
Data Evolution at Inari:
Harnessing Delta Live
Tables & Unity Catalog
Kishore Sundar – Sr. Manager, Data Engineering
Jonathon Long – Staff Data Engineer

Speakers

Sr. Manager, Data Engineering @ Inari

Jonathon Long

Staff Data Engineer @ Inari

Kishore Sundar

3

Inari Agriculture
About Inari Slide with approved text

4

5

WHAT TO EXPECT

Introduction

• How the Data Engineering team at Inari
onboarded their first project onto Databricks

• How we developed a strategy that would guide
future data engineering projects at Inari, using
Unity Catalog and Delta Live Tables.

• Data Engineering

• Data Management

• Data Governance

What is our talk about? Who is it for?

Early Data Landscape (2022-23)

DATA LANDSCAPE

• Major LIMS migration project in mid-2023 gave us the opportunity to design a
Databricks-centric solution.

• Existing data views were created with complex queries(~5 hours execution time)
running as CRON jobs within SQL databases attached to the existing LIMS software.

• These data views were critical to key decisions made in our entire product pipeline.

Opportunity

SPECS & REQUIREMENTS

Source data:
o 25+ tables, between 10-50 columns in each table, between 500k – 20M records each and

always growing

Expected outcome:
o 15 tables, each being a product of joining and transforming several source tables and meant

to answer specific operational or scientific questions.

o Must follow FAIR data principles

o Centralized governance and sharing

o Ensure data quality and freshness

Opportunity

Unity Catalog Approach

• Unified governance and management solution for all data assets

• Allows sharing, governing, and managing data across all workspaces and external
applications using SQL warehouses and service principals.

• Auditing and lineage capabilities

• Enables FAIR data.

• Became clear that features & improvements to Databricks would be built around Unity
Catalog

Why Unity Catalog?

Unity Catalog

MEDALLION ARCHITECTURE

• Raw data ingested
from a system of
record.

• Pulled incrementally
stored as delta
tables/materialized
views

• Can use DLT
autoloader where
applicable

• Enriched datasets

• Data from a single
source joined, pivoted,
or aggregated to
create materialized
views.

• Used for reporting,
decision making.

• One schema for each
data product, which
would consist of several
tables made up of
curated datasets

• Data from multiple
bronze/silver data
sources joined together
to create materialized
views.

• Used for reporting,
analytics, and decision
making.

Bronze Silver Gold

MANAGEMENT & SHARING

• Each data team at Inari operates in a different workspace and has groups associated
with them

• Enabled data sharing at any level of granularity across multiple workspaces and
groups.

• Service principals for access to external systems where applicable.

• Highly scalable SQL warehouses to query the data in any way possible

Unity Catalog

CHALLENGES WE FACED

• Not all clusters defined within other workspaces were UC enabled

• Single user compute clusters cannot access materialized views and streaming tables
created by DLT

• R is not supported in shared access mode

• Enforcing granular access control and governance on BI/dashboarding tools where
service principals were used

Unity Catalog

Delta Live Tables
Approach

Why Delta Live Tables?

Requirements

• Three month deadline

• 25 data source tables

• 15 aggregated data product tables

Considerations

• Small team

• New data models

• Company’s first Data Engineering project
in Databricks

• Strict deadline

Why Delta Live Tables?

REDUCED COMPLEXITY FOR DEVELOPERS

All you need are DataFrames

• Given deadline, focus was
entirely on learning new
models and building out
tables

• Everything in DLT is a Spark
DataFrame

• Only concerns are data
ingestion and transformation

No manual orchestration

• DLT handles dependencies
between views and tables for
you

• Creates a DAG for data
loading

• Also allows for concurrent
loading of data between non-
dependent tables

No manual maintenance

• DLT manages maintenance of
tables behind the scenes

• Tables are auto-vacuumed
and optimized as part of the
process

• No additional work required by
developers to maintain tables

Handling Complexity

CODE BREAKDOWN

Common

• Views of the data that were
shared across multiple data
sources

• Created once, used many
times

• After initial deployment –
candidates for temporary
table creation for improved
performance

Intermediate

• Views of the data specific to
enriched outputs

• Could draw on common views
or direct from staging tables

• Where most of the business
logic lives

Enriched

• Final output tables

• Left joins on our intermediate
views on primary key

• Little additional processing
beyond the intermediate views

SO MANY VIEWS!

