databricks

Explore the New
Functionality of
Apache Spark 3.5

Daniel Tenedorio € dtenedor

Data + Al Summit 2024

Spa

Transforming and Querying
Data for Everyone!

1+ Billion 100K+ 3700+

Annual Downloads Stack Overflow Questions GitHub Contributors

100+ 41K +

Data Sources Commits

[{=] co ~l (o] (4] e w N -

o

3,700 contributors, 41,000 commits

Still #1in developer activity for over ten years!

2012 2013 2014

Modern Data Stack - Pull Requests

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
apache/
2 & &> & & - & {3 & = spark
& 2> - = & @ ® clickhouse

' StarRocks/
¢ ‘ g starrocks

A pingcap/

tidb

apache/)
incubator-dorit

apache/
airflow

ap ache/
flink
apache/
beam
metabase

ai_rbytchq-’
airbyte

Materializelp”
materiali-

Berkele

UNIVERSITY OF CALIFORNIA

wEE e
T

Al

a n n liﬂ«'ll RN

ihnd ey x T, v
P Y | ; =
e Jat R 3 &
'.,'-'-..:-, L * 1’ - = E l
e e 7 Y y T
L
1 s-'.;.':.*- -
¥
ZiH/Eh

B

Apache Spark 3.5

Spark Connect SOL
[:._:___ = - almih O Box
@2 e B O B ® B =
e r= I=
: : Structured Distributed training SOL Built-in Named
ScalaClient — GoClient Streaming inference DENTIFIER ~ Functions ~ YPero9log s rgiments
Python Features
2 / o -[-_; - } — (]
|7 - g:n—) . i E Iil
Arrow optimized Python Scala/Python PySpark Testing DeepSpeed pandas APls AQE support Decommission
Python UDF UDTF Functions APls Distributor ~ for Spark Connect for SOLCache Enhancements
Streaming More
N A {
W o 2 & K S W B
C) — 5 =5 QOADA
Changelog Stateful Operator dropDuplicates Memory Error Class Javal17 & Spark Ul for
Checkpointing Chaining WithinWatermark Managementin £nhancements Scala 2.13 Spark Connect DSV2

State Store

https://github.com/dtenedor
https://github.com/cloud-fan
https://github.com/gatorsmile

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLoglog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

Agenda

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

> g0 B ()

Scala Client Go Client Structu.red Distrit?uted training
Streaming & inference

Spark Connect

©2024 Databricks Inc. — All rights reserved

How to embed Spark in applications?

Up until Spark Connect: Hard to support today'’s developer
experience requirements

Applications

Spark’s Monolith Driver

SQL only

Modern data application

IDEs / Notebooks

N Close to REPL
)\ —a

Programming Languages / SDKs

__ No JVM InterOp
6o (R &
£P0

f
X

©2024 Databricks Inc. — All rights reserved

Spark Connect General Availability
Thin client, with full power of Apache Spark

Applications)
Spark'’s Driver

.
IDEs / Notebooks
s N
\ -
Programming Languages / SDKs

cwoRe

Spark Connect Client API

©2024 Databricks Inc. — All rights reserved

Connect to Spark from Any Application

Interactively develop &
debug from your IDE

demo_dbconnect - main.py

demo_dbconnect 4 main oy Be L pmortestcmanmien v b K G M Q&

% Structure 3 Bookmarks

;v S wey v
§§i|ﬁﬁﬁlﬂﬂﬂﬁ\
a§;

pip install pyspark>=3.5.0

in your favorite IDE!
©2024 Databricks Inc. — All rights reserved

New Connectors and
SDKs in any language!

_:Go !Scala3
\
Databricks @
Connect

Check out Databricks Connect

use & contribute the Go client

Build interactive Data
Applications

NYC Taxi Cockpit: Plotly x Databricks Demo

This is a sample application to show-case how easy it is to get started with Databricks Connect and build
interactive Python applications.

