

NEAR REAL-TIME INFENRECE WITH DATABRICKS SERVERLESS COMPUTE

Amit Adiraju, Diana Adam

DATA⁺AI SUMMIT

Amit Adiraju Sr. ML Engineer Diana Adam Sr. Director Data Science

FORECASTING AT ALBERTSONS

Corporate Overview

As one of the largest food and drug retailers in the United States, Albertsons Companies operates stores to be locally great while being nationally strong. The Company's omnichannel approach and commitment to innovation are making it easier and more convenient for customers to shop, paving the way for profitable, sustainable growth.

Company Profile

2,269

Retail Stores

\$79.2 B in sales (FY 2023) **22** distribution centers

\$4.3 B adj. EBITDA (FY 2023) **19** manufacturing plants

> 285,000 jobs One of the largest retail employers

Company Banners

FORECASTING USE CASE REQUIREMENTS

• Forecasting needs to be done at the **relevant granularity** to support these goals and have a **high degree of accuracy**.

• Business users need the ability to "simulate" in near real time the impact of different strategies on the forecast in based on various objectives to pick the best one.

DATA'AI SUMMIT

TYPICAL APPROACHES

Albertsons Companies

Approach

1. On Demand Batch Inference Job with group of models.

2. One REST end point per model.

Details

 User Request -> FAST API on AKS
 -> Trigger Job Cluster for Inference.

2. Deploy one prophet model, per REST endpoint, and query group of endpoints based on user's request.

Challenges

 Cluster Startup time = 3 mins + model inference time = ~ 2 mins.

 Not scalable as no. of models grow, expensive and high operational complexity.

Also involves multiple network calls.

TO ADDRESS STARTUP TIME OF COMPUTE

Databricks Serverless Compute + Mlflow Serving

 Databricks Serverless Compute can spin up inference ready compute nodes in range of 5–30 s.

• Mlflow Serving + Serverless compute can help in providing on-demand inference in less than 30s on average.

N/W CALL REDUCTION

MLFLOW PYFUNC TO LOAD & INFER MULTIPLE PROPHET MODELS

TO ADDRESS MULTIPLE N/W CALLS

Mlflow Pyfunc Class

PYTHON	PYTHON		
<pre>class ModelPackager(mlflow.pyfunc.PythonModel): definit(self, model_artifact_manager): # dictionary to hold model_names and model artifacts.</pre>	<pre> def predict(self, context, input_pandas_df, params = None): results = # dictionary to store model results by key for model_key, single_model_data in</pre>		
<pre>self.models = { }</pre>	<pre>inp_pd_df.groupby("model_key").group.items():</pre>		
<pre># Contains logic on how to load serialized models. self.model_manager = model_artifact_manager</pre>	<pre># predicts based on row-batching, for chosen model single_model_predictions =</pre>		
<pre>def load_context(self, context): # load models from storage in key-value format</pre>	<pre>self.models[model_key].predict(single_model_data)</pre>		
<pre>models = self.load_models(context.artifact_path)</pre>	# appends result by model key		
<pre># optionally serialize, compress / quantize models</pre>	results[model_key] = single_model_predictions		
# optionally, persist serialized dictionary items in dbfs location	return results		

- For Prophet models, pruning "history" attribute is one way to reduce model size, but may impact model performance.
- Compressing Prophet model dictionary as-is, through approaches like LZMA, Pickle is simple, efficient and preserves model performance.
- Tensor flow, Pytorch and Sklearn type of models can be optimized for memory through various "Model Quantization" techniques.

df	df_comp.sort_values(by=['bytes'])								
	Compression	Load_Time_Sec	bytes	perc_save_mem	МВ				
3	LZMA + Pickle	0.022012	28420	99.045613	0.028420				
4	Brotli Compression	0.006791	34888	98.828408	0.034888				
1	GZIP + Pickle	0.021448	58977	98.019463	0.058977				
2	BZ2 + Pickle	0.033048	62351	97.906158	0.062351				
5	Blosc Compression	0.019898	355948	88.046724	0.355948				
0	Regular Pickle	0.020988	2977828	0.000000	2.977828				

