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@ Robert Kramer - About Me

- Principal Data Scientist — Providence
Health

» Diverse academic background from
aerospace engineering to systems &
complexity science

» Current projects include predicting
surgery admissions & molecular
pathology ML / Al development
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Integrating AL/ML into Histology

Cell typing is the first step to understand the tumor microenvironment

Tumor Cells Evolutionary timeline of Histology
Total Cells 1980 2000 2020

e Tumor Purity =

o Consistency and Objectivity: Traditional
manual estimates of tumor purity are
subjective and often inconsistent.

e Quality Control: Ensures accurate analysis of
tumor samples.

e Relating Tumor Environment to Genetic

Optical

Markers: Tumor purity is critical for e
understanding the tumor microenvironment, n ) T )
g g o o g Mazzarini M, Falchi M, Bani D, Migliaccio AR. Evolution and new
which is linked to geneUC biomarkers and frontiers of histology in bio-medical research. Microsc Res Tech.
. 2021 Feb;84(2):217-237. doi: 10.1002/jemt.23579. Epub 2020
patient outcomes. Sep 11. PMID: 32915487: PMCID: PMC8103384.
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Going From @ to 1

Cell Typing is the “model organism” of histology imaging Al at Providence

e Foundational Design Patterns: Key for future Al applications

» Histologic Imaging Challenges: Complex & data-intensive

e MVP Approach: Learn by doing to uncover & understand

o Data Integration: Links omics data with histology whole slide imaging

 Tool Development: Cell viewer, model monitoring, &
feedback/annotation engine
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Prov-GigaPath

Mastering our cell typing use case enables new model deployment

Prov-GigaPath achieves state-of-the-art per rks largest pretraining effort to date

e World-leading computational
pathology foundation model

e Deploymentin Providence
production env fundamentally
similar

e Providence, Microsoft, &

University of Washington
collaboration

e Open Weights! Check it out in
Nature, Github, or Huggingface

http: -pi 9
digital-pathology-model.

C il to Innovati I-Py d Digital gy Model.” 2024. June 3, 2024.
8 et i : emdin ”
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https://www.nature.com/articles/s41586-024-07441-w
https://github.com/prov-gigapath/prov-gigapath?tab=readme-ov-file
https://huggingface.co/prov-gigapath/prov-gigapath

Cell Typing Model Overview

Histology imaging Al case study

Whole Slide Images Annotation Tiling

(o:1]
Segmentation

[
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Tumor % & Total Cells are Predictive

p-value: 0.0, correlation: 0.837179 p-value: 0.0, correlation: 0.5853839
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The Challenge of Scale

We have over 125k WSI's scanned from our Microsoft Research partnership

Data Volume:
- ~30k tiles & 2 GB per whole slide image (WSI)
- 125k + historical image dataset
- 20 new cases per day
Infrastructure Challenges - -
- ~3hr to process 1 WSI
- OpenSlide inefficient with cloud storage

- Need effective executor VM caching strategies
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The Bridge of Databricks

From Al research to production workflows

DISCOVER

Developed Cell Typing
Model with researchers &
presented at Association
for Molecular Pathology

DATA'Al SUMMIT

@

PARTNER

Databricks offered
Digital Pathology
Accelerator resources
& consultation
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DELIVER

Easily integrate with
DBX based genomic
variant clinical
workflow



Research Model -> Production Model
Initial Python / Pytorch cell typing model developed for single VM

Research Single Machine Production Distributed Spark Model
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Planned Production

Wo r k f l ow Azure Databricks ‘
Workspace ﬂ

Train Annotations

\
7

/\ DELTA LAKE
Processed Tiles

If New
Model

Run
Preprocessing

DELTA LAKE
WSI Metadata

DELTA LAKE
TSO500 Join

: DELTA LAKE
Cell Type Results

Internal Reporter App GeoJSON

E

Azure Blob View Cell Typing &
Annotate new regions

& cmm

Hammumatsu Scanner
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DATA'Al SUMMIT

Metadata table consisting of
information from scanned whole slide
images (WSI, .ndpi) created from
reading blob storage

The WSI's are split into tile coordinates
& each preprocessing class acts on
independent tiles as rows in a delta
table

WSI's are cached on each executors
VM HD as needed for efficient I/O of
OpenSlide image objects

Distributed Cell Typing Source Code

Use repos and arbitrary files to create typical Python modules

I: setup.py

__init__.py

I: __init__.py
cell_typing_performance.py

I: __init__.py
infer_cell_type.py

— __init__.py

— cell_centroid_validator.py

— label_split_tiles.py

— patch_generator_cached. py

— preprocessor.py

— star_dist_centroid_distributed.py
— tile_generator.py

— tissue_segmentor_distributed.py
— wsi_meta_data_writer.py

— PKG-INFO

— SOURCES. txt

— dependency_links.txt
— top_level.txt

t:: __init__.py
train_cell_type.py
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Inference Code Walkthrough