NYC Taxi analysis (data processing on Databricks)

The below visualization uses a heatmap display based on georcordinates for either the pickup or dropoff dimension

and a second dimension is used for coloring.
Dimension 1 dropoff_zip

Dimension 2 avg_trip_duration

Get started with our GitHub
example!
<

https://docs.databricks.com/dev-tools/databricks-connect.html
https://github.com/apache/spark-connect-go
https://github.com/databricks-demos/dbconnect-plotly
https://github.com/databricks-demos/dbconnect-plotly

New Spark Connect Scala Client Features!
SPARK-42554

e The Scala client now supports more ééo;
features in Spark 3.5!

e Part of this work was a major refactoring
to split the sql submodule to into client
(sql-api) and server-compatible (sql)
modules to reduce the set of
dependencies needed on the client for
classpath isolation (SPARK-44273).

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-44273

New Spark Connect Scala Client Features!
SPARK-42554

e Itis now possible to use ML1ib directly 3%0;
with Spark Connect to do distributed
5

training and inference (design doc).

e This supports logistic regression
classifiers, basic feature transformers,
basic model evaluators, and morel

e This also integrates with Spark’s
vectorized Python UDF framework.

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-42554
https://docs.google.com/document/d/1LHzwCjm2SluHkta_08cM3jxFSgfF-niaCZbtIThG-H8/edit#heading=h.x8uc4xogrzbk

New Spark Connect Scala Client Features!
SPARK-42554

v Sub-Tasks
1 Make spark connect supporting canceling job group OPEN Unassigned
2. @ High level design doc for Distributed ML <> spark connect RESOLVED Weichen Xu
3. @ Initial prototype implementation for PySparkML RESOLVED Weichen Xu
4. @ Extract the common .ml classes to ‘mllib-common® RESOLVED Ruifeng Zheng
5. @ Make LiteralExpression support array RESOLVED Ruifeng Zheng
6. @ Factor literal value conversion out to connect-common RESOLVED Ruifeng Zheng
7. @ Helper function to convert proto literal to value in Python RESOLVED Ruifeng Zheng

Client

8. @ Implement ml function {array_to_vector, vector_to_array} RESOLVED Ruifeng Zheng

9. @ Move 'toCatalystValue' to connect-common RESOLVED Ruifeng Zheng

10. @ Make Torch Distributor compatible with Spark Connect RESOLVED Ruifeng Zheng

11. @ Torch Distributor support Local Mode RESOLVED Ruifeng Zheng

https://issues.apache.org/jira/browse/SPARK-42554
https://issues.apache.org/jira/browse/SPARK-42554

New Spark Connect Scala Client Features!
SPARK-42497

e Parity of the Pandas APl on Spark using 3%0,
Spark Connect has improved.

e The Spark Connect client for structured
streaming workloads both in Python and
Scala now also supports all available
features.

©

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-42497
https://issues.apache.org/jira/browse/SPARK-42497

New Spark Connect Scala Client Features!
SPARK-4335

e The community also started a client for Spark
Connect in Golang in a separate repository
here: github.com/apache/spark-connect-go.

)

| y &

=GO :

P

https://issues.apache.org/jira/browse/SPARK-43351
https://github.com/apache/spark-connect-go

Pandas APl Support for Spark Connect
SPARK-42497

e Spark Connect now includes the capability
to execute Pandas functions and logic as
needed in your PySpark programs.

@ 4

©2024 Databricks Inc. — All rights reserved <

!l pandas

https://issues.apache.org/jira/browse/SPARK-42497

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLoglog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

Agenda

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

= O B =

SoL Built-in Named
IDENTIFIER Functions ~ YPertoglog Arguments

SQL Features

©2024 Databricks Inc. — All rights reserved

The IDENTIFIER Clause
SPARK-41231

e The new IDENTIFIER clause provides flexibility to
avoid risk of SQL injection attacks.

e Using this feature to specify
table/column/function names is powerful when

paired with the query parameter feature added Iin
the previous Spark release.

