
A Modern Approach to
Dimensional Modelling

–
In a Columnar Database

Truls Bergersen
Data + AI Summit by Databricks
San Francisco, June 13th 2024

About the presenter

• Truls Bergersen

• Lives in Oslo, Norway

• 23 years of experience in data warehousing
and business intelligence

• Data modeling and data integration expert

• Background from row based relational databases

• Working with Azure Databricks for 1.5 years

• Founder of start-up company Okeanos AS

• (Contracted as) Lead architect of the Norwegian Tax Administration’s data warehouse

Disclaimer

• This presentation is a compilation of my personal thoughts on the
future of dimensional modelling.

• Examples are simplified.
• There is no silver bullet, so one method will not fit all purposes.
• 40 minutes is only enough to scratch the surface of this topic.

Agenda

1. Recap of dimensional modelling

2. OBTs

3. The way forward using star schemas

Intro

• Dimensional modelling originates from a joint research project
conducted by General Mills and Dartmouth University in the 1960s.1

• Used in the 1970s by both AC Nielsen and IRI. 1

• In 1996 the book The Data Warehouse Toolkit by Ralph Kimball is
published.

1 The Data Warehouse Toolkit, 3rd edition, p15.

Star Schemas

• Fact tables

• Dimension tables

Fact
Table

Dimension

Dimension

Dimension

Dimension

Dimension

Star schemas are implementations of dimensional models in a
relational database.

They consist of:

Fact Tables
• Store the performance measures

• I.e. aggregable numbers such as
• Quantity
• Amount

• Reference to dimension tables
via foreign keys

• Usually contains many rows
and few columns

• Four types of fact tables:
• Transactional
• Accumulative snapshot
• Periodic snapshot
• Hybrid

FACT

Measure #1
Measure #2
Measure #n

Foreign key to Dimension 1
Foreign key to Dimension 2
Foreign key to Dimension n

Dimension tables
• Descriptive data giving context to the «facts».

• Has a primary key that is linked to
from the foreign keys of the fact table.

• Usually contains few rows
and many columns.

• May or may not contain history:
8 types of «Slowly Changing Dimensions».

• Some special dimension types, such as:
• Junk
• Degenerate
• Outrigger

DIMENSION

Primary key
Business key

Attribute 1
Attribute 2
Attribute n

Optionally columns to
handle history

Star Schemas

A very simple star schema might look something like this:

ORDERS
Units
Amount

Order#
FK Date
FK Customer
FK Organization

DATE
PK
Date
..

CUSTOMER
PK
Customer#
Customer Name

ORGANIZATION
PK
Employee#
Employee Name

Star Schemas
CREATE TABLE dim_date (

 PK bigint not null

,date_ date not null

);

ALTER TABLE dim_date ADD CONSTRAINT dim_date_pk PRIMARY KEY(PK);

CREATE TABLE dim_customer (

 PK bigint not null

,customer_no bigint not null

,customer_name string

,customer_address string

);

ALTER TABLE dim_customer ADD CONSTRAINT dim_customer_pk PRIMARY KEY(PK);

CREATE TABLE dim_organization (

 PK bigint not null

,employee_no bigint not null

,employee_name string

,department string

);

ALTER TABLE dim_organization ADD CONSTRAINT dim_organization_pk PRIMARY

KEY(PK);

CREATE TABLE fak_orders (

 quantiy bigint not null

,amount double not null

,order_no bigint not null

,dim_date_fk bigint not null

,dim_customer_fk bigint not null

,dim_organization_fk bigint not null

);

ALTER TABLE fak_orders ADD CONSTRAINT
fak_orders_dim_date_fk FOREIGN KEY(dim_date_fk)
REFERENCES dim_date;

ALTER TABLE fak_orders ADD CONSTRAINT
fak_orders_dim_customer_fk
FOREIGN KEY(dim_customer_fk) REFERENCES dim_customer;

ALTER TABLE fak_orders ADD CONSTRAINT
fak_orders_dim_organization_fk
FOREIGN KEY(dim_organization_fk) REFERENCES
dim_organization;

Slowly Changing Dimension Type 0 and 1

• Type 0:
• No history
• and no attributes are updated

even if the values change in the source.

