
This information is provided to outline Databricks’
general product direction and is for informational
purposes only. Customers who purchase Databricks
services should make their purchase decisions relying
solely upon services, features, and functions that are
currently available. Unreleased features or functionality
described in forward-looking statements are subject to
change at Databricks discretion and may not be
delivered as planned or at all

Product safe harbor statement

©2024 Databricks Inc. — All rights reserved

PYTHON STORED
PROCEDURES

Allison Wang,
Sr. Software Engineer, Databricks

2

Jakob Mund,
Staff Product Manager, Databricks

SUPERCHARGE YOUR
DATA WAREHOUSE

Go for it!

©2024 Databricks Inc. — All rights reserved 3

(PYTHON) STORED PROCEDURES?

Sequence of
instructions

delete

create

©2024 Databricks Inc. — All rights reserved 4

(PYTHON) STORED PROCEDURES?

migrate_table

Unity Catalog

Encapsulated
and named

Stored and governed in
Unity Catalog

delete

create

©2024 Databricks Inc. — All rights reserved 5

(PYTHON) STORED PROCEDURES?

migrate_table

Unity CatalogUsers

Shareable among users

delete

create

©2024 Databricks Inc. — All rights reserved 6

(PYTHON) STORED PROCEDURES?

migrate_table

Unity CatalogUsers

Input Parameters
(optional)

Output Parameters
(optional)

input1

input2
success

name

delete? delete

create

©2024 Databricks Inc. — All rights reserved 7

(PYTHON) STORED PROCEDURES?

migrate_table

input1

input2 delete

create
case end

Unity CatalogUsers

success

Control flow &
exception handling

name

delete?

©2024 Databricks Inc. — All rights reserved

8

(PYTHON) STORED PROCEDURES?

Unity CatalogUsers

Tables FilesSources

Can alter
shared state
(persistent and
temporary)

migrate_table

input1

input2 delete

create
case end success

name

delete?

©2024 Databricks Inc. — All rights reserved

9

(PYTHON) STORED PROCEDURES?

Unity CatalogUsers

Tables FilesSources

Can alter
shared state
(persistent and
temporary)

Not possible
with functions!

migrate_table

input1

input2 delete

create
case end success

name

delete?

©2024 Databricks Inc. — All rights reserved 10

(PYTHON) STORED PROCEDURES?

Unity CatalogUsers

Tables FilesSources

migrate_table

input1

input2
success

name

delete?

©2024 Databricks Inc. — All rights reserved

Administrative Tasks Customized Permissions Uplevel users & workloads

11

USE CASES

• Run Python logic to
accomplish sophisticated
administrative tasks specific to
you

• E.g., migrations, data integrity
checks, custom audits

• Write logic to execute specific
actions otherwise requiring a
(higher) priviledge

• Grant users the permission to
execute the procedure instead
of granting the privilege

• E.g., validate naming schemas
or enforce a certain location
when creating a table

• Securely share and re-use
logic written in Python

• Leverage Python libraries to
achieve more with less

• E.g., advanced ETL
transformations, writing to
multiple tables/destinations,

©2024 Databricks Inc. — All rights reserved

ANYTHING MISSING?

12

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 13

PYTHON STORED
PROCEDURES

ON DATABRICKS

©2024 Databricks Inc. — All rights reserved 14

CREATING A STORED PROCEDURE
How to create a Python stored procedure

CREATE OR REPLACE PROCEDURE area_of_rectangle(
IN x INT,
IN y INT,
OUT area INT,
INOUT acc INT

)
LANGUAGE PYTHON
AS $$
area = x * y
acc = acc + area

$$

©2024 Databricks Inc. — All rights reserved 15

CREATING A STORED PROCEDURE
How to create a Python stored procedure

<-Name of the procedure

Can also be a three-level
namespace:
catalog.schema.procedure_name

CREATE OR REPLACE PROCEDURE area_of_rectangle(
IN x INT,
IN y INT,
OUT area INT,
INOUT acc INT

)
LANGUAGE PYTHON
AS $$
area = x * y
acc = acc + area

$$

©2024 Databricks Inc. — All rights reserved 16

CREATING A STORED PROCEDURE
How to create a Python stored procedure

CREATE OR REPLACE PROCEDURE area_of_rectangle(
IN x INT,
IN y INT,
OUT area INT,
INOUT acc INT

)
LANGUAGE PYTHON
AS $$
area = x * y
acc = acc + area

$$

<- Parameters
● IN: Input parameter. Default

parameter mode. Optional
to specify.