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-41231

The IDENTIFIER Clause
SPARK-41231

e The new IDENTIFIER clause provides flexibility to
avoid risk of SQL injection attacks.

spark.sql(
“CREATE TABLE IDENTIFIER(:tbl)(col INT)",
args = {
“tbl”: “my_schema.my_tbl"”

}
}

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-41231

The IDENTIFIER Clause
SPARK-41231

e The new IDENTIFIER clause provides flexibility to
avoid risk of SQL injection attacks.

spark.sql(
“SELECT IDENTIFIER(:col) FROM IDENTIFIER(:tbl)",
args = {
IICOlII: IICO]_,,,

“tbl”: “my_schema.my_tbl"”

}
}

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-41231

Named Argument Syntax for Function Calls
SPARK-44059

e Spark SQL now lets users call functions with
parameter names preceding their values.

SELECT mask(
'AbCD123-@$# ',
lowerChar => 'q',
upperChar => 'Q',
digitChar => 'd');

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-44059
https://issues.apache.org/jira/browse/SPARK-44059

HyperLoglLog Approx. Aggregate Functions
SPARK-16484

e New SQL functions count unique values within
groups with precision and efficiency, including
storing the result of intermediate computations to
sketch buffers which can be persistent into
storage and loaded back later.

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-16484
https://issues.apache.org/jira/browse/SPARK-16484

HyperLoglLog Approx. Aggregate Functions
SPARK-16484

e These implementations use the Apache
Datasketches library for consistency with the
open-source community and easy integration.

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-16484
https://issues.apache.org/jira/browse/SPARK-16484

HyperLoglLog Approx. Aggregate Functions
SPARK-16484

e These implementations use the Apache
Datasketches library for consistency with the
open-source community and easy integration.

SELECT hll_sketch_estimate(

hll_sketch_agg(col))
FROM VALUES

("abc”), ("def”), ("abc"”), ("ghi"), ("abc”) tab(col);
> 4

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-16484
https://issues.apache.org/jira/browse/SPARK-16484

New Functions for Manipulating Arrays
SPARK-41231

SELECT array_append(array(1l, 2, 3), "HELLO");
> [1, 2, 3, "HELLO”]

SELECT array_prepend(array(l, 2, 3), 99);
>[99, 1, 2, 3]

SELECT array_insert(array(l, 2, 3), 0, 4);
> [4, 1, 2, 3]

SELECT array_compact(array(l, NULL, 3));
> [1, 3]

©2024 Databricks Inc. — All rights reserved

https://issues.apache.org/jira/browse/SPARK-41231
https://issues.apache.org/jira/browse/SPARK-41231

SQL Functions = Scala, Python, R APlIs
SPARK-43907

e Before Spark 3.5, there were many SQL functions
that were not available in the Scala, Python, or R
DataFrame APIs.

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-43907

SQL Functions = Scala, Python, R APlIs
SPARK-43907

e Before Spark 3.5, there were many SQL functions
that were not available in the Scala, Python, or R

DataFrame APIs.

e This presented difficulties invoking the functions
within DataFrames as users found it necessary to
type the function name in string literals without

any help from auto-completion.

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-43907

SQL Functions = Scala, Python, R APlIs

SPARK-43907

e Spark 3.5
removes this
problem by
making 150+
SQL functions
available in the

DataFrame APls.

©2024 Databricks Inc. — All rights reserved

/*%

* Returns the number of days since 197@-01-01.

*

* @group datetime_funcs

* @since 3.5.0

*/
def unix_date{(e: Column): Column = Column.fn("unix_date", e)

FE S

* Returns the number of microseconds since 1970-01-01 00:00:00 UTC.
*

* @group datetime_funcs

* @since 3.5.0

*/
def unix_micros(e: Column): Column = Column.fn("unix_micros", e)

https://issues.apache.org/jira/browse/SPARK-43907

SQL Functions = Scala, Python, R APlIs
SPARK-43907

e Spark 3.5 removes this problem by making 150+
SQL functions available in the DataFrame APls.

spark.conf.set(
“spark.sqgl.session.timeZone”,
“America/Los_Angeles”)

df = spark.createDataFrame(
[("2015-07-22 10:00:00",)],

[“t"])

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-43907

SQL Functions = Scala, Python, R APlIs
SPARK-43907

e Spark 3.5 removes this problem by making 150+
SQL functions available in the DataFrame APls.

df .select(
unix_micros(
to_timestamp(df.t))
.alias(”n")
.collect()

> [Row(n=1437584400000000)]

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-43907

SQL Functions = Scala,

SPARK-43907/

v Sub-Tasks

1.

