@

Scaling MLOps to Retrain 50k
Weekly Models n Parallel
Using UDFs



)
i

Data.ai is the premier provider of mobile
marketplace data and ecosystem insights.

One of data.a1’s cornerstone products 1s our (% S
best-in-class downloads estimates. (S /

Mobile App
KPIs

Downloads estimates are produced using Ranks
by data.ai, among other things.

ML
Model
B

Ranks by data.a11s an ML model thatuses our
understandmg and quantification of the mobile

ecosystem to rank app performance. 8—_5‘; @

< S OO0 000
These ranks and downloads estimates allow our
customers to benchmark their performance - ~ v

agamst ther competitors.

Download
Estimate

-

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved
COPYRIGHT 2023 | DATA.AI



Machine Learning Operation s

MLQOps Cycle
According to : MLOps is “...focused A ’
on streamlining the process of taking machine
learning models to production, and then
maintaining and monitoring them.”

(Re-)Train ‘

MLOps provides the benefits of: p—
1. Efficiency
2. Risk reduction
3. Scalability

MLOps processes are agnostic to the ML
problem or even industry; lessons learned by
scaling MLOps are applicable across the board.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved


https://www.databricks.com/glossary/mlops

MLOps Cycle MLOps Cycle MLOps Cycle

e el e e e e
The Ranks by data.ai model has many features, ‘

but is itself a simple enough model. r‘ B, SN SN

MLOps Cycle MLOps Cycle MLOps Cycle

‘ﬂ‘. AR R TV PR

MLOps Cycle MLOp Cycle MLOp Cycle

OO OO0 OO0

MLOp Cycle MLOp Cycle MLOp Cycle

0 T OO0

MLOp Cycle MLOp Cycle MLOp Cycle

0 T OO0

The technical difficulty is in combinatorics: we
have to scale to accommodate 175 countries, ‘
multiple metrics per country, sub-models, etc.

This product requires managing model training,

storage, mference, etc. every week for more
than 50 thousand individual models.

databricks

How do we approach model development,
training, and maintenance for 50k models?

databricks

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



1. Introduction to Pandas UDFs

1. Three tips for scaling MLOps in UDFs Follow along on Medium!
a. Start small
b. Wait your turn
c. Keep things clean

1. Limitations
a. Batch processing vs realtime
b. Potential workarounds or extensions

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



Introduction to
Pandas UDFs



Pandas UDFs areUser-Defined
Functions that can be used on a Spark and are therefore more efficient.
dataframe.

are stmilar to
UDFs but operate on fulldataframes,
allowmg for custom aggregations.

operate row -by-row;
extra flexibility costs m execution time.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved


https://docs.databricks.com/en/udf/pandas.html
https://docs.databricks.com/en/udf/python.html
https://docs.databricks.com/en/pandas/pandas-function-apis.html

Let’s illustrate grouped Pandas functions
by creatmg our own grouped average.

The example 1s simple, but will show us how
we can expand it to ML modeltraining
later.

First, let’s create a sample dataframe.
Let’s sample 5 random values and label
them ‘a’, and take another 5random

values, add a constant offset of 3, and label
them b’ \_

Thebuilt -1 grouped average function is a
simple groupby/aggregate call.

+————= o +

|group| avg_value|
+———— - ——————— +

| a|0.41722026 |

b| 3.711982]
+———— o ————— +

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



Instead of the built-in, let’s define our
own group average UDF.

We just need to do two things: pull the ID of
this group and calculate the average value.
e These are returned as a pandas df

To apply this function, we need to specify a
return schema using Spark types.

+————- o —— +

|group| avg_value|
+————- t————————— +

| a|0.41722026 |

| b| 3.711982]|
+———— o —————— +

Finally, applying our new function is as
simple as using the built-in average: N

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



Building a Model
Trammg UDF



~
def group_average_udf(pdf: pd.DataFrame) -> pd.DataFrame:
As we’ve seen before, a UDF is only a function that this_group = pdf{'group’].values[0]
_ group_average = np.mean(pdf['value'])
takes in and returns a pandas dataframe. return pd.DataFrame({
'group': [this_group],
'avg_value': [group_average]
We can leverage the fact that this is just a function L 5 )
by building our function against a pandas df.
e We canextract one group from our Spark df
and use thatto iterate on the UDF.

group_a = test_df.where('group=="a""').toPandas()

a_avg = group_average_udf(group_a)
a_avg.head()

.

Now we can start to see how to build out a model
trainmg UDF which can ultimately be scaled.

group avg value

0 a 0.41722

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



First Tip to Scaling: Start Small

Let’s build a modeling example. The Ranks by
data.ai project is based on a random forest, so
let’'s use a regression example from sklearn.

Let’'s also create arbitrary groups: high and low
for target values above or below the median.