● OUT: Output parameter.
● INOUT: Input/Output

parameter.

©2024 Databricks Inc. — All rights reserved 17

CREATING A STORED PROCEDURE
How to create a Python stored procedure

<- Language of the procedure

CREATE OR REPLACE PROCEDURE area_of_rectangle(
IN x INT,
IN y INT,
OUT area INT,
INOUT acc INT

)
LANGUAGE PYTHON
AS $$
area = x * y
acc = acc + area

$$

©2024 Databricks Inc. — All rights reserved 18

CREATING A STORED PROCEDURE
How to create a Python stored procedure

<- Procedure body: the Python
code that calculates the area
and updates the accumulator.

CREATE OR REPLACE PROCEDURE area_of_rectangle(
IN x INT,
IN y INT,
OUT area INT,
INOUT acc INT

)
LANGUAGE PYTHON
AS $$
area = x * y
acc = acc + area

$$

©2024 Databricks Inc. — All rights reserved 19

INVOKING A STORED PROCEDURE
How to execute a stored procedure

<- CALL command
● Specify the IN and the INOUT parameters
● Use NULL as a placeholder for the OUT

parameters
● Support named arguments

> CALL area_of_rectangle(
x => 1,
y => 2,
area => null,
acc => 0)

+----+---+
|area|acc|
+----+---+
| 2| 2|
+----+---+

<- Return value of the procedure
● One row with multiple columns
● Each column represents an OUT or INOUT

parameter specified in the procedure
parameters

©2024 Databricks Inc. — All rights reserved 20

VARIABLE BINDING
How to bind IN, OUT and INOUT parameters

<- All three types of parameters
(IN, OUT and INOUT) can be
referenced directly in the
procedure body using their
names.
<- For OUT and INOUT
parameters, the assigned values
will be returned as the output of
the CALL command.

CREATE OR REPLACE PROCEDURE area_of_rectangle(
IN x INT,
IN y INT,
OUT area INT,
INOUT acc INT

)
LANGUAGE PYTHON
AS $$
area = x * y
acc = acc + area

$$

©2024 Databricks Inc. — All rights reserved 21

ACCESS CONTROL
Unified governance with Unity Catalog

● Grant and revoke permissions to execute stored procedures

GRANT EXECUTE ON PROCEDURE area_of_rectangle TO `user`

REVOKE EXECUTE ON PROCEDURE area_of_rectangle FROM `user`

©2024 Databricks Inc. — All rights reserved 22

WAIT, WHY PROCEDURES?
Why do we want to use procedures instead of functions?

● You can access Spark session in procedures!

● This means you can:

○ Run SQL queries: spark.sql(“SELECT * FROM my_table”)

○ Use PySpark: df.groupby(...).select(...)

● Benefits:

○ Perform data transformations and analysis right within the procedure

○ Seamlessly encapsulate your data processing logic into reusable components.

©2024 Databricks Inc. — All rights reserved 23

SPARK SESSION IN STORED PROCEDURES
The super power of Python stored procedures

Access the Spark session and execute SQL statements
via an implicit variable called `spark`.

CREATE OR REPLACE PROCEDURE create_test_table(table_name STRING)
LANGUAGE PYTHON
AS $$
if not table_name.startswith("test_"):

raise Exception(f"Table name must starts with 'test_'")

spark.sql(f"""CREATE TABLE {table_name} AS SELECT 1 AS id""")
$$

©2024 Databricks Inc. — All rights reserved

SPARK SESSION IN STORED PROCEDURES

24

Databricks Clusters

Executable from any Unity Catalog Enabled Compute

Databricks SQL Warehouse

©2024 Databricks Inc. — All rights reserved 25

MORE EXAMPLES
Perform an ETL operation using the PySpark API
CREATE OR REPLACE PROCEDURE etl_demo(source STRING, target STRING)
LANGUAGE PYTHON
AS $$
from pyspark.sql.functions import col

source_df = spark.table(source)