1. &

Add percentile like functions to Scala and Python API
Add misc functions to Scala and Python
Add some, bool_or,bool_and,every to Scala and Python

Add array_agg, array_size, cardinality,
count_min_sketch,mask,named_struct,json_* to Scala and Python

Add cast alias to Scala and Python

Add bit operations to Scala and Python

Add date time functions to Scala and Python - part 1
Add unix_* functions to Scala and Python

Add make_* functions to Scala and Python

Add current_* functions to Scala and Python

Add linear regression aggregate functions to Scala and Python

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

Python, R APIs

Jiaan Geng
BingKun Par
Jiaan Geng

Tengfei Hua

Unassigned
Jiaan Geng
Jiaan Geng
BingKun Par
BingKun Par
Ruifeng Zhe

Jiaan Geng

N

https://issues.apache.org/jira/browse/SPARK-43907

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLoglog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

Agenda

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

W B ®

Arrow optimized Python Scala/Python
Python UDF UDTF Functions

PySpark

©2024 Databricks Inc. — All rights reserved

%

PySpark Testing
APls

Arrow-Optimized Python UDFs
SPARK-40307

e Python UDFs run 2X faster on modern CPU
architectures, thanks to vectorized I/O!

spark.conf.set(
“spark.sql.execution.pythonUDF.arrow.enabled”
True)

@Qudf("integer”)
def my_len_udf(s: str) -> int:
return len(s)

©2024 Databricks Inc. — All rights reserved

https://issues.apache.org/jira/browse/SPARK-40307

Arrow-Optimized Python UDFs
SPARK-40307

e You can also specify useArrow=True at
registration time instead of using the config.

@Qudf("integer”, useArrow=True)
def my_len_udf(s: str) -> int:
return len(s)

©2024 Databricks Inc. — All rights reserved

https://issues.apache.org/jira/browse/SPARK-40307

Arrow-Optimized Python UDFs
SPARK-40307

mmm Pickled Python UDF 2L

300 1 mmm Arrow Python UDF

©

200 A

1.94x

150 A

Execution time/s

100 +

™~
Count of chained UDFs

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-40307

Python User Defined Table Functions

This is a new kind of function that
returns an entire table as output instead
of a single scalar result value

o Once registered, they can appear
in the FROM clause of a SQL

query

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions

This is a new kind of function that
returns an entire table as output instead
of a single scalar result value

o Once registered, they can appear
in the FROM clause of a SQL

query
o Or use the DataFrame API to call

them

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions

~

from pyspark.sql.functions import udtf

@Qudtf(returnType="num: int, squared: int")
class SquareNumbers:
def eval(self, start: int, end: int):
for num in range(start, end + 1):
yield (num, num * num)

o /

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

start => 1,
end => 3);

/SELECT * \
FROM SquareNumbers(

©2024 Databricks Inc. — All rights reserved

Python User Defined Table Functions

///,SquareNumbers(‘\\\

1it(1), 1it(3))
.show()
+----- +------=-- +
| num | squared|
+----- +------=-- +
1 1
2 4
3 9

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions

. PREVIEW

& INSIDER SCOOPON:

Polymorphic Analysis

Compute the output schema for each call depending on arguments, using analyze

///7class ReadFromConfigFile: ﬁ\\\

@staticmethod
def analyze(filename: AnalyzeArgument):
with open(os.path.join(
SparkFiles.getRootDirectory(),
filename.value), "r”) as f:
Compute the UDTF output schema
based on the contents of the file.
return AnalyzeResult(

\\\‘ from_file(f.read())) 4///

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions

Polymorphic Analysis

. PREVIEW

&/ INSIDER SCOOPON:

Compute the output schema for each call depending on arguments, using analyze

///fReadFromConfigFile(1it(“config.txt”)).show() ﬁ\\\

e et T P +

| start_date | other_field |
e e +

| 2024-04-02 1|

e el e e T +

o /

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions

‘ww\-* y
- RREVIEW
g INSIDER SCOOP ON:

Input Table Partitioning

Split input rows among instances: eval runs once per row, then terminate runs last

///f class CountAndMax: *\\\

def __init__(self):

self._count = 0

self._max = 0
def eval(self, row: Row):

self._count += 1

self._max = max(self._max, row[Q])
def terminate(self):

yvield self._count, self._max

- J

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions
. PREVIEW

& INSIDER SCOOPON:

Input Table Partitioning

Split input rows among instances: eval runs once per row, then terminate runs last

/WITH t AS (SELECT id FROM RANGE(Q®, 100)) \
SELECT * FROM CountAndMax(
TABLE(t) PARTITION BY id / 10 ORDER BY id);

+------- +----- +
count maX
+------- +----- +
10 0)
10 il

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions
. PREVIEW

& INSIDER SCOOPON:

Variable Keyword Arguments
The analyze and eval methods may accept *args or **kwargs

///7class VarArgs: ﬁ\\\

@staticmethod
def analyze(**kwargs: AnalyzeArgument):
return AnalyzeResult(StructType(
[StructField(key, arg.dataType)
for key, arg in sorted(
kwargs.items())]))

def eval(self, **xkwargs):
yield tuple(value for _, value

\\\‘ in sorted(kwargs.items())) 4///

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions
. PREVIEW

& INSIDER SCOOPON:

Variable Keyword Arguments
The analyze and eval methods may accept *args or **kwargs

/SELECT * FROM VarArgs(a => 10, b => ‘x'); \

+--——+----- +
la | b |
+--——+----- +
| l@ | IIXII |
+--——+----- +

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions

';\' WM'. - !
RREVIEW
g INSIDER SCOOP ON:

Custom Initialization

Create a subclass of AnalyzeResult and consume it in each subsequent __init__

///7class SplitWords: ‘\\\

@dataclass

class MyAnalyzeResult(AnalyzeResult):
numWords: int
numArticles: int

def __init__(self, r: MyAnalyzeResult):

- /

©2024 Databricks Inc. — All rights reserved <

Python User Defined Table Functions
. PREVIEW.

8! INSIDER SCOOP.ON:

Custom Initialization

Create a subclass of AnalyzeResult and consume it in each subsequent __init__

///7 @staticmethod ‘\\\
def analyze(text: str):

words = text.split(” ")
return MyAnalyzeResult(
schema=StructType()
.add(”"word”, StringType())
.add(”total”, IntegerType()),
withSinglePartition=true,
numWords=1len(words)
numArticles=1en((

word for word in words
\\\¥ if word in ("”a”, "an”, "the”))) 4///

©2024 Databricks Inc. — All rights reserved <

Enhanced error messages in PySpark
SPARK-42986

e Previously, the set of exceptions thrown from
the Python Spark driver did not leverage the
error classes introduced in Apache Spark™ 3.3.

e All of the errors from DataFrame and SQL have
been migrated, and contain the appropriate
error classes and codes.

New!

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-42986

Enhanced error messages in PySpark
SPARK-42986

v Sub-Tasks

O

© ® N @ o & ®w N
O 0000000

= |8
L <

Introduce PySparkRuntimeError

Migrate Spark Connect DataFrame errors into error class
Migrate Column errors into error class

Migrate ValueError from DataFrame into PySparkValueError.
Refactoring similar error classes such as "NOT_XXX".
Automate error class documentation

Testing JVM-captured exceptions from Python side.
Migrate Spark Connect Column errors into error class

Migrate TypeError from DataFrame(Reader|Writer) into error
class

Migrate UDF errors into error class

Migrate Expression errors into error class

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

Haejoon Lee
Haejoon Lee
Haejoon Lee
Haejoon Lee
Unassigned
Unassigned
Unassigned
Haejoon Lee

Haejoon Lee

Haejoon Lee

Haejoon Lee

https://issues.apache.org/jira/browse/SPARK-42986

DataFrame Equality Testing API
SPARK-44042

e New DataFrame equality test utility functions
Including detailed, color-coded test error
messages, which clearly indicate differences
between DataFrame schemas and data within
DataFrames.