• Type 1:
• No history
• Attribute are updated

if the values change in the source.
• So always the current values

Primary key Never updated

Natural key Never updated

Attribute 1..n Never updated

Primary key Never updated

Natural key Never updated

Attribute 1..n Can be updated

Slowly Changing Dimension Type 2

• Stores history
• A new row per change in the source
• One row represents a time period
• From Date (Effective Date)
• To Date (Expiration Date)

Primary key Never updated

Natural key Never updated

Attribute 1..n Never updated – new row is added when new value

From Date Never updated

To Date Updated when a new row is added for the same NK

Current Row Flag Updated when a new row is added for the same NK

Slowly Changing Dimension Type 3

• Stores some history
• However only one row per natural key
• The history is kept in dedicated columns

usually containing the previous
or original value

Primary key Never updated

Natural key Never updated

Attribute 1..n Can be updated

Attribute 1..n Historic Value Can be updated

Attribute 1..n Effective Date Can be updated

Slowly Changing Dimension 4

• Like a type 1, 2 or 3, but split in two:
• One with the attributes that do not change very often
• One with the attributes that change frequently
• The fact table has two foreign keys

Primary key Never updated

Natural key Never updated

Attribute 1..n Rarely updated

Primary key Never updated

Natural key Never updated

Attribute 1..n Can be updated – frequently

Fact table

Slowly Changing Dimension Type 5

• Hybrid/combination of 1 and 4
• The extra Type 1 is modelled as an outrigger

from the main dimension.

Primary key Never updated

Natural key Never updated

Attribute 1..n Rarely updated

FK to outrigger Updated frequently

Primary key Never updated

Natural key Never updated

Attribute 1..n Updated – frequently

Fact table

Slowly Changing Dimension Type 6

• Hybrid/combination of 1, 2 and 3
• Modelled as a Type 2, with one or more extra

columns that is updated with the current value
in all (historic) rows.

Primary key Never updated

Natural key Never updated

Attribute 1..n Never updated – new row is added when new value

Attribute 1..n Current value Updated when a new row is added for the same NK

From Date Never updated

To Date Updated when a new row is added for the same NK

Current Row Flag Updated when a new row is added for the same NK

Fact table

Slowly Changing Dimension Type 7

• Like Type 6, but:
• The current-values are treated as a separate

dimension, but having two foreign keys
to the same dimension in the fact table:

• One to the SCD Type 2 dimension, and
• One to an SCD Type 1-version of the dimension –
• either by a separate physical table
• or though a view that returns only the current-rows,

and using the natural key as the foreign key.

– SCD Type 1 –
Natural key
Attribute 1
Attribute 2
Attribute n

– SCD Type 2 –
Primary key
Natural key
Attribute 1
Attribute 2
Attribute n
From Date
To Date
Current Row Flag

Current Row Flag = "Y"

Fact table

Table

Tablespace

File

Block

Star Schemas in Row-based Databases
• Query performance comes down to the

number of i/o read and processed.

• A query is usually limited to a small number
of the total columns available.

• In a row-based database the whole row must
be read, even if you only query one of the
columns

• => The i/o of the whole block that these
rows are stored must be read.*

• If your query have to access all the rows, then
the total bytes of the whole table must be
read.

Column cell

* At least in an Oracle database

Star Schemas in Row-based Databases

• A star schema is a compromise between
• a completely denormalized table (e.g. Excel spreadsheet) and
• a completely normalized model (e.g. 3NF)

• By normalizing the textual and descriptive attributes into dimensions, the
fact table is made narrow.

• So even a when querying the whole fact table, the number of bytes is relatively low.

• By keeping the dimension tables denormalized, the number of joins are
kept to a minimum.

• Joins are CPU-costly.
• Dimensions usually contain few rows, so a full table scan is normally cheaper than a

join.

