
This information is provided to outline Databricks’
general product direction and is for informational
purposes only. Customers who purchase Databricks
services should make their purchase decisions relying
solely upon services, features, and functions that are
currently available. Unreleased features or functionality
described in forward-looking statements are subject to
change at Databricks discretion and may not be
delivered as planned or at all

Product safe harbor statement

©2024 Databricks Inc. — All rights reserved

Introducing the
New Python Data
Source API in
Apache Spark

Allison Wang
Sr. Software Engineer, Databricks

2

Ryan Nienhuis,
Sr. Staff Product Manager, Databricks

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Introduction
• Why Python Data Source API?
• Deep Dive into the Python Data Source API

• Demo
• Data Source Reader
• Data Source Writer

• Streaming APIs
• Q & A

3

Agenda
Exploring the new Python Data Source API in Apache Spark

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Custom Integrations in Spark

4

1. Use ForEachBatch / ForEach for
streaming workloads

2. Build a custom integration in
Scala/Java using the DataSource V2
API

3. Don’t build one; get the data in Delta
using a custom app

4. Import a library

You have a couple options… …Which have some drawbacks

1. ForEachBatch code is powerful but
very hard to write well

2. Flexible but no API for Python
developers

3. Added cost and latency copying data
4. Not optimized for Spark

How do I simply read and write data?

4

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Custom data sources have lots of advantages

• End users can use like a built-in integration
• df = spark.read.format("my_data_source")
• df.write.format(“my_data_source”)
• CREATE TABLE t(c1 INT, c2 INT) USING PYTHON `my_data_source`

• Rely on API for implemented partitioning and other Spark capabilities
• Build once and use across programming languages
• Custom data sources can be packaged and pip installed

5

Why don’t I just do it in Python?
Pull in library, make some API calls, etc.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

● Aimed to focus on simplicity versus flexibility
● Supports distributed scan, append-only, atomic writes
● Does not support limit or aggregate push down, complete/update

modes

How do we improve here?

6

Let’s provide as simple experience for Python developers

©2024 Databricks Inc. — All rights reserved 7

Introducing the New
Python Data Source API

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 8

Python Data Source API
SPARK-44076

● Available in Apache Spark 4.0 and Databricks Runtime 15.2+

● Fully open source: spark/python/pyspark/datasource.py

● Support both read and write operations, for both batch and

streaming

https://issues.apache.org/jira/browse/SPARK-44076
https://github.com/apache/spark/blob/master/python/pyspark/sql/datasource.py

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

class MySource(DataSource):

…

Register the data source in the
current Spark session using
the Python data source class:

spark
.dataSource
.register(MySource)

spark.read
.format("my-source")
.load(...)

df.write
.format("my-source")
.mode("append")
.save(...)

Step 1: Create a Data
Source

Step 2: Register the Data
Source

Step 3: Read from or write
to the data source

9

Data Source Overview
Three easy steps to create and use custom data sources

9

©2024 Databricks Inc. — All rights reserved 10

DEMO

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 11

An open source repo with demo Python data sources

• All examples in the following demo are open source

• You can install them using

• pip install pyspark-data-sources[all]

pyspark-data-sources

©2024 Databricks Inc. — All rights reserved 12

Demo: Fake Data Source
A data source that generates synthetic data

©2024 Databricks Inc. — All rights reserved 13

Demo: REST API Data Source
A data source that fetches data from a REST API

©2024 Databricks Inc. — All rights reserved 14

Demo: HuggingFace Datasets
A data source that fetches datasets from HuggingFace

©2024 Databricks Inc. — All rights reserved

DATA
SOURCE
READ

15

spark.read
.format("my-source")
.option("key", "value")
.load()

Warning: Quiz at the end

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 16

Simple Example
A simple data source that generates one row
from pyspark.sql.datasource import DataSource, DataSourceReader

class SimpleDataSource(DataSource):
@classmethod
def name(self):

return "simple"

def schema(self):
return "id int, name string"

def reader(self, schema):
return SimpleReader()

class SimpleReader(DataSourceReader):
def read(self, partition):

yield (1, "Alice")

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 17

Simple Example
A simple data source that generates one row

● Register the data source:

spark.dataSource.register(SimpleDataSource)

● Load the data using its name:

spark.read.format("simple").load().show()

+---+-----+
| id| name|
+---+-----+
| 1|Alice|
+---+-----+

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 18

DataSource
The base class for Python data source

class DataSource(ABC):

def __init__(self, options: Dict[str, str]) -> None:
self.options = options

@classmethod
def name(cls) -> str:

...

def schema(self) -> Union[StructType, str]:
...

def reader(self, schema: StructType):
...