©2024 Databricks Inc. — All rights reserved

https://issues.apache.org/jira/browse/SPARK-44042

DataFrame Equality Testing API
SPARK-44042

e This lets developers easily add equality tests
that produce actionable results for their
applications to enhance productivity.

©2024 Databricks Inc. — All rights reserved

https://issues.apache.org/jira/browse/SPARK-44042

DataFrame Equality Testing API
SPARK-44042

e pyspark.testing.assertDataFrameEqual
e pyspark.testing.assertPandasOnSparkEqual

e pyspark.testing.assertSchemaEqual gj
%7

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-44042

DataFrame Equality Testing API
SPARK-44042

pyspark.errors.exceptions.base.PySparkAssertError: [DIFFERENT_ROWS]
Results do not match: (33.33333 %)
***% gctual ***

Row(name="'Amy', languages=['C++', 'Rust'])
I Row(name='Jane', languages=['Scala’', 'SQL', 'Java'])
Row(name="'John', languages=['Python', 'Java'])

*** expected **%*

Row(name="Amy', languages=['C++', 'Rust'])
I Row(name='Jane', languages=['Scala’', 'Java'l])
Row(name="'John', languages=['Python', 'Java'])

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-44042

PySpark DeepSpeed Distributor
SPARK-44264

e This makes it easier for Pyspark users to run
distributed training and inference with
DeepSpeed on Spark clusters.

@ deepspeed [as PySprlzz

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-44264
https://issues.apache.org/jira/browse/SPARK-44264

Spark Connect

Deploy and update Spark clusters
independently from their clients

SQL Features

HyperLoglog aggregates based on Apache Datasketches,
array manipulation functions, IDENTIFIER clause, and more

Agenda

PySpark Features

Arrow-optimized Python UDFs, Python UDTFs,
new testing API, improved error messages, and more

Spark Streaming

Support multiple stateful operators, checkpointing for
RocksDB state store, dropDuplicatesWithinWatermark

£ S B K

Changelog Stateful Operator dropDuplicates Memory
Checkpointing Chaining WithinWatermark Management in
State Store

Streaming

©2024 Databricks Inc. — All rights reserved

Full Support for Multiple Stateful Operators
SPARK-42376

e Time interval joins between streams are now
supported, possibly followed by other stateful

operators.

e For example, workloads can now join streams of
ads and clicks, then aggregate over time
windows.

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-42376

Full Support for Multiple Stateful Operators
SPARK-42376

For example, here’s an example of time window aggregation in both streams followed by
stream-stream join with event time window:

Scala Java Python

clicksWindow = clicksWithWatermark.groupBy(
clicksWithWatermark.clickAdId,
window(clicksWithWatermark.clickTime, "1 hour")
) .count()

impressionsWindow = impressionsWithWatermark.groupBy(
impressionsWithWatermark. impressionAdId,
window(impressionsWithWatermark.impressionTime, "1 hour")
) . count()

clicksWindow. join(impressionsWindow, "window'", "inner")

https://issues.apache.org/jira/browse/SPARK-42376

Full Support for Multiple Stateful Operators
SPARK-42376

Here's another example of stream-stream join with time range join condition followed by time

window aggregation:

Scala Java Python

val joined = impressionsWithWatermark.join(
clicksWithwatermark,
expr("""
clickAdId = impressionAdId AND
clickTime >= impressionTime AND
clickTime <= impressionTime + interval 1 hour
IIIIII)'
joinType = "leftOuter" // can be “inner", *“leftOuter®, “rightOuter",
“fullOuter", "leftSemi"
)

joined
.groupBy($"clickAdId", window($"clickTime", "1 hour"))
.count()

https://issues.apache.org/jira/browse/SPARK-42376

Changelog Checkpointing for RocksDB State
Store Providers

SPARK-4342]

e This new checkpoint mechanism for the RocksDB
state store provider persists the changelog
(updates) of the state.