Handling Complexity

• Over 100 views feeding our
materialized views

• Lineage tracked in Unity Catalog

• Creation of these views within the
pipeline completely managed by
DLT

Programmatic Views

DRY DATAFRAME CREATION

• DLT allows for creating views
programmatically

• Define a function that creates
different views based on passed
arguments

• Reduces code re-use, likelihood
of errors

Programmatic Views

• Internal data lineage managed
within a single table

• Over 20 parent to child sample
relationships

• Need views for many of these
relationships for our outputs

• Creating a new view – adding a
tuple to a list

Testing Transformation Logic

MAKING SURE THE DATA IS RIGHT

• One of our use cases – grouping
many rows into a single JSON
string

• Keys and values for JSON
needed transformation

• Deduping to take latest

• Extracting transformation code
to functions allows for local
testing (pytest, unittest)

• Can’t test this locally

• Can test this!

Developer Experience
Improvements

Typing Stubs

GETTING AUTO-COMPLETE IN YOUR IDE!

• As of January 2024,
Databricks provides a PyPi
package databricks-dlt

• Use this package!

• Prior to this, could not get
code hints, code
completion, etc from IDE
without own typing stub

Development on Clusters

FAKING DLT FUNCTIONALITY… AT YOUR OWN RISK

• Cannot run DLT on an All-
Purpose cluster, requires
running pipeline

• This can slow down
development

• Can mimic functionality with
a faux DLT class

• This is only for ad-hoc
development!

VSCode Tasks and Databricks CLI

HOW TO RUN YOUR DEVELOPMENT PIPELINE IN TWO COMMANDS

• Process to update
Databricks Repo and re-
run pipeline via GUI can
be tedious

• Same commands exist
in Databricks CLI

• Use the Databricks CLI
and VSCode tasks to
make it smoother!

Results

Success!

Successful project completion

• Able to complete the project in the 3-month
timeframe without any interruption to our product
pipeline

Strong foundations and better performance

• Greatly improved processing times backed by
Apache Spark means fresh data available for
making decisions

• Ability to answer greater breadth of research &
development questions through ingesting
different data products into Unity

FAIR data

• Simplified, yet governed data sharing

• Ability to join and query across data products
seamlessly

Improved Development Practices

• Code readability greatly increased

• Testing for complex aggregations

• Simple and efficient deployment process

Current Data Landscape

What the future holds…

Summary

- Unity Catalog helped us break down data siloes and connect data between data
products which was not easy to do

- Unity Catalog puts us on a path of unified governance, allows us to track lineage,
and monitor data quality

- Delta Live Tables works seamlessly with Unity Catalog and allows making changes
rapidly and deploy into production

- Data processing times are down to a handful of minutes without any significant
optimization efforts, compared to several hours previously

- This approach has allowed us to reuse code, configuration, and CI/CD

- Cluster start times remain a bottleneck, and we are exploring serverless or cluster
pooling

Thank You

Inari, SEEDesign and Seed Architects are trademarks of Inari Agriculture, Inc.

© 2024 Inari Agriculture, Inc. All Rights Reserved.

	Data Evolution at Inari: Harnessing Delta Live Tables & Unity Catalog
	Speakers
	Inari Agriculture
	Slide Number 4
	Slide Number 5
	Introduction
	Early Data Landscape (2022-23)
	Opportunity
	Opportunity
	Unity Catalog Approach
	Why Unity Catalog?
	Unity Catalog
	Unity Catalog
	Slide Number 14
	Unity Catalog
	Delta Live Tables Approach
	Why Delta Live Tables?
	Why Delta Live Tables?
	Handling Complexity
	Handling Complexity
	Programmatic Views
	Programmatic Views
	Testing Transformation Logic
	Developer Experience Improvements
	Typing Stubs
	Development on Clusters
	VSCode Tasks and Databricks CLI
	Results
	Success!
	Current Data Landscape
	What the future holds…
	Summary
	Slide Number 33