Star Schemas in Databricks

• The same applies as for row-based
databases:

• => Query performance comes down
to the number of i/o read and
processed.

• Databricks is a columnar database
using parquet/delta files.

• Only the columns of the query have
to be read – not the entire row.

• The i/o read is the size of the files
accessed. Table

File

Column cell

Star Schemas in Databricks

Then why not denormalize everything?

«One Big Table»

• Denormalizing everything into one big table is referred to as OBT, Wide
table, fat table etc.

• Such tables can get very wide.
• Most of the columns will be dimensional attributes, with repeating values.

«One Big Table»

• Voices in the community claim that star schemas are a thing of the
past, and that in columnar databases OBTs is the best query-
performing modelling technique.

• I disagree:
• Test of 1TB star schemas I have been involved with show no performance

difference. Rather star schemas out-performing OBTs slightly.
• Benchmark* on columnar analytical engine VertiPaq:

https://www.sqlbi.com/articles/power-bi-star-schema-or-single-table/
• BI tools (e.g. Power BI) need to access all OBT rows to create list-of-values.

* April 12th 2021 by Marco Russo and Alberto Ferrari

https://www.sqlbi.com/articles/power-bi-star-schema-or-single-table/

Drill-Across Star Schema

• A «drill across» is querying two
fact tables through their common
conform dimensions.

• A query have to aggregate the
measures and group by
dimension attributes,
separately per fact table.
Then join the results on the
dimension attributes.

• A BI-tool such as Power BI or
Oracle Analytics Server will
generate the query based on the
semantic model.

ORDERS
Units
Amount

Order#
FK Date
FK Customer
FK Organization

DATE
PK
Date
..

CUSTOMER
PK
Customer#
Customer Name

ORGANIZATION
PK
Employee#
Employee Name

ORDER LINES
Units
Amount

Order#
FK Date
FK Customer
FK Organization
FK Product

PRODUCT
PK
Product#
Product Name

Drill-Across Star Schema SQL
WITH f1 AS (
SELECT d.date_, c.customer_name, e.employee_name, sum(units) AS units, sum(amount) AS amount
FROM fak_order f
JOIN dim_date d ON d.PK = f.FK_date
JOIN dim_customer c ON c.PK = f.FK_customer
JOIN dim_organization e ON e.PK = f.FK_organization
GROUP BY all
)
, f2 AS (
SELECT d.date_, c.customer_name, e.employee_name, count(distinct p.product_name) AS num_products
FROM fak_order_lines f
JOIN dim_date d ON d.PK = f.FK_date
JOIN dim_customer c ON c.PK = f.FK_customer
JOIN dim_organization e ON e.PK = f.FK_organization
JOIN dim_product p ON p.PK = f.FK_product
GROUP BY all
)
SELECT f1.date_, f1.customer_name, f1.employee_name, f1.units, f1.amount, f2.num_products
FROM f1
JOIN f2 ON (f1.date_=f2.date_

AND f1.customer_name = f2.customer_name
AND f1.employee_name = f2.employee_name);

"Drill-Across" Wide Table

Order # Order Date Customer # Customer
Name

Customer
Address

Sales Person # Sales Person Name Sales Person
Department

Order Units Order Amount Product # Product Name Product Units Product
Amount

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 200 Screen 2 $656

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 287 Ink 3 $213

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 150 Printer 1 $1097

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 287 Ink 10 $639

• In a «OBT» analytic environment, the wide tables must be set up for each drill-across scenarios.
• Common conform dimension attribute values are filled in (thus repeated) for all rows.
• Dimension values for dimensions that are not common will be null for the fact rows that is not connected.
• The measure column will only have a value when the row represents that “fact table”.
• Queries are simple, because there are no joins.

Drill-Across Wide Table SQL
SELECT w.date_

,w.customer_name
,w.employee_name
,sum(w.units) AS units
,sum(w.amount) AS amount
,count(distinct w.product_name) AS num_products

FROM wide_table w
GROUP BY all;

Drill-Across Star Schema - Extended
• The dimensional model

can easily be extended
with new fact tables.