Finally, let’s extract one group for further testing.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



First Tip to Scaling: Start Small

Now we can write our fitting function. Inside the
function, we can simply fit a random forest
regressor to the features/target in the df.

Next, we can add MLFlow logging. Most simply, we
just start an MLFlow run and then log the model.

We need to return a pandas df for the UDF to run.
The path of the stored modelobject 1s a useful
return value to keep track of.

Finally, we can test our function on the pandas df

"Low" Group Model Performance

for the single group, and see that it works.

We can also load the modelobject and confirm
that it can produce predictions.

o
% 10 4 ’.
— : 115_
g J ewZ
-
-
00 -

0 low runs:0a6fe30fb20d4b01bdd8cb24caadldad7/califor...

California Housing Target

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



- - ..

To avoid hitting rate lmit errors (429), we need to
add a jitter before loggmg the modelso that

different groups willbe querymg at different <

times.
B 8 e

| l l l

Random wait
Random wait
Random wait

Random wait

A sneakier issue with large numbers of groups is
the

Clock-Based
Seeding

However, a simple random jitter would not be
effective, because manyrandom seeds are
determmed by the current computer time.

Partition Hash
Based Seeding

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved


https://docs.databricks.com/en/resources/limits.html

Second Tip to Scaling: Rate Limit

A better way to handle the rate limit is by using
something unique to the group, such as its name.

By using the unique group name (or combination of
groups if multiple dimensions), a distinct hash can
be used to set the random seed. These are much
more likely to be unique and truly avoid rate limit.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



1.Pandas UDFs can be used to parallelize
arbitrary pandas functions in Spark.

l. UDFs canbe developed by using a single
group as a pandas df before applying the
function to the whole Spark df.

l. Nestmg runs packages modelartifacts mto a
single run, useful for organization.

l. MLFlow has a rate Iimit, but execution can
be jittered to avoid getting errors.

l. UDFs canreturn a path to that group’s
specific modelobject in MLFlow.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



Building a Model
Interence UDF



Now that we've stored our grouped models, we
need to be able to use them for inference.

We can use our previous lessons to build a UDF for
prediction, including using a random jitter to avoid
the rate limit error (429).

We can apply this UDF the same way we applied

the training, calling it with applylnPandas

e The return schema 1s constructed from the
JSON of the mput df schema. This boilerplate 1s
ancasywaytoadda columntoa complex
schema without encountering deep/shallow
COpYy ISsues.

DATA'Al SUMMIT

(4

ef predict_california_udf(features_w_models_pdf): ﬁ\\
# Decode group and model path
this_group = features_w_models_pdf['relative_target'].values|[Q]
this_model = features_w_models_pdf[ 'model_path'].values[Q]

# Add jitter with reset random seed

random.seed(abs(hash(this_group)) % (10 *x 4))

rand_wait = random.random()

time.sleep(rand_wait#*5) # Wait random time up to 5 seconds

# Load model

this_model = mlflow.sklearn.load_model(this_model)

features_w_models_pdf[ 'prediction'] = this_model.predict(
features_w_models_pdf[features]

)

\\¥ return features_w_models_pdf

L

//f# Join model path
df _w_models = california_df.join(
model_paths_df,
['relative_target']

)

# Define return schema
df _json = df_w_models.select('*').schema.jsonValue()
preds_schema = (
T.StructType()
.fromJdson(df_json)
.add(T.StructField('prediction', T.FloatType()))
)

# Apply inference

df _w_preds = (
df _w_models
.groupBy(['relative_target'])

.applyInPandas(predict_california_udf, preds_schema)

(& "

©2024 Databricks Inc. — All rights reserved



The inference UDF does offer opportunities for def predict_california_udf(features_w_models_pdf): \

: : # Decode group and model path
errors to come In that are hard to dlagnose. this_group = features_w_models_pdf['relative_target'].values|[Q]
this_model = features_w_models_pdf[ 'model_path'].values[Q]

# Add jitter with reset random seed

One partlcular error Is memory; when we load the random. seed(abs (hash(this_group)) % (10 ** 4))
model, it stores the model object to the /tmp/ rand_wait = random.random()

: time.sleep(rand_wait*5) # Wait random time up to 5 seconds
directory on the worker node. If the /tmp/

directory is never cleared then the worker runs out
of memory as groups scale up. # (Lo Mol

this_model = mlflow.sklearn.load_model (
this_model,

We can avoid this memory error by deleting the ) e | |
model objects once we’ve done inference. fea;;gij;g;f_";‘j;iggggfgd;’f;g;;’5;gg]1 = this_model.predict(
)
We can do this by specifying where the object
IS §tored when Ic?ade_d, and then deleting that \ return features w_models pdf /
object after running inference.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



Now that we've ensured we keep our resources
available, let's re-run the inference UDF in Spark
and test that the models are in fact separate.

We'll test the model outputs by making a scatter
plot, keeping our two groups separate colors.

