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About the presenter

• Truls Bergersen

• Lives in Oslo, Norway

• 23 years of experience in data warehousing 
and business intelligence

• Data modeling and data integration expert

• Background from row based relational databases

• Working with Azure Databricks for 1.5 years

• Founder of start-up company Okeanos AS

• (Contracted as) Lead architect of the Norwegian Tax Administration’s data warehouse



Disclaimer

• This presentation is a compilation of my personal thoughts on the 
future of dimensional modelling.

• Examples are simplified.
• There is no silver bullet, so one method will not fit all purposes.
• 40 minutes is only enough to scratch the surface of this topic.



Agenda

1. Recap of dimensional modelling

2. OBTs

3. The way forward using star schemas



Intro

• Dimensional modelling originates from a joint research project 
conducted by General Mills and Dartmouth University in the 1960s.1

• Used in the 1970s by both AC Nielsen and IRI. 1

• In 1996 the book The Data Warehouse Toolkit by Ralph Kimball is 
published.

1  The Data Warehouse Toolkit, 3rd edition, p15.



Star Schemas

• Fact tables

• Dimension tables

Fact 
Table

Dimension

Dimension

Dimension

Dimension

Dimension

Star schemas are implementations of dimensional models in a 
relational database.

They consist of:



Fact Tables
• Store the performance measures

• I.e. aggregable numbers such as
• Quantity
• Amount

• Reference to dimension tables
via foreign keys

• Usually contains many rows
and few columns

• Four types of fact tables:
• Transactional
• Accumulative snapshot
• Periodic snapshot
• Hybrid

FACT

Measure #1
Measure #2
Measure #n

Foreign key to Dimension 1
Foreign key to Dimension 2
Foreign key to Dimension n



Dimension tables
• Descriptive data giving context to the «facts».

• Has a primary key that is linked to
from the foreign keys of the fact table.

• Usually contains few rows
and many columns.

• May or may not contain history:
8 types of «Slowly Changing Dimensions».

• Some special dimension types, such as:
• Junk
• Degenerate
• Outrigger

DIMENSION

Primary key
Business key

Attribute 1
Attribute 2
Attribute n

Optionally columns to 
handle history



Star Schemas

A very simple star schema might look something like this:

ORDERS
Units
Amount

Order# 
FK Date
FK Customer
FK Organization

DATE
PK
Date
..

CUSTOMER
PK
Customer#
Customer Name

ORGANIZATION
PK
Employee#
Employee Name



Star Schemas
CREATE TABLE dim_date (

 PK    bigint not null

,date_ date   not null

);

ALTER TABLE dim_date ADD CONSTRAINT dim_date_pk PRIMARY KEY(PK);

CREATE TABLE dim_customer (

 PK               bigint not null

,customer_no      bigint not null

,customer_name    string

,customer_address string

);

ALTER TABLE dim_customer ADD CONSTRAINT dim_customer_pk PRIMARY KEY(PK);

CREATE TABLE dim_organization (

 PK            bigint not null

,employee_no   bigint not null

,employee_name string

,department    string

);

ALTER TABLE dim_organization ADD CONSTRAINT dim_organization_pk PRIMARY 

KEY(PK);

CREATE TABLE fak_orders (

 quantiy             bigint not null

,amount              double not null

,order_no            bigint not null

,dim_date_fk         bigint not null

,dim_customer_fk     bigint not null

,dim_organization_fk bigint not null

);

ALTER TABLE fak_orders ADD CONSTRAINT 
fak_orders_dim_date_fk FOREIGN KEY(dim_date_fk) 
REFERENCES dim_date;

ALTER TABLE fak_orders ADD CONSTRAINT 
fak_orders_dim_customer_fk
FOREIGN KEY(dim_customer_fk) REFERENCES dim_customer;

ALTER TABLE fak_orders ADD CONSTRAINT 
fak_orders_dim_organization_fk 
FOREIGN KEY(dim_organization_fk) REFERENCES 
dim_organization;



Slowly Changing Dimension Type 0 and 1

• Type 0:
• No history
• and no attributes are updated 

even if the values change in the source.