• A report can combine
these three fact tables in
any way – through the
conformed dimensions.

• The BI-tool will auto-
generate the SQL.

ORDERS
Units
Amount

Order#
FK Date
FK Customer
FK Organization

DATE
PK
Date
..

CUSTOMER
PK
Customer#
Customer Name

ORGANIZATION
PK
Employee#
Employee
Name

ORDER LINES
Units
Amount

Order#
FK Date
FK Customer
FK Organization
FK Product

PRODUCT
PK
Product#
Product Name

LEADS
No of Phone Calls

FK Date
FK Customer
FK Organization

Order date

"Drill-Across" Wide Table - Extended

Order
#

Order Date Customer # Customer
Name

Customer
Address

Sales
Person #

Sales
Person
Name

Sales Person
Department

Order
Units

Order
Amount

Product # Product
Name

Product
Units

Product
Amount

Lead Date No of Phone
Calls

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 200 Screen 2 $656

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 287 Ink 3 $213

99 Acme Inc. 33 1st Street 4 George Sales 2024.03.20 1

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 150 Printer 1 $1097

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 287 Ink 10 $639

84 Okeanos Inc. 42 Galaxy Rd. 4 George 2024.03.25 1

• In the «OBT» analytic environment we can extend the existing wide table:
• Add new rows for the new "fact table".
• Add new columns for:

• the new measures
• any new dimension – including new roles/uses of dimensions.

• The alternative to keep on adding new stars to the same wide table,
is to split in more than one wide table.
E.g. one table per common drill-across requirement.

The OBT dilemma

• If you create few wide tables to handle many drill-across scenarios,
you will get a very tall and very wide table.
 This will reduce performance

• If you split into many wide tables, performance will be better, but:
 You will never be able to cover all user requirements

Other OBT issues
• Dimensions are duplicated:

• Data governance becomes more difficult
• Lose “one version of the truth”.

• Updating dimension attribute values require update of many rows.

The SCD Type 2 Problem

• At some point in April, John changes position from the Marketing department to the Sales department

• We can easily write an SQL to give us number of orders per department.

• However, it is not so straight forward to write an SQL that gives us number of orders per sales person, and
also showing the current department of that person.

Order # Order Date Customer # Customer
Name

Customer
Address

Sales Person # Sales Person
Name

Sales Person
Department

Order Units Order Amount

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

.

1099 2024.05.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Sales 6 $1275

..

The SCD Type 2 Problem

• A different scenario: The Marketing department changes its name to «Communications»

• Now we can not easily write an SQL to give us number of orders per department, because «Marketing» and
«Communications» is the same department.

Order # Order Date Customer # Customer
Name

Customer
Address

Sales Person # Sales Person
Name

Sales Person
Department

Order Units Order Amount

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

.

1099 2024.05.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Communications 6 $1275

..

SCD Type 6/7 in OBT
• Let’s introduce «current value» columns in the wide table.
• Since the transaction date:

• One customer has changed address
• One sales person has changed department

Orde
r #

Order Date Customer
#

Customer
Name

Customer
Address

Cust Adr
Current

Sales
Person #

Sales Person
Name

Sales
Person
Department

Sales
Person
Dept
Current

Order
Units

Order
Amt

Product # Product
Name

Product
Units

Product
Amount

1000 2024.04.01 99 Acme Inc. 33 1st
Street

22 Main
Street

4 George Sales Sales 5 $869

1000 2024.04.01 99 Acme Inc. 33 1st
Street

22 Main
Street

4 George Sales Sales 200 Screen 2 $656

1000 2024.04.01 99 Acme Inc. 33 1st
Street

22 Main
Street

4 George Sales Sales 287 Ink 3 $213

1001 2024.04.01 84 Okeanos
Inc.

42 Galaxy
Rd.

42 Galaxy
Rd.

5 John Marketing Sales 8 $1736

1001 2024.04.01 84 Okeanos
Inc.

42 Galaxy
Rd.

42 Galaxy
Rd.

5 John Marketing Sales 150 Printer 1 $1097

1001 2024.04.01 84 Okeanos
Inc.