...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 19

DataSource
The base class for Python data source

User-defined values passed
in via `option()` or
`options()`:

spark.read
.option("key", "value")

df.write
.option("key", "value")

class DataSource(ABC):

def __init__(self, options: Dict[str, str]) -> None:
self.options = options

@classmethod
def name(cls) -> str:

...

def schema(self) -> Union[StructType, str]:
...

def reader(self, schema: StructType):
...

...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 20

DataSource
The base class for Python data source

`path` is special key that
stores the path value from
`load()` and `save()`:

spark.read
.load("path/to/file")

df.write
.save("path/to/file")

self.options["path"]
> "path/to/file"

class DataSource(ABC):

def __init__(self, options: Dict[str, str]) -> None:
self.options = options

@classmethod
def name(cls) -> str:

...

def schema(self) -> Union[StructType, str]:
...

def reader(self, schema: StructType):
...

...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 21

Simple Example
A simple data source that generates one row

Short name of the data source
that is used in `format()`.

from pyspark.sql.datasource import DataSource, DataSourceReader

class SimpleDataSource(DataSource):
@classmethod
def name(self):

return "simple"

def schema(self):
return "id int, name string"

def reader(self, schema):
return SimpleReader()

class SimpleReader(DataSourceReader):
def read(self, partition):

yield (1, "Alice")

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 22

Simple Example
A simple data source that generates one row

Default schema when reading
from a data source.

It can be static:
● DDL Sting
● StructType

Or dynamically determined

from pyspark.sql.datasource import DataSource, DataSourceReader

class SimpleDataSource(DataSource):
@classmethod
def name(self):

return "simple"

def schema(self):
return "id int, name string"

def reader(self, schema):
return SimpleReader()

class SimpleReader(DataSourceReader):
def read(self, partition):

yield (1, "Alice")

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 23

Simple Example
A simple data source that generates one row

Instantiate a data source
reader.

from pyspark.sql.datasource import DataSource, DataSourceReader

class SimpleDataSource(DataSource):
@classmethod
def name(self):

return "simple"

def schema(self):
return "id int, name string"

def reader(self, schema):
return SimpleReader()

class SimpleReader(DataSourceReader):
def read(self, partition):

yield (1, "Alice")

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 24

Intro to DataSourceReader
A base class for defining how to read from a data source

• The DataSourceReader is responsible for defining how data is read from a source and
split for parallel processing.

• It includes two methods: partitions and read

class DataSourceReader(ABC):

def partitions(self) -> Sequence[InputPartition]:
...

@abstractmethod
def read(self, partition: InputPartition) -> Iterator[Row]:

...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 25

Intro to DataSourceReader
A base class for defining how to read from a data source

• The DataSourceReader is responsible for defining how data is read from a source and
split for parallel processing.

• It includes two methods: partitions and read

How to split the data
for parallel processing

class DataSourceReader(ABC):

def partitions(self) -> Sequence[InputPartition]:
...

@abstractmethod
def read(self, partition: InputPartition) -> Iterator[Row]:

...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 26

Intro to DataSourceReader
A base class for defining how to read from a data source

• The DataSourceReader is responsible for defining how data is read from a source and
split for parallel processing.

• It includes two methods: partitions and read

How to read the data
for each partition

class DataSourceReader(ABC):

def partitions(self) -> Sequence[InputPartition]:
...

@abstractmethod
def read(self, partition: InputPartition) -> Iterator[Row]:

...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 27

Reading from a Data Source
Without partitions

Spark Driver

External Data Sources

Invokes the read()
method to generate
data on one executor

Executor

read()

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 28

Reading from a Data Source
With partitions

Spark Driver
Executor

partition

read(partition)

Invokes the
read(partition) to
generate data for
each partition on
multiple executors

External Data Sources

Invokes the
partitions()
method and
creates a list of
InputPartition.

partitions()

Input Partitions

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 29

Simple Example with Partitions
Reading data in parallel

Subclass the InputPartition

Implement the partitions()
method to return two range
partitions

@dataclass
class RangePartition(InputPartition):

start: int
end: int

class SimpleReader(DataSourceReader):

def partitions(self):
return [RangePartition(1, 3), RangePartition(3, 5)]

def read(self, partition):
for i in range(partition.start, partition.end):

yield (i, f"name_{i}")

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 30

Simple Example with Partitions
Reading data in parallel

from pyspark.sql.functions import spark_partition_id

df = spark.read.format("simple").load()
df.withColumn("partition_id", spark_partition_id()).show()

+---+------+------------+
| id| name|partition_id|
+---+------+------------+
1	name_1	0
2	name_2	0
3	name_3	1
4	name_4	1
+---+------+------------+

RangePartition(1, 3)

RangePartition(3, 5)

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• When to implement partitions?