//;f_w_preds = (
df _w_models

)

plt.scatter(

)

plt.scatter(

)
\\glt.show()

.groupBy([ 'relative_target'])
.applyInPandas(predict_california_udf, preds_schema)

grouped_preds_pdf = df_w_preds.toPandas()

grouped_preds_pdf.query('relative_target
grouped_preds_pdf.query('relative_target

grouped_preds_pdf.query('relative_target
grouped_preds_pdf.query('relative_target

=="high"')['target'],

=="high"')[ 'prediction' ]

=="]ow"')['target'],

=="low""')[ 'prediction']

"

We can clearly see that the models are doing well,

as there is a strong correlation between target
and prediction. We also see a clear break in the
middle where we split our groups in to two. This
trend break confirms the separation of models.

DATA'Al SUMMIT

Model Prediction

©2024 Databricks Inc. — All rights reserved

Split Group Model Performance

1 2 3 4
California Housing Target



1. The same parallelization techniques used for
modeltrainmg are also used for mference.

l. In addition to respectmg the rate limit,
inference UDFs also need to clear out model
objects so that worker nodes do not run out
of memory from models flooding /tmp/.

l. Adding a column using an existmg schema

can be done but requrres particular
boilerplate due to lazy evaluation.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



Limitations and
Considerations



1. There was no cross-validation or other
typicalmodelselection process depicted.
a. These could also be baked mto model

tramnmg, or mto a separate UDF

l. We did not register the models
a.Similarly, modelregistration could be
added to the trammmg procedure
b.Even a champion-challenger comparison
could be done m a registration UDF.

l. What about multiple groups?
a.No difference in n procedure, just need to
incorporate multiple groups mto
model paths and jtter values.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



1. Long retraining and inference times
a. Avoiding the rate limit for large
combinatorics can be difficult.
b. Rate-limit avoidance time becomes a
limiting factor for real time applications.

1. How to manage 50k model endpoints?
a. Real-time inference would require some
kind of gateway to route traffic to the
separate models, based on inputs.

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



A PyFunc wrapper is a generic MLFlow model
object that has greater flexibility than specific
flavors (e.g., sklearn, spark, etc.).

PyFunc wrappers have conifext, they can load
artifacts into the endpoint.

PyFunc wrapper can be used as a gateway to
(1) models in its context or (2) separate model
endpoints.

(U

//;lass ModelWrapper(mlflow.pyfunc.PythonModel):

models = {}
model_groups = ['high', 'low']

def load_context(self, context):
import pandas as pd

self.models = {}
for model in self.model_groups:
self.models[model] = mlflow.sklearn.load_model (
f'models:/california_model_{model}/latest'
)

def predict(self, context, input_pdf):
this_group = input_pdf['relative_target'].values[Q]
this_model = self.models[this_group]
predictions = this_model.predict(input_pdf)
return pd.Series(predictions)

4 p
mlflow.pyfunc.log_model(
artifact_path='california_model_wrapper',
python_model=ModelWrapper(),
registered_model_name='registered_california_model'
)
- y

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved




Conclusion



1. Introduction to Pandas UDFs

1. Three tips for scaling MLOps in UDFs Find this on Medium!
a. Start small
b. Wait your turn
c. Keep things clean

1. Limitations
a. Batch processing vs realtime
b. Potential workarounds or extensions

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved



@ Sensor Tower

DATA'Al SUMMIT

data.ai is now a part of Sensor Tower!

The ML techniques presented today are not As we push forward on Sensor Tower's
specific to data.ai, or to Sensor Tower. mission to. measure the - world's digital
economy, these skills-will allow us 1o
efficiently build and scale brand hew ML
applications, helping to-bridge the gap

These technigues are not even specific to :
between companies and-customers.

any industry: they can be used for any
grouped ML problem needing tracking.

©2024 Databricks Inc. — All rights reserved



P
Thank You

aaaaa



	Slide Number 1
	Ranks by data.ai: Capturing 360 Mobile Performance
	What is MLOps?
	Scaling MLOps at data.ai Presents Challenges
	Agenda
	Slide Number 6
	Pandas UDFs: The Basics
	Pandas UDFs: Grouped Average Example
	Pandas UDFs: Grouped Average Example
	Slide Number 11
	First Tip to Scaling: Start Small
	First Tip to Scaling: Start Small
	First Tip to Scaling: Start Small
	Second Tip to Scaling: Rate Limit
	Second Tip to Scaling: Rate Limit
	Interim Summary
	Slide Number 21
	Group Inference UDF
	Third Tip to Scaling: Keep Things Clean
	Putting It All Together
	Interim Summary 2
	Slide Number 26
	Trivial Considerations
	Serious Considerations: Real-Time Inference
	One Real-Time Suggestion: PyFunc Wrapper
	Slide Number 30
	What We’ve Learned
	Slide Number 32
	Slide Number 33