42 Galaxy
Rd.

42 Galaxy
Rd.

5 John Marketing Sales 287 Ink 10 $639

SCD Type 6/7 in OBT

• All the rows of the table for the given natural keys must be updated
whenever a «dimension» is updated.

• Databricks is «append only»
=> Updates create completely new files, thus increasing storage.

• Very timely operation.

• Difficult to ensure that all the current values of every natural key is
equal in every wide table?

Pros and cons for «One Big Table»

Pros

• No joins needed.
=> Simple SQLs

• The users don’t have to search in more than
one table for all the columns needed.

Cons

• Necessary to read all rows to find only a few
distinct values.

• Columns not «categorized» in tables, so it
might be difficult for user to find the columns
he is looking for.

• Necessary to update many rows to update a
single dimensional attribute value.

• Not conformed dimensions => Siloed data
• Poor data governance and not “one version of

the truth”
• Data redundancy
• Require more storage than star schemas.

The Future is...

• Experience show that the majority of reports only need current
attribute values.

• SCD Type 1 is sufficient

• Only some reports require historic attribute values
• And even then, SCD Type 2 is probably only needed for one of the report’s

dimensions

• The SCD-type that solve both 1 and 2 are 6 and 7.

The Future is...

• Remember, SCD Type 6 is one table with columns for current attribute values for
all historic rows.

• There could be many such columns.
• The values have to be updated constantly for all the historic rows.

• Remember, SCD Type 7 is two foreign keys pointing to the same dimension:
• FK1 points to the current row – an SCD Type 1-view of the dimension

FK1 is a natural key
• FK2 points to the historic row of the SCD Type 2

FK2 is a surrogate key
• No extra columns in the dimension
• Only update of last row’s To Date and Current Row Flag when a new row is added.

• Therefore: Start using Type 1 and 7 only!

Use of SCD Type 7 Date SK Date Day of Week Etc

20240401 2024.04.01 Monday ..

20240402 2024.04.02 Tuesday ..

..

20240501 2024.05.01 Wednesday ..

Cust
SK

Customer
#

Name Address From
Date

To
Date

Current
Row

1 99 Acme
Inc.

33 1st Street 2021.10.14 2024.04.30 N

2 84 Okeanos
Inc.

42 Galaxy Rd. 2023.06.10 9999.12.31 Y

..

9 99 Acme
Inc.

22 Main
Street

2024.05.01 9999.12.31 Y

Emp
SK

Employee
#

Name Dept From
Date

To
Date

Current
Row

1 4 George Sales 2022.02.01 9999.12.31 Y

2 5 John Marketing 2023.07.01 2024.04.30 N

..

8 5 John Sales 2024.05.01 9999.12.31 Y

Date SK Cust
SK

Cust
NK

Emp
SK

Emp
NK

Units Amount

20240401 1 99 1 4 5 869

20240402 2 84 2 5 8 1736

..

20240501 9 99 8 5 7 1265

Date Dimension

Customer Dimension – SCD Type 2

Employee Dimension – SCD Type 2

Orders Fact Table

Employee
#

Name Dept

4 George Sales

5 John Sales

Employee Dimension – SCD Type 1

Customer
#

Name Address

84 Okeanos
Inc.

42 Galaxy Rd.

99 Acme
Inc.

22 Main
Street

Customer Dimension – SCD Type 1

Use of SCD Type 7

To make a report that
groups on the current
values of the dimensions it
is necessary to join the fact
table with the dimension on
the natural key (NK) + the
«current row» flag.

SELECT d.dept, sum(amount) AS amount
FROM fact f
JOIN employee d
ON (d.emp_nk = f.emp_nk AND

d.current_row = "Y")
GROUP BY all;

Use of SCD Type 7

• Some BI tools cannot
perform complex joins /
joins on composite keys.
The join should therefore
be with a view…

... preferably materialized
by a delta live table.
(As a DLT can be given a primary key.*)

CREATE VIEW employee_current AS
SELECT *
FROM employee
WHERE current_row = "Y";

SELECT d.dept, sum(amount) AS amount
FROM fact f
JOIN employee_current d
ON (d.emp_nk = f.emp_nk)
GROUP BY all;

* In public preview

Star Schemas in a Data Mesh

ORDERS
Units
Amount

Order#
FK Date
FK Customer
FK Organization

DATE
Date (PK)
..