e This reduces the commit latency significantly
which also reduces end to end latency significantly.

e To enable, set this config to true:
spark.sqgl.streaming.stateStore.
rocksdb.changelogCheckpointing.enabled

©2024 Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-43421

Changelog Checkpointing for RocksDB State
Store Providers

SPARK-43421

Here are the configs regarding to RocksDB instance of the state store provider:

Config Name Description

Whether we perform

, , a range compaction

spark.sqgl.streaming.stateStore.rocksdb.compactOnCommit _
of RocksDB instance

for commit operation

Whether to upload
changelog instead of

spark.sgl.streaming.stateStore.rocksdb.changelogCheckpointing.enabled = snapshot during
RocksDB StateStore
commit

https://issues.apache.org/jira/browse/SPARK-43421

RocksDB State Store Provider Memory
Management Enhancements

SPARK-43311

e New fine-grained memory management lets users
cap the total memory usage across RocksDB
Instances In the same executor process.

e Users can now reason about and
configure the memory usage per
executor process.

©2024 Databricks Inc. — All rights reserved

https://issues.apache.org/jira/browse/SPARK-43311

Introducing
dropDuplicatesWithinWatermark
SPARK-42931

e This new APl new APl deduplicates events without
requiring the timestamp for event time to be the
same, as long as the timestamp for these events
are close enough to fit within the watermark delay.

e With this new feature, users can avoid errors like
“Timestamp for event time could differ even for
events to be considered as duplicates.”

Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-42931
https://issues.apache.org/jira/browse/SPARK-42931

Introducing
dropDuplicatesWithinWatermark
SPARK-4293]

Python Scala Java

streamingDf = spark.readStream. ...

deduplicate using guid column with watermark based on eventTime column
streamingDf \
.withWatermark("eventTime", "10 hours") \
.dropDuplicatesWithinwWatermark("guid")

Databricks Inc. — All rights reserved <

https://issues.apache.org/jira/browse/SPARK-42931
https://issues.apache.org/jira/browse/SPARK-42931

hankyou foryour
contributions!

databricks

Daniel Tenedorio (daniel.tenedorio @ databricks)

	Explore the New Functionality of Apache Spark 3.5
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	About Us
	Slide Number 7
	Spark Connect
	How to embed Spark in applications?
	Spark Connect General Availability
	Connect to Spark from Any Application
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	New Spark Connect Scala Client Features!
	Pandas API Support for Spark Connect
	Slide Number 18
	SQL Features
	The IDENTIFIER Clause
	The IDENTIFIER Clause
	The IDENTIFIER Clause
	Named Argument Syntax for Function Calls
	HyperLogLog Approx. Aggregate Functions
	HyperLogLog Approx. Aggregate Functions
	HyperLogLog Approx. Aggregate Functions
	New Functions for Manipulating Arrays
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	SQL Functions ⇒ Scala, Python, R APIs
	Slide Number 34
	PySpark
	Arrow-Optimized Python UDFs
	Arrow-Optimized Python UDFs
	Arrow-Optimized Python UDFs
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Python User Defined Table Functions
	Enhanced error messages in PySpark
	Enhanced error messages in PySpark
	DataFrame Equality Testing API
	DataFrame Equality Testing API
	DataFrame Equality Testing API
	DataFrame Equality Testing API
	PySpark DeepSpeed Distributor
	Slide Number 59
	Streaming
	Full Support for Multiple Stateful Operators
	Full Support for Multiple Stateful Operators
	Full Support for Multiple Stateful Operators
	Changelog Checkpointing for RocksDB State Store Providers
	Changelog Checkpointing for RocksDB State Store Providers
	RocksDB State Store Provider Memory Management Enhancements
	Introducing dropDuplicatesWithinWatermark
	Introducing dropDuplicatesWithinWatermark
	Slide Number 69
	Slide Number 70