• Type 1:
• No history
• Attribute are updated

if the values change in the source.
• So always the current values

Primary key Never updated

Natural key Never updated

Attribute 1..n Never updated

Primary key Never updated

Natural key Never updated

Attribute 1..n Can be updated



Slowly Changing Dimension Type 2

• Stores history
• A new row per change in the source
• One row represents a time period
• From Date (Effective Date)
• To Date (Expiration Date)

Primary key Never updated

Natural key Never updated

Attribute 1..n Never updated – new row is added when new value

From Date Never updated

To Date Updated when a new row is added for the same NK

Current Row Flag Updated when a new row is added for the same NK



Slowly Changing Dimension Type 3

• Stores some history
• However only one row per natural key
• The history is kept in dedicated columns

usually containing the previous 
or original value

Primary key Never updated

Natural key Never updated

Attribute 1..n Can be updated

Attribute 1..n Historic Value Can be updated

Attribute 1..n Effective Date Can be updated



Slowly Changing Dimension 4

• Like a type 1, 2 or 3, but split in two:
• One with the attributes that do not change very often
• One with the attributes that change frequently
• The fact table has two foreign keys

Primary key Never updated

Natural key Never updated

Attribute 1..n Rarely updated

Primary key Never updated

Natural key Never updated

Attribute 1..n Can be updated – frequently

Fact table



Slowly Changing Dimension Type 5

• Hybrid/combination of 1 and 4
• The extra Type 1 is modelled as an outrigger

from the main dimension.

Primary key Never updated

Natural key Never updated

Attribute 1..n Rarely updated

FK to outrigger Updated frequently

Primary key Never updated

Natural key Never updated

Attribute 1..n Updated – frequently

Fact table



Slowly Changing Dimension Type 6

• Hybrid/combination of 1, 2 and 3
• Modelled as a Type 2, with one or more extra

columns that is updated with the current value
in all (historic) rows.

Primary key Never updated

Natural key Never updated

Attribute 1..n Never updated – new row is added when new value

Attribute 1..n Current value Updated when a new row is added for the same NK

From Date Never updated

To Date Updated when a new row is added for the same NK

Current Row Flag Updated when a new row is added for the same NK

Fact table



Slowly Changing Dimension Type 7

• Like Type 6, but:
• The current-values are treated as a separate

dimension, but having two foreign keys 
to the same dimension in the fact table:

• One to the SCD Type 2 dimension, and
• One to an SCD Type 1-version of the dimension –
• either by a separate physical table
• or though a view that returns only the current-rows, 

and using the natural key as the foreign key.

– SCD Type 1 –
Natural key
Attribute 1
Attribute 2
Attribute n

– SCD Type 2 –
Primary key
Natural key
Attribute 1
Attribute 2
Attribute n
From Date
To Date
Current Row Flag

Current Row Flag = "Y"

Fact table



Table

Tablespace

File

Block

Star Schemas in Row-based Databases
• Query performance comes down to the 

number of i/o read and processed.

• A query is usually limited to a small number 
of the total columns available.

• In a row-based database the whole row must 
be read, even if you only query one of the 
columns 

• => The i/o of the whole block that these 
rows are stored must be read.*

• If your query have to access all the rows, then 
the total bytes of the whole table must be 
read.

Column cell

* At least in an Oracle database



Star Schemas in Row-based Databases

• A star schema is a compromise between
• a completely denormalized table (e.g. Excel spreadsheet) and
• a completely normalized model (e.g. 3NF)

• By normalizing the textual and descriptive attributes into dimensions, the 
fact table is made narrow.

• So even a when querying the whole fact table, the number of bytes is relatively low.

• By keeping the dimension tables denormalized, the number of joins are 
kept to a minimum. 

