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• Background and Motivation

• Perspective – What it is, and what it does

• Connecting Spark Streaming / Perspective

• Introducing Prospective
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Talk Overview
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Background
and
Motivation
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Background – Ecosystem
Web frameworks and data visualization tools abound!
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Despite the abundance...

...somethings are still...

clunky



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Many tables require pagination

• Pagination not always 
convenient or suitable

• Grids are often insufficient on 
their own

• Sorting / Filtering / Pivoting

• Other chart types

• Static data sources / Streaming 
data sources / both

• Many clients – snapshot + 
update?

Virtualization “Dumb grids” Streaming
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Three Major Pain points
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Pain Point 1:
Virtualization
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Pain Point 1: Virtualization

• Virtual tables allow for “infinite scroll”, lazy loading

• Absence of Virtualization leads to Pagination

• Pagination is often ill-suited to the task, can be annoying

• Most tools and frameworks do not support virtualization!
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Pain Point 2:
“Dumb Grids”
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•Grids need to support basic features:
•Sort

•Filter

•But also some advanced features
•Row Pivots
•Column Pivots
•Aggregation Customization
•Computed Columns
•Spark Charts

•This is tricky to get right, both visually
and in terms of the user experience
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Pain Point 2: ”Dumb Grids”
Grids need to do more
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•Grids also should become more than grids

•When you have to configure everything on 
behalf of your user, it leads to unuseable 
“vanity” dashboards

•“Visualization Explosion”

•A good data visualization tool should 
allow for users to explore!
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Pain Point 2: ”Dumb Grids”
The problem with “dumb grids”
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Pain Point 3:
Streaming
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• All of the previous problems also apply, and need to work, on 
streaming data

• How do you manage N users, each with their own pivoted / sorted grid 
with custom computed columns?

• Difficult to implement strategies –
• Polling + Pagination?

• Snapshot + Updates?
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Pain Point 3: Streaming
Streaming data is everywhere – build with it in mind



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 14

Sample FastAPI Stream Server
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse

app = FastAPI()
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Sample FastAPI Stream Server
html = """
<!DOCTYPE html>
<html>

<head>
<title>Chat</title>

</head>
<body>

<h1>WebSocket Chat</h1>
<h2>Your ID: <span id="ws-id"></span></h2>
<form action="" onsubmit="sendMessage(event)">

<input type="text" id="messageText" autocomplete="off"/>
<button>Send</button>

</form>
<ul id='messages'>
</ul>

...
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Sample FastAPI Stream Server
<script>

var client_id = Date.now()
document.querySelector("#ws-id").textContent = client_id;
var ws = new WebSocket(`ws://localhost:8000/ws/${client_id}`);
ws.onmessage = function(event) {

var messages = document.getElementById('messages')
var message = document.createElement('li')
var content = document.createTextNode(event.data)
message.appendChild(content)
messages.appendChild(message)

};
function sendMessage(event) {

var input = document.getElementById("messageText")
ws.send(input.value)
input.value = ''
event.preventDefault()

}
</script>

</body>
</html>
"""
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Sample FastAPI Stream Server
class ConnectionManager:

def __init__(self):
self.active_connections: list[WebSocket] = []

async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)

def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)

async def send_personal_message(self, message: str, websocket: WebSocket):
await websocket.send_text(message)

async def broadcast(self, message: str):
for connection in self.active_connections:

await connection.send_text(message)

manager = ConnectionManager()
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Sample FastAPI Stream Server
@app.get("/")
async def get():

return HTMLResponse(html)

@app.websocket("/ws/{client_id}")
async def websocket_endpoint(websocket: WebSocket, client_id: int):

await manager.connect(websocket)
try:

while True:
data = await websocket.receive_text()
await manager.send_personal_message(f"You wrote: {data}", websocket)
await manager.broadcast(f"Client #{client_id} says: {data}")

except WebSocketDisconnect:
manager.disconnect(websocket)
await manager.broadcast(f"Client #{client_id} left the chat")
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That’s a lot!
And it doesn’t do most of what we need...
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What it is
What it does
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Interactive analytics 
and data visualization 
component, which is 
especially well-suited 
for large and/or 
streaming datasets finos/perspective
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• C++ Engine

• Symmetric compilation on 
frontend (WebAssembly) and 
backend (Python)

• Client-only and Client/Server 
Architectures

• Rust/TS/JS Based UI Plugin 
System

• Web Components for ease-of-
use

• JSON-based configuration, 
data and configuration are 
separate

• UI Plugins – Grid, Scatter, Bars, 
Lines, Maps, and more

• Fast virtualization via Apache 
Arrow diffs

• Client/Server messaging 
protocol allows for alternative 
backends

• Exprtk-based expression 
engine for computed columns

Implementation Frontend Features

22

Perspective
Key Facts and Features

23
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Perspective
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Let’s run through the main features with an example 
dataset
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Sorting/Filtering/Pivoting
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UI Plugins
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Fancy Stuff: Spark Bars / Crossfilter
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Now let’s bring it all together with a 
full demo
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Spark Streaming
+
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• Let’s build a simple but high-performance application

• Dummy dataset – Machines, Utilization, and Jobs

• Stream and aggregate data with Spark Streaming

• Feed Data into Perspective / FastAPI Server

30

Spark Streaming + Perspective
An end-to-end example
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Demo time...
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Demo Code: 
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Introducing...
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Q/A
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