©2024 Databricks Inc. — All rights reserved

DataFrame Equality Testing API
SPARK-44042

● This lets developers easily add equality tests
that produce actionable results for their
applications to enhance productivity.

https://issues.apache.org/jira/browse/SPARK-44042

©2024 Databricks Inc. — All rights reserved

DataFrame Equality Testing API
SPARK-44042

● pyspark.testing.assertDataFrameEqual
● pyspark.testing.assertPandasOnSparkEqual
● pyspark.testing.assertSchemaEqual

https://issues.apache.org/jira/browse/SPARK-44042

©2024 Databricks Inc. — All rights reserved

DataFrame Equality Testing API
SPARK-44042

pyspark.errors.exceptions.base.PySparkAssertError: [DIFFERENT_ROWS]
Results do not match: (33.33333 %)
*** actual ***
Row(name='Amy', languages=['C++', 'Rust'])

! Row(name='Jane', languages=['Scala', 'SQL', 'Java'])
Row(name='John', languages=['Python', 'Java'])

*** expected ***
Row(name='Amy', languages=['C++', 'Rust'])

! Row(name='Jane', languages=['Scala', 'Java'])
Row(name='John', languages=['Python', 'Java'])

https://issues.apache.org/jira/browse/SPARK-44042

©2024 Databricks Inc. — All rights reserved

PySpark DeepSpeed Distributor
SPARK-44264

● This makes it easier for Pyspark users to run
distributed training and inference with
DeepSpeed on Spark clusters.

+

https://issues.apache.org/jira/browse/SPARK-44264
https://issues.apache.org/jira/browse/SPARK-44264

©2024 Databricks Inc. — All rights reserved 59

Agenda

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLogLog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

©2024 Databricks Inc. — All rights reserved 6060

Streaming

©2024 Databricks Inc. — All rights reserved

Full Support for Multiple Stateful Operators
SPARK-42376

● Time interval joins between streams are now
supported, possibly followed by other stateful
operators.

● For example, workloads can now join streams of
ads and clicks, then aggregate over time
windows.

https://issues.apache.org/jira/browse/SPARK-42376

©2024 Databricks Inc. — All rights reserved

Full Support for Multiple Stateful Operators
SPARK-42376

https://issues.apache.org/jira/browse/SPARK-42376

©2024 Databricks Inc. — All rights reserved

Full Support for Multiple Stateful Operators
SPARK-42376

https://issues.apache.org/jira/browse/SPARK-42376

©2024 Databricks Inc. — All rights reserved

Changelog Checkpointing for RocksDB State
Store Providers
SPARK-43421

● This new checkpoint mechanism for the RocksDB
state store provider persists the changelog
(updates) of the state.

● This reduces the commit latency significantly
which also reduces end to end latency significantly.

● To enable, set this config to true:
spark.sql.streaming.stateStore.
rocksdb.changelogCheckpointing.enabled

https://issues.apache.org/jira/browse/SPARK-43421

©2024 Databricks Inc. — All rights reserved

Changelog Checkpointing for RocksDB State
Store Providers
SPARK-43421

https://issues.apache.org/jira/browse/SPARK-43421

©2024 Databricks Inc. — All rights reserved

RocksDB State Store Provider Memory
Management Enhancements
SPARK-43311

● New fine-grained memory management lets users
cap the total memory usage across RocksDB
instances in the same executor process.

● Users can now reason about and
configure the memory usage per
executor process.

https://issues.apache.org/jira/browse/SPARK-43311

©2024 Databricks Inc. — All rights reserved

Introducing
dropDuplicatesWithinWatermark
SPARK-42931

● This new API new API deduplicates events without
requiring the timestamp for event time to be the
same, as long as the timestamp for these events
are close enough to fit within the watermark delay.

● With this new feature, users can avoid errors like
“Timestamp for event time could differ even for
events to be considered as duplicates.”

https://issues.apache.org/jira/browse/SPARK-42931
https://issues.apache.org/jira/browse/SPARK-42931

©2024 Databricks Inc. — All rights reserved

Introducing
dropDuplicatesWithinWatermark
SPARK-42931

https://issues.apache.org/jira/browse/SPARK-42931
https://issues.apache.org/jira/browse/SPARK-42931

Thank you for your
contributions!

Daniel Tenedorio (daniel.tenedorio @ databricks)

	Explore the New Functionality of Apache Spark 3.5
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	About Us
	Slide Number 7
	Spark Connect
	How to embed Spark in applications?
	Spark Connect General Availability
	Connect to Spark from Any Application
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	Pandas API Support for Spark Connect
	Slide Number 18
	SQL Features
	The IDENTIFIER Clause
	The IDENTIFIER Clause
	The IDENTIFIER Clause
	Named Argument Syntax for Function Calls
	HyperLogLog Approx. Aggregate Functions
	HyperLogLog Approx. Aggregate Functions
	HyperLogLog Approx. Aggregate Functions
	New Functions for Manipulating Arrays
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	Slide Number 34
	PySpark
	Arrow-Optimized Python UDFs
	Arrow-Optimized Python UDFs
	Arrow-Optimized Python UDFs
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Enhanced error messages in PySpark
	Enhanced error messages in PySpark
	DataFrame Equality Testing API
	DataFrame Equality Testing API
	DataFrame Equality Testing API
	DataFrame Equality Testing API
	PySpark DeepSpeed Distributor
	Slide Number 59
	Streaming
	Full Support for Multiple Stateful Operators
	Full Support for Multiple Stateful Operators
	Full Support for Multiple Stateful Operators
	Changelog Checkpointing for RocksDB State Store Providers
	Changelog Checkpointing for RocksDB State Store Providers
	RocksDB State Store Provider Memory Management Enhancements
	Introducing dropDuplicatesWithinWatermark
	Introducing dropDuplicatesWithinWatermark
	Slide Number 69
	Slide Number 70