• Joins are CPU-costly.
• Dimensions usually contain few rows, so a full table scan is normally cheaper than a 

join.



Star Schemas in Databricks

• The same applies as for row-based 
databases:

• => Query performance comes down 
to the number of i/o read and 
processed.

• Databricks is a columnar database 
using parquet/delta files.

• Only the columns of the query have 
to be read – not the entire row.

• The i/o read is the size of the files 
accessed. Table

File

Column cell



Star Schemas in Databricks

Then why not denormalize everything?



«One Big Table»

• Denormalizing everything into one big table is referred to as OBT, Wide 
table, fat table etc.

• Such tables can get very wide.
• Most of the columns will be dimensional attributes, with repeating values.



«One Big Table»

• Voices in the community claim that star schemas are a thing of the 
past, and that in columnar databases OBTs is the best query-
performing modelling technique.

• I disagree:
• Test of 1TB star schemas I have been involved with show no performance 

difference. Rather star schemas out-performing OBTs slightly.
• Benchmark* on columnar analytical engine VertiPaq:

https://www.sqlbi.com/articles/power-bi-star-schema-or-single-table/
• BI tools (e.g. Power BI) need to access all OBT rows to create list-of-values.

* April 12th 2021 by Marco Russo and Alberto Ferrari

https://www.sqlbi.com/articles/power-bi-star-schema-or-single-table/


Drill-Across Star Schema

• A «drill across» is querying two 
fact tables through their common 
conform dimensions.

• A query have to aggregate the 
measures and group by 
dimension attributes,
separately per fact table.
Then join the results on the 
dimension attributes.

• A BI-tool such as Power BI or 
Oracle Analytics Server will 
generate the query based on the 
semantic model.

ORDERS
Units
Amount

Order# 
FK Date
FK Customer
FK Organization

DATE
PK
Date
..

CUSTOMER
PK
Customer#
Customer Name

ORGANIZATION
PK
Employee#
Employee Name

ORDER LINES
Units
Amount

Order# 
FK Date
FK Customer
FK Organization
FK Product

PRODUCT
PK
Product#
Product Name



Drill-Across Star Schema SQL
WITH f1 AS (
SELECT d.date_, c.customer_name, e.employee_name, sum(units) AS units, sum(amount) AS amount
FROM   fak_order f
JOIN   dim_date d         ON d.PK = f.FK_date
JOIN   dim_customer c     ON c.PK = f.FK_customer
JOIN   dim_organization e ON e.PK = f.FK_organization
GROUP BY all
)
, f2 AS (
SELECT d.date_, c.customer_name, e.employee_name, count(distinct p.product_name) AS num_products
FROM   fak_order_lines f
JOIN   dim_date d         ON d.PK = f.FK_date
JOIN   dim_customer c     ON c.PK = f.FK_customer
JOIN   dim_organization e ON e.PK = f.FK_organization
JOIN   dim_product p      ON p.PK = f.FK_product
GROUP BY all
)
SELECT f1.date_, f1.customer_name, f1.employee_name, f1.units, f1.amount, f2.num_products
FROM   f1
JOIN   f2 ON (f1.date_=f2.date_ 

AND f1.customer_name = f2.customer_name
AND f1.employee_name = f2.employee_name);



"Drill-Across" Wide Table

Order # Order Date Customer # Customer 
Name

Customer 
Address

Sales Person # Sales Person Name Sales Person 
Department

Order Units Order Amount Product # Product Name Product Units Product 
Amount

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 200 Screen 2 $656

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 287 Ink 3 $213

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 150 Printer 1 $1097

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 287 Ink 10 $639

• In a «OBT» analytic environment, the wide tables must be set up for each drill-across scenarios.
• Common conform dimension attribute values are filled in (thus repeated) for all rows.
• Dimension values for dimensions that are not common will be null for the fact rows that is not connected.
• The measure column will only have a value when the row represents that “fact table”.
• Queries are simple, because there are no joins.



