
©2024 Databricks Inc. — All rights reserved

Streaming
Cross-sectional
Visualization

Tim Bess / Tim Paine

1

with

©2024 Databricks Inc. — All rights reserved

• Background and Motivation

• Perspective – What it is, and what it does

• Connecting Spark Streaming / Perspective

• Introducing Prospective

2

Talk Overview

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 3

Background
and
Motivation

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 4

Background – Ecosystem
Web frameworks and data visualization tools abound!

©2024 Databricks Inc. — All rights reserved 5

Despite the abundance...

...somethings are still...

clunky

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Many tables require pagination

• Pagination not always
convenient or suitable

• Grids are often insufficient on
their own

• Sorting / Filtering / Pivoting

• Other chart types

• Static data sources / Streaming
data sources / both

• Many clients – snapshot +
update?

Virtualization “Dumb grids” Streaming

6

Three Major Pain points

6

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 7

Pain Point 1:
Virtualization

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 8

Pain Point 1: Virtualization

• Virtual tables allow for “infinite scroll”, lazy loading

• Absence of Virtualization leads to Pagination

• Pagination is often ill-suited to the task, can be annoying

• Most tools and frameworks do not support virtualization!

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 9

Pain Point 2:
“Dumb Grids”

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

•Grids need to support basic features:
•Sort

•Filter

•But also some advanced features
•Row Pivots
•Column Pivots
•Aggregation Customization
•Computed Columns
•Spark Charts

•This is tricky to get right, both visually
and in terms of the user experience

10

Pain Point 2: ”Dumb Grids”
Grids need to do more

11

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

•Grids also should become more than grids

•When you have to configure everything on
behalf of your user, it leads to unuseable
“vanity” dashboards

•“Visualization Explosion”

•A good data visualization tool should
allow for users to explore!

11

Pain Point 2: ”Dumb Grids”
The problem with “dumb grids”

12

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 12

Pain Point 3:
Streaming

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• All of the previous problems also apply, and need to work, on
streaming data

• How do you manage N users, each with their own pivoted / sorted grid
with custom computed columns?

• Difficult to implement strategies –
• Polling + Pagination?

• Snapshot + Updates?

13

Pain Point 3: Streaming
Streaming data is everywhere – build with it in mind

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 14

Sample FastAPI Stream Server
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse

app = FastAPI()

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 15

Sample FastAPI Stream Server
html = """
<!DOCTYPE html>
<html>

<head>
<title>Chat</title>

</head>
<body>

<h1>WebSocket Chat</h1>
<h2>Your ID: </h2>
<form action="" onsubmit="sendMessage(event)">

<input type="text" id="messageText" autocomplete="off"/>
<button>Send</button>

</form>
<ul id='messages'>

...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 16

Sample FastAPI Stream Server
<script>

var client_id = Date.now()
document.querySelector("#ws-id").textContent = client_id;
var ws = new WebSocket(`ws://localhost:8000/ws/${client_id}`);
ws.onmessage = function(event) {

var messages = document.getElementById('messages')
var message = document.createElement('li')
var content = document.createTextNode(event.data)
message.appendChild(content)
messages.appendChild(message)

};
function sendMessage(event) {

var input = document.getElementById("messageText")
ws.send(input.value)
input.value = ''
event.preventDefault()

}
</script>

</body>
</html>
"""

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 17

Sample FastAPI Stream Server
class ConnectionManager:

def __init__(self):
self.active_connections: list[WebSocket] = []

async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)

def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)

async def send_personal_message(self, message: str, websocket: WebSocket):
await websocket.send_text(message)

async def broadcast(self, message: str):
for connection in self.active_connections:

await connection.send_text(message)

manager = ConnectionManager()

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 18

Sample FastAPI Stream Server
@app.get("/")
async def get():

return HTMLResponse(html)

@app.websocket("/ws/{client_id}")
async def websocket_endpoint(websocket: WebSocket, client_id: int):

await manager.connect(websocket)
try:

while True:
data = await websocket.receive_text()
await manager.send_personal_message(f"You wrote: {data}", websocket)
await manager.broadcast(f"Client #{client_id} says: {data}")

except WebSocketDisconnect:
manager.disconnect(websocket)
await manager.broadcast(f"Client #{client_id} left the chat")

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 19

That’s a lot!
And it doesn’t do most of what we need...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 20

What it is
What it does

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 21

Interactive analytics
and data visualization
component, which is
especially well-suited
for large and/or
streaming datasets finos/perspective

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• C++ Engine

• Symmetric compilation on
frontend (WebAssembly) and
backend (Python)

• Client-only and Client/Server
Architectures

• Rust/TS/JS Based UI Plugin
System

• Web Components for ease-of-
use

• JSON-based configuration,
data and configuration are
separate

• UI Plugins – Grid, Scatter, Bars,
Lines, Maps, and more

• Fast virtualization via Apache
Arrow diffs

• Client/Server messaging
protocol allows for alternative
backends

• Exprtk-based expression
engine for computed columns

Implementation Frontend Features

22

Perspective
Key Facts and Features

23

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 23

Perspective

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 24

Let’s run through the main features with an example
dataset

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 25

Sorting/Filtering/Pivoting

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 26

UI Plugins

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 27

Fancy Stuff: Spark Bars / Crossfilter

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 28

Now let’s bring it all together with a
full demo

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 29

Spark Streaming
+

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Let’s build a simple but high-performance application

• Dummy dataset – Machines, Utilization, and Jobs

• Stream and aggregate data with Spark Streaming

• Feed Data into Perspective / FastAPI Server

30

Spark Streaming + Perspective
An end-to-end example

©2024 Databricks Inc. — All rights reserved 31

Demo time...

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 32

Demo Code:

©2024 Databricks Inc. — All rights reserved 33

Introducing...

©2024 Databricks Inc. — All rights reserved

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 34

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 35

©2024 Databricks Inc. — All rights reserved 36

Q/A

©2024 Databricks Inc. — All rights reserved

Streaming
Cross-sectional
Visualization

Tim Bess / Tim Paine

37

with

	Streaming�Cross-sectional�Visualization
	Talk Overview
	Background�and�Motivation
	Background – Ecosystem
	Despite the abundance...
	Three Major Pain points
	Pain Point 1:�Virtualization
	Pain Point 1: Virtualization
	Pain Point 2:�“Dumb Grids”
	Pain Point 2: ”Dumb Grids”
	Pain Point 2: ”Dumb Grids”
	Pain Point 3:�Streaming
	Pain Point 3: Streaming
	Sample FastAPI Stream Server
	Sample FastAPI Stream Server
	Sample FastAPI Stream Server
	Sample FastAPI Stream Server
	Sample FastAPI Stream Server
	That’s a lot!�And it doesn’t do most of what we need...
	What it is�What it does
	Interactive analytics and data visualization component, which is especially well-suited for large and/or streaming datasets
	Perspective
	Perspective
	Let’s run through the main features with an example dataset
	Sorting/Filtering/Pivoting
	UI Plugins
	Fancy Stuff: Spark Bars / Crossfilter
	Now let’s bring it all together with a full demo
	Spark Streaming� +�
	Spark Streaming + Perspective
	Demo time...
	Demo Code:
	Introducing...
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Streaming�Cross-sectional�Visualization