CUSTOMER – SCD2
Surrogate (PK)
Customer#
Customer Name

ORGANIZATION – SCD2
Surrogate (PK)
Employee#
Employee Name
From Date
To Date
Current Row Flag

ORDER LINES
Units
Amount

Order#
FK Date
FK Customer
FK Organization
FK Product

PRODUCT – SCD2
Surrogate (PK)
Product#
Product Name
From Date
To Date
Current Row Flag

LEADS
Num Phone Calls

FK Date
FK Customer
FK Organization

DATE
Date (PK)
..

ORGANIZATION – SCD1
Employee# (PK)
Employee Name

CUSTOMER – SCD1
Customer# (PK)
Customer Name

PRODUCT – SCD1
Product# (PK)
Product Name

Can use surrogate key in FK
Can not use surrogate key in FKData Product 1

Data Product 2

• Fact tables can have foreign keys to surrogate keys only for dimensions within the same data
product.

• Fact tables with foreign keys to dimensions in other data products must use the natural key.
• For SCD Type 1 the NK is unique, so the the FK on the NK is enough.
• For SCD Type 2 the NK is not unique, so the transaction date must be used together with the NK.

• Thus:
• For SCD Type 1 consider to always add the primary key to the natural key

and not to a surrogate key column.
(The join performance will be slightly reduced, but in most cases good enough.)

• For the SCD Type 2 table of your Type 7 dimensions, add the primary key to the surrogate key column.

• Some BI tools cannot handle complex joins (join on composite keys).
• This is a problem for the FKs from fact tables to Type 2 dimensions in other data products.
• Solution proposition: Denormalize the required historical dimension attributes into your fact table, as done

for an OBT. (This has to be done by ETL.)

Star Schemas in a Data Mesh

Summary of recommendations

• Continue to use Star Schemas!

• Maximize the use of SCD Type 1

• Use SCD Type 7 when history is required

• If your star schema is split into many data products in a data mesh, and
when referencing a dimension in another DP, then:
 use the natural key for Type 1 dimensions.
 If history is required – and your BI tool cannot handle complex joins – then

denormalize the historic attribute values in the fact table ETL-time.

	A Modern Approach to Dimensional Modelling �– �In a Columnar Database
	About the presenter
	Disclaimer
	Agenda
	Intro
	Star Schemas
	Fact Tables
	Dimension tables
	Star Schemas
	Star Schemas
	Slowly Changing Dimension Type 0 and 1
	Slowly Changing Dimension Type 2
	Slowly Changing Dimension Type 3
	Slowly Changing Dimension 4
	Slowly Changing Dimension Type 5
	Slowly Changing Dimension Type 6
	Slowly Changing Dimension Type 7
	Star Schemas in Row-based Databases
	Star Schemas in Row-based Databases
	Star Schemas in Databricks
	Star Schemas in Databricks
	«One Big Table»
	«One Big Table»
	Drill-Across Star Schema
	Drill-Across Star Schema SQL
	"Drill-Across" Wide Table
	Drill-Across Wide Table SQL
	Drill-Across Star Schema - Extended
	"Drill-Across" Wide Table - Extended
	Slide Number 30
	The OBT dilemma
	Other OBT issues
	The SCD Type 2 Problem
	The SCD Type 2 Problem
	SCD Type 6/7 in OBT
	SCD Type 6/7 in OBT
	Pros and cons for «One Big Table»
	The Future is...
	The Future is...
	Use of SCD Type 7
	Use of SCD Type 7
	Use of SCD Type 7
	Star Schemas in a Data Mesh
	Star Schemas in a Data Mesh
	Summary of recommendations