Drill-Across Wide Table SQL
SELECT w.date_

,w.customer_name
,w.employee_name
,sum(w.units) AS units
,sum(w.amount) AS amount
,count(distinct w.product_name) AS num_products

FROM   wide_table w
GROUP BY all;



Drill-Across Star Schema - Extended
• The dimensional model 

can easily be extended 
with new fact tables.

• A report can combine 
these three fact tables in 
any way – through the 
conformed dimensions.

• The BI-tool will auto-
generate the SQL.

ORDERS
Units
Amount

Order# 
FK Date
FK Customer
FK Organization

DATE
PK
Date
..

CUSTOMER
PK
Customer#
Customer Name

ORGANIZATION
PK
Employee#
Employee 
Name

ORDER LINES
Units
Amount

Order# 
FK Date
FK Customer
FK Organization
FK Product

PRODUCT
PK
Product#
Product Name

LEADS
No of Phone Calls

FK Date
FK Customer
FK Organization

Order date



"Drill-Across" Wide Table - Extended

Order 
#

Order Date Customer # Customer 
Name

Customer 
Address

Sales 
Person #

Sales 
Person 
Name

Sales Person 
Department

Order 
Units

Order 
Amount

Product # Product 
Name

Product 
Units

Product 
Amount

Lead Date No of Phone 
Calls

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 200 Screen 2 $656

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 287 Ink 3 $213

99 Acme Inc. 33 1st Street 4 George Sales 2024.03.20 1

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 150 Printer 1 $1097

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 287 Ink 10 $639

84 Okeanos Inc. 42 Galaxy Rd. 4 George 2024.03.25 1

• In the «OBT» analytic environment we can extend the existing wide table:
• Add new rows for the new "fact table".
• Add new columns for:

• the new measures
• any new dimension – including new roles/uses of dimensions.

• The alternative to keep on adding new stars to the same wide table,
is to split in more than one wide table.
E.g. one table per common drill-across requirement.





The OBT dilemma

• If you create few wide tables to handle many drill-across scenarios, 
you will get a very tall and very wide table.
 This will reduce performance

• If you split into many wide tables, performance will be better, but:
 You will never be able to cover all user requirements



Other OBT issues
• Dimensions are duplicated:

• Data governance becomes more difficult
• Lose “one version of the truth”.

• Updating dimension attribute values require update of many rows.



The SCD Type 2 Problem

• At some point in April, John changes position from the Marketing department to the Sales department

• We can easily write an SQL to give us number of orders per department.

• However, it is not so straight forward to write an SQL that gives us number of orders per sales person, and 
also showing the current department of that person.

Order # Order Date Customer # Customer 
Name

Customer 
Address

Sales Person # Sales Person 
Name

Sales Person 
Department

Order Units Order Amount

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

. . . . . . . . . .

1099 2024.05.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Sales 6 $1275

.. .. .. .. .. .. .. .. .. ..



The SCD Type 2 Problem

• A different scenario: The Marketing department changes its name to «Communications»

• Now we can not easily write an SQL to give us number of orders per department, because «Marketing» and 
«Communications» is the same department.

Order # Order Date Customer # Customer 
Name

Customer 
Address

Sales Person # Sales Person 
Name

Sales Person 
Department

Order Units Order Amount

1000 2024.04.01 99 Acme Inc. 33 1st Street 4 George Sales 5 $869

1001 2024.04.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Marketing 8 $1736

. . . . . . . . . .

1099 2024.05.01 84 Okeanos Inc. 42 Galaxy Rd. 5 John Communications 6 $1275

.. .. .. .. .. .. .. .. .. ..