Delta table split and sent to executors as independent Pandas Dataframes,
allowing reuse of python classes with I/O modifications

Delta Table based orchestration Distribute by applying with MapInPandas()
preprocessor = pre.Preprocessor(preprocess_config) from src.infer import infer_cell_type as inf
preprocessor.prepare_meta_wsi_df() cell_type_processor = inf.InferCellType(model_dir=model_dir,

labels_list=preprocessor.labels_list)
mask_extract_df =

preprocessor.prepare_mask_extract_df(cache_flag) pred_df = (
tiled_df = preprocessor.prepare_tiled_df(mask_extract_df, centroid_patch_df
cache_flag) .repartition(32) # Adjust based on your cluster setup and
centroid_df = preprocessor.get_centroids(tiled_df, cache_flag) data size
centroid_patch_df = .maplnPandas(
preprocessor.get_centroid_patch_df(centroid_df, cell_type_processor.make_predictions,
cache_flag) schema=cell_type_processor.schema

)
)
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Tiles Spread Across Executors
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I/0 Issues

openslide.OpenSlide(blob_path)

Using OpenSlide in the cloud ‘

DATA'Al SUMMIT

Azure Blob

XlO 000

cache = dc.Cache(cache_dir)

€
openslide.OpenSlide(cache_path)

DiskCache

x10,000
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Executor Azure Blob
Local HD

shutil.copy2(wsi_filepath, cache_dir)
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Label Cell Types with Spatial Joins

Vectorized Shapely 2.0 operations distributed with MapinPandas()

e Regions labeled by Molecular T
Genomics Lab pathologist SPLES vies
available as GeoJSON files

e Cell Centroids detected with
StarDist Keras Model

e For each region geometry, find
all cell centroids in the
annotated region with a
vectorized spatial join
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Distributing Stardist Cell Centroid Model

Add padding to all tiles and use tile id to predict unique edge case cells

def _get_centroids(self, pdf: pd.DataFrame) -> pd.DataFrame:
all_centroids = []
for _, row in pdf.iterrows():
img_arr = self._get_patch_arr(row[ ‘sid'], row['x'], row['y"])
centroid_arr = self._detect_cells(img_arr)
# Adjust centroids for original tile coordinates and filter
# do I need cy, cx here...
for cy, cx in centroid_arr:
x_centroid = cx + row['x'] - self.padding
y_centroid = cy + row['y'] - self.padding
# Only include centroids within the original tile
if @ <= x_centroid - row['x'] < self.tile_size and @ <= y_centroid - row['y'] < self.tile_size:
all_centroids.append({"sid": row['sid'], "tile_id": row['tile_id'], "x_centroid": x_centroid, "y_centroid": y_centroid})

return pd.DataFrame(all_centroids)

18
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Mlflow for Performance Experiments

Metrics
def log_initial_params(self):
Duration labels_process_time learn_patch_process_time stardist_process_time mlflow.log_param("preprocessing strategy”, self.strategy)
in 0.19 mlflow.log_param(“compute_configuration"”, self.compute_config)
mlflow.log_param("partitions™, self.partitions)
5.9min 0 21 mlflow.log param("arrow_bytes_limit", self.arrow_bytes_limit)

def setup_experiment(self, preprocess_config: dict):
run_name = f"{self.strategy} {self.compute_config} {self.partitions} {self.arrow_bytes_limit}"
preprocess_config["arrow_max_records"]: str(self.config.arrow_bytes)
preprocess_config["partitions"]: int(self.config.partitions)

6.9min 0.78 5.53 preprocessor = pre.Preprocessor(preprocess_config)

preprocessor.prepare_meta_wsi_df()

10.0min

93min 05 76 return preprocessor
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Distributed Production Results

The distributed pipeline is faster, scalable, and more cost effective

Distributed Avg 1-WSI Research Avg 1-WSI

SHOEEEE DUEE /5.25 DBU Compute /5 DBU GPU Compute

Stardist Cell Centroid Detection 16 min

Cell Typing Inference 164 min

e Infinite scale: 6 executors ~9 min/slide -> 30 executors ~1.8 min/slide
e Delta Lake meta-data orchestration allows for quick analysis
e DiskCache handles the concurrent OpenSlide I/O well

e Simple integration with our existing clinical Databricks workflows

DATA'Al SUMMIT ©2024 Databricks Inc. — All rights reserved 20
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Deep Learning Applications Using H&E Images Improve Clinical Sequencing Workflows

Bie Providence
Jacob Abel™, Angela Crabtree?, Robert Kramer’, Christine Moung-Wen’, Lingyu Wang?, Eric Shull’, Brian Piening'?, Carlo Bifulco'? Genomics
" Providence Health & Services Molecular Genomics Laboratory, Portland, OR, USA
2Earle A. Chiles Research Institute, Providence Cancer Institute, PortlanJ, OR, USA
*These authors contributed equally to this work.