• Handling large datasets

• Parallelization to boost performance

• Why not partitioning?

• Simpler to manage

• Data volume might not require it

• Data source constraints

• Common strategies for partitioning

• Range partitions (e.g, start_date, end_date)
31

Partitioning Strategy
Key considerations for implementing readable data sources

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Python data source is implemented on top of

DataSource V2.

How It Works

32

DataSource V2 API Apache Arrow

Use Apache Arrow for (de)serialization to
improve performance.

32

Partition

Arrow Batch

read/write

Near-zero
(de)serialization

©2024 Databricks Inc. — All rights reserved 33

Quiz Time!

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 34

What method in the DataSourceReader must be overridden to specify how to read
data from each partition?

A) schema

B) partitions

C) read

D) name

Quiz 1
Understanding Data Source API basics

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 35

What method in the DataSourceReader must be overridden to specify how to read
data from each partition?

A) schema

B) partitions

C) read

D) name

Quiz 1
Understanding Data Source API basics

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 36

Quiz 2
Data source registration and usage

How do you register a custom data source class SimpleDataSource in Spark?

A) spark.add_datasource(SimpleDataSource)

B) spark.dataSource.register(SimpleDataSource)

C) spark.dataSource.register(“SimpleDataSource”)

D) You don’t need to

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 37

Quiz 2
Data source registration and usage

How do you register a custom data source class SimpleDataSource in Spark?

A) spark.add_datasource(SimpleDataSource)

B) spark.dataSource.register(SimpleDataSource)

C) spark.dataSource.register(“SimpleDataSource”)

D) You don’t need to

©2024 Databricks Inc. — All rights reserved 38

DATA
SOURCE
WRITE

df.write
.format("my-source")
.mode("append")
.option("key", "value")
.save("path/to/file")

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 39

Simple Example with Writer
A simple writable data source
from pyspark.sql.datasource import DataSource, DataSourceWriter,
WriterCommitMessage

class SimpleDataSource(DataSource):
@classmethod
def name(self):

return "simple"

def writer(self, schema, overwrite):
return SimpleWriter()

class SimpleWriter(DataSourceWriter):
def write(self, iterator):

for row in iterator:
pass

return WriterCommitMessage()

Implement the writer()
method to make a data
source writable.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 40

Simple Example with Writer
A simple writable data source

● Register the data source (again):

spark.dataSource.register(SimpleDataSource)

● Write a dataframe into the sink:

df = spark.range(10).repartition(2)

df.write.format("simple").mode("append").save()

> (2) spark jobs

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 41

Intro to DataSourceWriter
A base class for defining how to write data

• The DataSourceWriter is responsible for defining how data is written in Spark.

• It has three methods designed to handle different aspect of the write process:
write, commit, and abort

class DataSourceWriter(ABC):

@abstractmethod
def write(self, iterator: Iterator[Row]) -> "WriterCommitMessage":

...

def commit(self, messages: List["WriterCommitMessage"]) -> None:
...

def abort(self, messages: List["WriterCommitMessage"]) -> None:
...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 42

Intro to DataSourceWriter
A base class for defining how to write data

• The DataSourceWriter is responsible for defining how data is written in Spark.

• It has three methods designed to handle different aspect of the write process:
write, commit, and abort

Process all rows in a
given partition passed as
an iterator.

Returns a
WriterCommitMessage
that will be used by the
commit and abort
methods.

class DataSourceWriter(ABC):

@abstractmethod
def write(self, iterator: Iterator[Row]) -> "WriterCommitMessage":

...

def commit(self, messages: List["WriterCommitMessage"]) -> None:
...

def abort(self, messages: List["WriterCommitMessage"]) -> None:
...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 43

Intro to DataSourceWriter
A base class for defining how to write data

• The DataSourceWriter is responsible for defining how data is written in Spark.