SCD Type 6/7 in OBT
• Let’s introduce «current value» columns in the wide table.
• Since the transaction date:

• One customer has changed address
• One sales person has changed department

Orde
r #

Order Date Customer 
#

Customer 
Name

Customer 
Address

Cust Adr
Current

Sales 
Person #

Sales Person 
Name

Sales 
Person 
Department

Sales 
Person 
Dept
Current

Order 
Units

Order 
Amt

Product # Product 
Name

Product 
Units

Product 
Amount

1000 2024.04.01 99 Acme Inc. 33 1st 
Street

22 Main 
Street

4 George Sales Sales 5 $869

1000 2024.04.01 99 Acme Inc. 33 1st 
Street

22 Main 
Street

4 George Sales Sales 200 Screen 2 $656

1000 2024.04.01 99 Acme Inc. 33 1st 
Street

22 Main 
Street

4 George Sales Sales 287 Ink 3 $213

1001 2024.04.01 84 Okeanos 
Inc.

42 Galaxy 
Rd.

42 Galaxy 
Rd.

5 John Marketing Sales 8 $1736

1001 2024.04.01 84 Okeanos 
Inc.

42 Galaxy 
Rd.

42 Galaxy 
Rd.

5 John Marketing Sales 150 Printer 1 $1097

1001 2024.04.01 84 Okeanos 
Inc.

42 Galaxy 
Rd.

42 Galaxy 
Rd.

5 John Marketing Sales 287 Ink 10 $639



SCD Type 6/7 in OBT

• All the rows of the table for the given natural keys must be updated 
whenever a «dimension» is updated.

• Databricks is «append only»
=> Updates create completely new files, thus increasing storage.

• Very timely operation.

• Difficult to ensure that all the current values of every natural key is 
equal in every wide table?



Pros and cons for «One Big Table»

Pros

• No joins needed.
=> Simple SQLs

• The users don’t have to search in more than 
one table for all the columns needed.

Cons

• Necessary to read all rows to find only a few 
distinct values.

• Columns not «categorized» in tables, so it 
might be difficult for user to find the columns 
he is looking for.

• Necessary to update many rows to update a 
single dimensional attribute value.

• Not conformed dimensions => Siloed data
• Poor data governance and not “one version of 

the truth”
• Data redundancy
• Require more storage than star schemas.



The Future is... 

• Experience show that the majority of reports only need current 
attribute values.

• SCD Type 1 is sufficient

• Only some reports require historic attribute values
• And even then, SCD Type 2 is probably only needed for one of the report’s 

dimensions

• The SCD-type that solve both 1 and 2 are 6 and 7.



The Future is... 

• Remember, SCD Type 6 is one table with columns for current attribute values for 
all historic rows.

• There could be many such columns.
• The values have to be updated constantly for all the historic rows.

• Remember, SCD Type 7 is two foreign keys pointing to the same dimension:
• FK1 points to the current row – an SCD Type 1-view of the dimension

FK1 is a natural key
• FK2 points to the historic row of the SCD Type 2

FK2 is a surrogate key
• No extra columns in the dimension
• Only update of last row’s To Date and Current Row Flag when a new row is added.

• Therefore: Start using Type 1 and 7 only!



Use of SCD Type 7 Date SK Date Day of Week Etc

20240401 2024.04.01 Monday ..

20240402 2024.04.02 Tuesday ..

.. .. .. ..

20240501 2024.05.01 Wednesday ..

Cust 
SK

Customer 
#

Name Address From
Date

To
Date

Current 
Row

1 99 Acme 
Inc.

33 1st Street 2021.10.14 2024.04.30 N

2 84 Okeanos 
Inc.

42 Galaxy Rd. 2023.06.10 9999.12.31 Y

.. .. .. ..

9 99 Acme 
Inc.

22 Main 
Street

2024.05.01 9999.12.31 Y

Emp 
SK

Employee 
#

Name Dept From
Date

To
Date

Current 
Row

1 4 George Sales 2022.02.01 9999.12.31 Y

2 5 John Marketing 2023.07.01 2024.04.30 N

.. .. .. ..