INTRODUCTION MATERIALS & METHODS 2

The term “tumor purity” or “tumor percentage” (TP) describes the fraction Annotation and Segmentation Cell Tiles Model Performance
of cancer cells in a sample as compared to non-umor cells. Pre-analytical
assessment of TP and subsequent sample acceptance or rejection is a Confusion Matrix
critical component of quality controland is utilized for downstream
processes such as the correction of gene copy number estimates. TP can
be assessed through histologic estimation or aggregating the variant allele
frequency (VAF) of somatic mutations, but these approaches are
subjective. Here, we report on amachine-learning (ML) model for the
quantitation of tumor, stroma, and lymphocytic cells from whole slide
images (WSI) and how this could fit into a clinical workflow.

MATERIALS & METHO ‘ e Tn S ' A

. Figure 2: During the training process, regions of 38 lung adenocarcinomaslides  Figure 3: 96 x 96 pixel tiles were produced from the Figure 4: A confusion matrix showing performance of model vs ground truth
Our in-house database was queried for all non-cytologic cases of primary were annotated as "tumor; “stroma; or “lymphocytes” (Left). Cell nuclei were then  segmented nuclei. Each tile center is a cell centroid. (i.e. classified by pathologist) for the three cell categories assessed in this
segmented from these regions using the StarDist segmentation model (Right) study.

- 10000

8000

- 6000

Ground Truth

~ 4000

- 2000

lung adenocarcinoma since 2022 which had accompanying Hematoxylin
and Eosin (H&E) whole slide images (WSI) and TruSight Oncology 500 NGS
data, resulting in a dataset of 280 cases. Of these, 38 cases were randomly
selected for use as training (22), validation (7), and test (9) samples. RESULTS

Overall workflow is depicted in Figure 1. Two pathologists non-exhaustively

annotated tissue regions containing high densities of the target cell types.

The annotations were performed in QuPath and exported for labeling
training data during preprocessing (Figure 2). Training data was prepared

The predicted number of total cells in Example Fields of Model Predicted Nuclei Comparison with Manual Comparison with Mean
core biopsies positively correlated with X Quantitation of Tumor Clinically Significant
extracted DNA  concentrations (2= ells Variant Allele Frequency
0.84, p < 0.001), while stromal cell density

was negatively correlated (= -0.52,p B — .

on over 180,000 tiles, achieving 80% accuracy on a test set of 38,310 tiles =0.001). TP estimates were congruous % ¢ thh =
(Figure 4). The model was used to classify a random subset of cells from with the pathologist-estimated  tumor :
each slide in a set of 276 slides and were d content (2=0.50,p=0.002) and with the
at the slide level. Cell counts and cell type proportions in biopsy slides were average clinically significant variant allele

assessed for correlations with NGS findings. frequency (r2=0.59, p<0.001). Inspection
of outliers revealed a sample where TP
was particularly underestimated by the
pathologist at sign-out and this case was
e flagged for review. It was determined ) ) )
> LU that subclonalty of detected variants  TONSE( N s e seeomnone (fop gy et
fo— 7 skewed assessment of TP in this case. ) o o o aaphologyin  PauMclogst s TPos estmared by mean VA% of o, st

conjunction with use of a subclonal STAGZ variant highlight some of the challenges in ~ algorithm. Linear regression mutations vs. algorithm estimated
TP estimation performed in R. TP, Linear regression performed in R

m - CONCLUSIONS

by segmenting cell nuclei using StarDist, then creating 96x96 pixel image
tiles centered on each nucleus within annotated tissue regions (Figure 3). A
VGG16 model was initialized with pre-trained weights and further trained

Segmantation At Estimated Tumor Aot Estimted oo

probability
.",.,‘a,‘.m,,‘ Automated TP estimation represents one example of how the integration of digital pathology and Al/ML tools can improve pathology workflows. The rapid and accurate
quantitation of tumor cellular components is useful on its own as a quality metric and has a wide variety of potential applications both for routine clinical processes as well as
DATA'‘Al SUMMIT Figure 1: Workflow of (A) d (B) model utlization st enabling large-scale research analytics.
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Tiles
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Tumor % predicted by model

r2 = 0.50, p = 0.002

B0

st estimate)
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3 class cell classifier trained
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