
©2024 Databricks Inc. — All rights reserved 1

NEAR REAL-TIME INFENRECE
WITH DATABRICKS
SERVERLESS COMPUTE

Amit Adiraju , Diana Adam

©2024 Databricks Inc. — All rights reserved 2

Amit Adiraju
Sr. ML Engineer

Diana Adam
Sr. Director Data Science

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

FORECASTING AT ALBERTSONS

3

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• A future looking view into the estimated performance of our
products is critical for the short- and long-term strategy
planning of What, Where, When and for How Much to sell.

• Forecasting needs to be done at the relevant granularity to
support these goals and have a high degree of accuracy.

• Business users need the ability to "simulate" in near real time
the impact of different strategies on the forecast in based on
various objectives to pick the best one.

FORECASTING USE CASE REQUIREMENTS

44

Total Number of
Forecasting Models ~124, 000

Algorithms Used FB Prophet, Moving Average, Temporal Fusion
Transformer and GPVAR

Registry Mlflow (model registry, as well as experiment
tracking)

Inference & Serving

Run simulations for different inputs in less
than 15 seconds per request (~1400 individual
forecast models per request)

Geography
Business
Strategy

Product
Hierarchy

Forecasting
Keys

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

1. On Demand Batch Inference Job
with group of models.

2. One REST end point per model.

1. User Request -> FAST API on AKS
-> Trigger Job Cluster for
Inference.

2. Deploy one prophet model, per
REST endpoint, and query group of
endpoints based on user's request.

1. Cluster Startup time = 3 mins +
model inference time = ~ 2 mins.

2. Not scalable as no. of models
grow, expensive and high
operational complexity.

Also involves multiple network
calls.

Approach Details Challenges

TYPICAL APPROACHES

55

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Databricks Serverless Compute can spin up
inference ready compute nodes in range of
5–30 s.

• Mlflow Serving + Serverless compute can
help in providing on-demand inference in
less than 30s on average.

6

TO ADDRESS STARTUP TIME OF COMPUTE
Databricks Serverless Compute + Mlflow Serving

6

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

N/W CALL REDUCTION

7

MLFLOW PYFUNC TO LOAD & INFER MULTIPLE PROPHET MODELS

7

Model Key 2

BEFORE

Model Key 1 Model Key n

Model Keys 1-15
Mlflow Model

Model Keys 15 - N
Mlflow Model

AFTER

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

PYTHON

Mlflow Pyfunc Class

TO ADDRESS MULTIPLE N/W CALLS

8

PYTHON

….

def predict(self, context, input_pandas_df, params = None):
results = …. # dictionary to store model results by key

for model_key, single_model_data in

inp_pd_df.groupby(“model_key”).group.items():

predicts based on row-batching, for chosen model
single_model_predictions =

self.models[model_key].predict(single_model_data)

appends result by model key
results[model_key] = single_model_predictions

return results

8

class ModelPackager(mlflow.pyfunc.PythonModel):

def __init__(
self,
model_artifact_manager

):
dictionary to hold model_names and model artifacts.
self.models = { }

Contains logic on how to load serialized models.
self.model_manager = model_artifact_manager

def load_context(self, context):
load models from storage in key-value format

models = self.load_models(context.artifact_path)

optionally serialize, compress / quantize models

optionally, persist serialized dictionary items in dbfs location

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• For Prophet models, pruning ”history” attribute is
one way to reduce model size, but may impact
model performance.

• Compressing Prophet model dictionary as-is ,
through approaches like LZMA, Pickle is simple,
efficient and preserves model performance.

• Tensor flow, Pytorch and Sklearn type of models
can be optimized for memory through various
”Model Quantization” techniques.

9

TO ADDRESS MODEL MEMORY CONSUMPTION

9

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 10

OVERALL ARCHITECTURE

10

Training Pipeline Deployment & Optimization
Framework

Mlflow Serving
Endpoint(s)

Databricks Serverless
Compute

Inference Helper

Inference Event

Write to
Storage

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

DEPLOYMENT & OPTIMIZATION FRAMEWORK

1111

Training Pipeline Write to
Storage

DEPLOYMENT & OPTIMIZATION
FRAMEWORK

Create Serving
Endpoints

Load Models Package from
Mlflow Pyfunc

Serialize
Models

Compress
Model Memory Register to

Mlflow Registry

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Column "model_key" uniquely identifies which model this
record belongs to.