8 5 John Sales 2024.05.01 9999.12.31 Y

Date SK Cust 
SK

Cust 
NK

Emp 
SK

Emp 
NK

Units Amount

20240401 1 99 1 4 5 869

20240402 2 84 2 5 8 1736

.. .. .. ..

20240501 9 99 8 5 7 1265

Date Dimension

Customer Dimension – SCD Type 2

Employee Dimension – SCD Type 2

Orders Fact Table 

Employee 
#

Name Dept

4 George Sales

5 John Sales

Employee Dimension – SCD Type 1

Customer 
#

Name Address

84 Okeanos 
Inc.

42 Galaxy Rd.

99 Acme 
Inc.

22 Main 
Street

Customer Dimension – SCD Type 1



Use of SCD Type 7

To make a report that 
groups on the current 
values of the dimensions it 
is necessary to join the fact 
table with the dimension on 
the natural key (NK) + the 
«current row» flag.

SELECT d.dept, sum(amount) AS amount
FROM   fact f
JOIN   employee d
ON    (d.emp_nk = f.emp_nk AND

d.current_row = "Y")
GROUP BY all;



Use of SCD Type 7

• Some BI tools cannot 
perform complex joins / 
joins on composite keys.
The join should therefore 
be with a view…

... preferably materialized 
by a delta live table.
(As a DLT can be given a primary key.*)

CREATE VIEW employee_current AS
SELECT *
FROM   employee
WHERE  current_row = "Y";

SELECT d.dept, sum(amount) AS amount
FROM   fact f
JOIN   employee_current d
ON    (d.emp_nk = f.emp_nk)
GROUP BY all;

* In public preview



Star Schemas in a Data Mesh

ORDERS
Units
Amount

Order# 
FK Date
FK Customer
FK Organization

DATE
Date (PK)
..

CUSTOMER – SCD2
Surrogate (PK)
Customer#
Customer Name

ORGANIZATION – SCD2
Surrogate (PK)
Employee#
Employee Name
From Date
To Date
Current Row Flag

ORDER LINES
Units
Amount

Order# 
FK Date
FK Customer
FK Organization
FK Product

PRODUCT – SCD2
Surrogate (PK)
Product#
Product Name
From Date
To Date
Current Row Flag

LEADS
Num Phone Calls

FK Date
FK Customer
FK Organization

DATE
Date (PK)
..

ORGANIZATION – SCD1
Employee# (PK)
Employee Name

CUSTOMER – SCD1
Customer# (PK)
Customer Name

PRODUCT – SCD1
Product# (PK)
Product Name

Can use surrogate key in FK
Can not use surrogate key in FKData Product 1

Data Product 2



• Fact tables can have foreign keys to surrogate keys only for dimensions within the same data 
product.

• Fact tables with foreign keys to dimensions in other data products must use the natural key.
• For SCD Type 1 the NK is unique, so the the FK on the NK is enough.
• For SCD Type 2 the NK is not unique, so the transaction date must be used together with the NK.

• Thus:
• For SCD Type 1 consider to always add the primary key to the natural key

and not to a surrogate key column.
(The join performance will be slightly reduced, but in most cases good enough.)

• For the SCD Type 2 table of your Type 7 dimensions, add the primary key to the surrogate key column.

• Some BI tools cannot handle complex joins (join on composite keys).
• This is a problem for the FKs from fact tables to Type 2 dimensions in other data products.
• Solution proposition: Denormalize the required historical dimension attributes into your fact table, as done 

for an OBT. (This has to be done by ETL.)

Star Schemas in a Data Mesh



Summary of recommendations

• Continue to use Star Schemas!

• Maximize the use of SCD Type 1

• Use SCD Type 7 when history is required

• If your star schema is split into many data products in a data mesh, and 
when referencing a dimension in another DP, then:
 use the natural key for Type 1 dimensions.
 If history is required – and your BI tool cannot handle complex joins – then 

denormalize the historic attribute values in the fact table ETL-time.
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