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• Principal Data Scientist – Providence 
Health

• Diverse academic background from 
aerospace engineering to systems & 
complexity science

• Current projects include predicting 
surgery admissions & molecular 
pathology ML / AI development

Robert Kramer - About Me 
Me
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• Tumor Purity = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

• Consistency and Objectivity: Traditional 
manual estimates of tumor purity are 
subjective and often inconsistent. 

• Quality Control: Ensures accurate analysis of 
tumor samples.

• Relating Tumor Environment to Genetic 
Markers: Tumor purity is critical for 
understanding the tumor microenvironment, 
which is linked to genetic biomarkers and 
patient outcomes.

Integrating AL/ML into Histology
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Cell typing is the first step to understand the tumor microenvironment

Mazzarini M, Falchi M, Bani D, Migliaccio AR. Evolution and new 
frontiers of histology in bio-medical research. Microsc Res Tech. 
2021 Feb;84(2):217-237. doi: 10.1002/jemt.23579. Epub 2020 
Sep 11. PMID: 32915487; PMCID: PMC8103384.
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• Foundational Design Patterns: Key for future AI applications

• Histologic Imaging Challenges: Complex & data-intensive

• MVP Approach: Learn by doing to uncover & understand

• Data Integration: Links omics data with histology whole slide imaging

• Tool Development: Cell viewer, model monitoring, & 
feedback/annotation engine

Going From 0 to 1 
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Cell Typing is the “model organism” of histology imaging AI at Providence
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• World-leading computational 
pathology foundation model

• Deployment in Providence 
production env fundamentally 
similar

• Providence, Microsoft, & 
University of Washington 
collaboration

• Open Weights! Check it out in 
Nature, Github, or Huggingface “With the Potential to Transform Cancer Diagnostics, Providence Contributes to Innovative AI-Powered Digital Pathology Model.” 2024. June 3, 2024. 

https://blog.providence.org/national-news/with-the-potential-to-transform-cancer-diagnostics-providence-contributes-to-innovative-ai-powered-
digital-pathology-model.

Prov-GigaPath
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Mastering our cell typing use case enables new model deployment

https://www.nature.com/articles/s41586-024-07441-w
https://github.com/prov-gigapath/prov-gigapath?tab=readme-ov-file
https://huggingface.co/prov-gigapath/prov-gigapath
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Cell Typing Model Overview

7

Histology imaging AI case study
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Tumor % & Total Cells are Predictive
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Data Volume:

- ~30k tiles & 2 GB per whole slide image (WSI)

- 125k+ historical image dataset

- 20 new cases per day

Infrastructure Challenges

- ~3hr to process 1 WSI

- OpenSlide inefficient with cloud storage

- Need effective executor VM caching strategies

The Challenge of Scale

9

We have over 125k WSI’s scanned from our Microsoft Research partnership
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DISCOVER
Developed Cell Typing 
Model with researchers & 
presented at Association 
for Molecular Pathology 

PARTNER
Databricks offered 
Digital Pathology 
Accelerator resources 
& consultation

BUILD
Adapt Python based 
model to Pyspark

Solve large scale 
image processing 
issues

DELIVER
Easily integrate with 
DBX based genomic 
variant clinical 
workflow

The Bridge of Databricks
From AI research to production workflows
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Research Model -> Production Model
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Research Single Machine Production Distributed Spark Model

Initial Python / Pytorch cell typing model developed for single VM
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Planned Production 
Workflow
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1. Metadata table consisting of 
information from scanned whole slide 
images (WSI, .ndpi) created from 
reading blob storage

2. The WSI’s are split into tile coordinates 
& each preprocessing class acts on 
independent tiles as rows in a delta 
table

3. WSI’s are cached on each executors 
VM HD as needed for efficient I/O of 
OpenSlide image objects

Distributed Cell Typing Source Code

13

Use repos and arbitrary files to create typical Python modules 
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Inference Code Walkthrough
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Delta table split and sent to executors as independent Pandas Dataframes, 
allowing reuse of python classes with I/O modifications

preprocessor = pre.Preprocessor(preprocess_config)
preprocessor.prepare_meta_wsi_df()

mask_extract_df =
preprocessor.prepare_mask_extract_df(cache_flag)

tiled_df = preprocessor.prepare_tiled_df(mask_extract_df, 
cache_flag)

centroid_df = preprocessor.get_centroids(tiled_df, cache_flag)
centroid_patch_df =

preprocessor.get_centroid_patch_df(centroid_df, 
cache_flag)

Distribute by applying with MapInPandas()

from src.infer import infer_cell_type as inf
cell_type_processor = inf.InferCellType(model_dir=model_dir, 

labels_list=preprocessor.labels_list)

pred_df = (
centroid_patch_df
.repartition(32) # Adjust based on your cluster setup and 

data size
.mapInPandas(

cell_type_processor.make_predictions,
schema=cell_type_processor.schema

)
)

Delta Table based orchestration
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MapInPandas() Maps 
Python/PyTorch Across 
Spark Executors 



©2024 Databricks Inc. — All rights reserved

I/O Issues 
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Using OpenSlide in the cloud
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• Regions labeled by Molecular 
Genomics Lab pathologist 
available as GeoJSON files

• Cell Centroids detected with 
StarDist Keras Model

• For each region geometry, find 
all cell centroids in the 
annotated region with a 
vectorized spatial join

Label Cell Types with Spatial Joins
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Vectorized Shapely 2.0 operations distributed with MapInPandas()

Stroma
Tumor
Lymphocytes
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Distributing Stardist Cell Centroid Model  
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Add padding to all tiles and use tile id to predict unique edge case cells

How do we 
predict cells 
on the edge?
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Mlflow for Performance Experiments
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Distributed Production Results
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The distributed pipeline is faster, scalable, and more cost effective

Process Step Distributed Avg 1-WSI 
/5.25 DBU Compute 

Research Avg 1-WSI
/5 DBU GPU Compute 

Stardist Cell Centroid Detection 5 min 16 min

Cell Typing Inference 4 min 164 min

• Infinite scale: 6 executors ~9 min/slide -> 30 executors ~1.8 min/slide

• Delta Lake meta-data orchestration allows for quick analysis

• DiskCache handles the concurrent OpenSlide I/O well 

• Simple integration with our existing clinical Databricks workflows
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Earle A. Chiles Research Institute:

Angela Crabtree – Researcher & Initial Cell Typing Developer

Brian Piening, PhD – Molecular Pathology Core Director (ML Group)

Providence Molecular Genomics Lab:

Jacob Able, MD & Christine Moung-Wen, MD - Pathologist Annotators

Carlo Bifulco, MD Director Molecular Genomics Lab

Providence Healthcare Intelligence

Lindsay Mico, AVP Enterprise Data Science

Databricks Partners

Providence Health Innovation Research
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Questions?
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Appendix
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Cell types annotated by pathologists
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Stroma
Tumor
Lymphocytes
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Tiles Generated from Cell Centroids
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Tumor % predicted by model
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r2 = 0.50, p = 0.002
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3 class cell classifier trained
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Model training loss

Confusion Matrix
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Predictions overlaid on cells
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Stroma
Tumor
Lymphocytes
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