• It has three methods designed to handle different aspect of the write process:
write, commit, and abort

Handles transactional
aspect of the write process

Commit: Finalizes
successful write operations

Abort: Ensures proper
cleanup if a write task fails

class DataSourceWriter(ABC):

@abstractmethod
def write(self, iterator: Iterator[Row]) -> "WriterCommitMessage":

...

def commit(self, messages: List["WriterCommitMessage"]) -> None:
...

def abort(self, messages: List["WriterCommitMessage"]) -> None:
...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 44

Initiating the Write Process
How the commit protocol works

Execute df.write
Pass an iterator of rows to the
write() method of the data
source

Executor

write
(iterator)

External Sinks

Spark
Driver

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 45

Handling Task Success - Commit
How the commit protocol works

Spark
Driver Executor

External Sinks

WriterCommit
Messages

commit()
write

Finalize the write process

E.g. write a _SUCCESS file

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 46

Handling Task Failure - Abort
How the commit protocol works

Executor

External Sinks

Exceptions
write

Clean up

Spark
Driver

abort()

©2024 Databricks Inc. — All rights reserved 47

STREAMING
DATA
SOURCE

spark.readStream
.format("my-source")
.option("key", "value")
.load()
.writeStream
.format("my-sink")
.start()

©2024 Databricks Inc. — All rights reserved 48

DEMO

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 49

Conclusion

49

Before Python data source API

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 50

Conclusion

50

After Python data source API

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Other Recommended Sessions

51

View after the conference to learn about Spark OSS, Python, and Streaming

Session Area

Your Guide to Data Engineering on the Data Intelligence Platform Data Engineering

Supercharge Your Data Warehouse: Introducing Python Stored Procedures PySpark

Databricks Streaming: Project Lightspeed Goes Hyperspeed Streaming

What’s Next for the Upcoming Apache Spark 4.0 Spark OSS

Introducing Databricks’ New Native Ingestion Connectors Streaming

Streaming Data Pipelines: From Supernovas to LLMs Streaming, LLM

Exploring UDTFs (User-Defined Table Functions) in PySpark PySpark

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Take Home Exercises

52

Build your own data sources!

• [Easy] Implement a REST API data source that reads data from a

REST API (e.g financial data, weather data).

• [Intermediate] Implement a streaming REST API data source

• [Intermediate] Implement a data source that fetches Kaggle

datasets.

• [Hard] Implement a data source and sink that reads data from and

writes data to Excel files.

• We kindly request your valuable
feedback on this session.

• Please take a moment to rate and
share your thoughts about it.

• You can conveniently provide
your feedback and rating through
the Mobile App.

Tells us what you think What to do next?

• Visit the Learning Hub Experience at
Moscone West, 2nd Floor!

• Take complimentary certification at
the event; come by the Certified
Lounge

• Visit our Databricks Learning website
for more training, courses and
workshops! databricks.com/learn

Get trained and certified

• Discover more related sessions in the
mobile app!

• Visit the Demo Booth: Experience
innovation firsthand!

• More Activities: Engage and connect
further at the Databricks Zone!

Databricks
Events App

Learn more at the summit!

https://www.databricks.com/learn/

©2024 Databricks Inc. — All rights reserved 54

	This information is provided to outline Databricks’ general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all
	Introducing the New Python Data Source API in Apache Spark
	Agenda
	Custom Integrations in Spark
	Why don’t I just do it in Python?
	How do we improve here?
	Introducing the New Python Data Source API
	Python Data Source API
	Data Source Overview
	DEMO
	 pyspark-data-sources
	Demo: Fake Data Source
	Demo: REST API Data Source
	Demo: HuggingFace Datasets
	DATA SOURCE READ
	Simple Example
	Simple Example
	DataSource
	DataSource
	DataSource
	Simple Example
	Simple Example
	Simple Example
	Intro to DataSourceReader
	Intro to DataSourceReader
	Intro to DataSourceReader
	Reading from a Data Source
	Reading from a Data Source
	Simple Example with Partitions
	Simple Example with Partitions
	Partitioning Strategy
	How It Works
	Quiz Time!
	Quiz 1
	Quiz 1
	Quiz 2
	Quiz 2
	DATA SOURCE WRITE
	Simple Example with Writer
	Simple Example with Writer
	Intro to DataSourceWriter
	Intro to DataSourceWriter
	Intro to DataSourceWriter
	Initiating the Write Process
	Handling Task Success - Commit
	Handling Task Failure - Abort
	STREAMING DATA SOURCE
	DEMO
	Conclusion
	Conclusion
	Other Recommended Sessions
	Take Home Exercises
	Learn more at the summit!
	Slide Number 54