transformed_df = (source_df
.groupBy("category")
.agg({"value": "sum"})
.withColumnRenamed("sum(value)", "total_value"))

transformed_df.write.format("delta").mode("overwrite").saveAsTable(target)
$$

©2024 Databricks Inc. — All rights reserved 26

MORE EXAMPLES
Perform an ETL operation using the PySpark API
CREATE OR REPLACE PROCEDURE etl_demo(source STRING, target STRING)
LANGUAGE PYTHON
AS $$
from pyspark.sql.functions import col

source_df = spark.table(source)

transformed_df = (source_df
.groupBy("category")
.agg({"value": "sum"})
.withColumnRenamed("sum(value)", "total_value"))

transformed_df.write.format("delta").mode("overwrite").saveAsTable(target)
$$

©2024 Databricks Inc. — All rights reserved 27

MORE EXAMPLES
Perform an ETL operation using the PySpark API
CREATE OR REPLACE PROCEDURE etl_demo(source STRING, target STRING)
LANGUAGE PYTHON
AS $$
from pyspark.sql.functions import col

source_df = spark.table(source)

transformed_df = (source_df
.groupBy("category")
.agg({"value": "sum"})
.withColumnRenamed("sum(value)", "total_value"))

transformed_df.write.format("delta").mode("overwrite").saveAsTable(target)
$$

©2024 Databricks Inc. — All rights reserved 28

MORE EXAMPLES
Perform an ETL operation using the PySpark API
CREATE OR REPLACE PROCEDURE etl_demo(source STRING, target STRING)
LANGUAGE PYTHON
AS $$
from pyspark.sql.functions import col

source_df = spark.table(source)

transformed_df = (source_df
.groupBy("category")
.agg({"value": "sum"})
.withColumnRenamed("sum(value)", "total_value"))

transformed_df.write.format("delta").mode("overwrite").saveAsTable(target)
$$

©2024 Databricks Inc. — All rights reserved

• Lakeguard enforces governance
at runtime

• User code is executed in a
sandbox

• Access to Spark session via Spark
Connect

HOW IT WORKS

29

Unity Catalog Lakeguard and Spark Connect

UC-Enabled Compute

UDFSpark
Driver

Sp
ar

k
C

on
ne

ct

Python
Stored

Procedure

Python
Stored

Procedure
Spark

Executors

SECURED BY LAKEGUARD

©2024 Databricks Inc. — All rights reserved 30

DEMO TIME

©2024 Databricks Inc. — All rights reserved

Email: python-stored-procedures@
databricks.com

Write Stored Procedures in
Unity Catalog for

Provide feedback & sign up
for preview and updates

Don’t be a stranger, reach
out to us!

31

PYTHON STORED PROCEDURES
Recap & How to get involved

Administrative
Tasks

Customized
Permissions

Uplevel users &
workloads https://forms.gle/PNvJ6sMajgAM2fZ6A

©2024 Databricks Inc. — All rights reserved 32

	This information is provided to outline Databricks’ general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all
	PYTHON STORED�PROCEDURES
	(PYTHON) STORED PROCEDURES?
	(PYTHON) STORED PROCEDURES?
	(PYTHON) STORED PROCEDURES?
	(PYTHON) STORED PROCEDURES?
	(PYTHON) STORED PROCEDURES?
	(PYTHON) STORED PROCEDURES?
	(PYTHON) STORED PROCEDURES?
	(PYTHON) STORED PROCEDURES?
	USE CASES
	ANYTHING MISSING?
	PYTHON STORED PROCEDURES� �ON DATABRICKS
	CREATING A STORED PROCEDURE
	CREATING A STORED PROCEDURE
	CREATING A STORED PROCEDURE
	CREATING A STORED PROCEDURE
	CREATING A STORED PROCEDURE
	INVOKING A STORED PROCEDURE
	VARIABLE BINDING
	ACCESS CONTROL
	WAIT, WHY PROCEDURES?
	SPARK SESSION IN STORED PROCEDURES
	SPARK SESSION IN STORED PROCEDURES
	MORE EXAMPLES
	MORE EXAMPLES
	MORE EXAMPLES
	MORE EXAMPLES
	HOW IT WORKS
	DEMO TIME
	PYTHON STORED PROCEDURES
	Slide Number 32