OVERALL ARCHITECTURE

DEPLOYMENT & OPTIMIZATION FRAMEWORK

il 😂

DATA FORMAT OF INFERENCE REQUEST

- Column "model_key" uniquely identifies which model this record belongs to.
- The inference dataset is then batched both by model and num of models in an individual request.
- HTTP API request is used to call the Databricks serverless API concurrently.

import requests
<pre>headers = {"Authorization": f"Bearer {token}", "Content-Type": "application/json"}</pre>
payload = {
"params": {"inference_type": "native"},
<pre>"dataframe_split": df.to_dict(orient="split")</pre>
}

```
df = requests.post(endpoint, json=payload, headers=headers).json()
```

Model Key	Feature 1	Feature 2
Model_1	1	34.2
Model_2	12	2.34
Model_1	2	9.75
Model_3	2	21.9

SEQUENCE OF INFERENCE REQUEST

HOW TO CREATE AND MANAGE ENDPOINTS

- One can manage Mlflow Serving endpoints with Databricks API programmatically.
- Supports:
 - Create serving endpoints.
 - Update permissions for serving endpoints.
 - Choose compute and concurrency limits.
 - Deleting serving endpoints.
 - List endpoints / extract metadata.
 - Extract logs for endpoints.

user_permissions = {"username": "CAN_MANAGE"}
uc_model_uri = f"{catalog_name}.{schema_name}.{model_name}"

```
serving = DatabricksServing(
    token=databricks_token,
    host_url=databricks_host_url,
```

endpoint_info = serving.create_endpoint(
 model_name=uc_model_uri,
 endpoint_name=endpoint_name,
 model_version=model_version,
 workload_size=workload_size,
 tags=tags,

serving.update_user_permission_to_endpoint(
 endpoint_id=endpoint_info["id"],
 user_permissions=user_permissions,

DATA'AI SUMMIT

©2024 Databricks Inc. — All rights reserved

HOW TO SEND INFERENCE REQUESTS

- Mlflow Serving endpoints have capability to support 4, 32 and 64 concurrent inference requests, per endpoint.
- Endpoints can be queried in batches, with delay between requests and other standard endpoint query formats like shown in code.

V import asyncio from aamp_model_wrapper_inference import config, inference_requests async def make_inference_request(token: str, endpoint: str) -> pd.DataFrame: prediction df = await inference requests.run inference inference dataset=inference df, token=token, batch_size=config.BATCH_SIZE, num_concurrent_requests=config.NUM_CONCURRENT_REQUESTS, delay between concurrent requests=config.DELAY BETWEEN_CONCURRENT REQUESTS, endpoint=endpoint, return prediction_df

prediction_df = asyncio.run(make_inference_request(token=databricks_token, endpoint=endpoint))

LATENCY BENCHMARKS

APPROACH	NO. OF BATCHED MODELS FOR INFERENCE	NO.OF REQUESTS	NO. OF MODELS TO BE INFERRED, PER REQUEST	NO. OF INFERENCE ROWS, PER MODEL	MEMORY OPTIMIZATION	MODEL INFERENCE TIME (IN SECONDS)
Job Cluster + Batch Inference	1400	1	1400	52	No	350.24
Serverless Compute	10	140	1400	52	No	48.18 (Includes Warm up Time)
Serverless Compute	20	70	1400	52	No	18.44 (Includes Warm up Time)
Serverless Compute	30	46	1400	52	No	18.24 (Includes Warm up Time)
Serverless Compute	10	140	1400	52	Yes	21.23
Serverless Compute	20	70	1400	52	Yes	16.32
Serverless Compute	30	46	1400	52	Yes	14.12

EXTENDING TO OTHER MODELS

More Serializers & Compressors

OUR TEAM

• Engineering Team

<u>Amit Adiraju</u>. ; <u>Kshitij, Karthick</u>. ; <u>Aravind, Chamakura</u> ; <u>Vijay, Sriram K</u> ; <u>Shijas,</u> <u>Abdulsalam</u>.

Data Science Team

Diana, Adam. ; Jonas, Krueger.

• Product Team

Vijay, Nukala.; Bonnie, Sarmiento