• The inference dataset is then batched both by model
and num of models in an individual request.

• HTTP API request is used to call the Databricks
serverless API concurrently.

DATA FORMAT OF INFERENCE REQUEST

1212

Model Key Feature 1 Feature 2

Model_1 1 34.2

Model_2 12 2.34

Model_1 2 9.75

Model_3 2 21.9

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

SEQUENCE OF INFERENCE REQUEST

13

Breakdown of Inference Request to Mlflow Serving Endpoint

13

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• One can manage Mlflow Serving endpoints with

Databricks API programmatically.

• Supports:

o Create serving endpoints.

o Update permissions for serving endpoints.

o Choose compute and concurrency limits.

o Deleting serving endpoints.

o List endpoints / extract metadata.

o Extract logs for endpoints.

HOW TO CREATE AND MANAGE ENDPOINTS

1414

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Mlflow Serving endpoints have capability to support
4, 32 and 64 concurrent inference requests, per
endpoint.

• Endpoints can be queried in batches, with delay
between requests and other standard endpoint
query formats like shown in code.

HOW TO SEND INFERENCE REQUESTS

1515

©2024 Databricks Inc. — All rights reserved 16

LATENCY BENCHMARKS

APPROACH

NO. OF
BATCHED
MODELS FOR
INFERENCE

NO.OF REQUESTS
NO. OF MODELS TO
BE INFERRED, PER
REQUEST

NO. OF
INFERENCE
ROWS, PER
MODEL

MEMORY
OPTIMIZATION

MODEL INFERENCE TIME (IN
SECONDS)

Job Cluster
+ Batch
Inference

1400 1 1400 52 No 350.24

Serverless
Compute

10 140 1400 52 No 48.18 (Includes Warm up Time)

Serverless
Compute

20 70 1400 52 No 18.44 (Includes Warm up Time)

Serverless
Compute

30 46 1400 52 No 18.24 (Includes Warm up Time)

Serverless
Compute

10 140 1400 52 Yes 21.23

Serverless
Compute

20 70 1400 52 Yes 16.32

Serverless
Compute

30 46 1400 52 Yes 14.12

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

EXTENDING TO OTHER MODELS

17

More Serializers & Compressors

17

Model
Deployment

Model Loader Model
Packager

Model Exporter

Model Artifact Manager

Serializers Quantizers / Compressors

18

OUR TEAM

• Engineering Team

Amit Adiraju. ; Kshitij, Karthick. ; Aravind, Chamakura ; Vijay, Sriram K ; Shijas,
Abdulsalam.

• Data Science Team

Diana, Adam. ; Jonas, Krueger.

• Product Team

Vijay, Nukala. ; Bonnie, Sarmiento

http://www.linkedin.com/in/amit-a-13921413a
https://www.linkedin.com/in/kshitijkarthick/
https://www.linkedin.com/in/aravindchamakura/
https://www.linkedin.com/in/kotinaga/
https://www.linkedin.com/in/shijas-abdulsalam-4864137/
https://www.linkedin.com/in/shijas-abdulsalam-4864137/
https://www.linkedin.com/in/diana-adam-91a2682/
https://www.linkedin.com/in/jonas-krueger/
https://www.linkedin.com/in/vijaynu/
https://www.linkedin.com/in/bonnie-sarmiento-4822a658/

	NEAR REAL-TIME INFENRECE WITH DATABRICKS SERVERLESS COMPUTE
	Amit Adiraju�Sr. ML Engineer
	FORECASTING AT ALBERTSONS
	FORECASTING USE CASE REQUIREMENTS
	TYPICAL APPROACHES
	TO ADDRESS STARTUP TIME OF COMPUTE
	N/W CALL REDUCTION
	TO ADDRESS MULTIPLE N/W CALLS
	TO ADDRESS MODEL MEMORY CONSUMPTION
	OVERALL ARCHITECTURE
	DEPLOYMENT & OPTIMIZATION FRAMEWORK
	DATA FORMAT OF INFERENCE REQUEST
	SEQUENCE OF INFERENCE REQUEST
	HOW TO CREATE AND MANAGE ENDPOINTS
	HOW TO SEND INFERENCE REQUESTS
	LATENCY BENCHMARKS
	EXTENDING TO OTHER MODELS
	Slide Number 18

