Data Evolution d

Harnessing Delta Li
Tables & Unity Caic




Speakers

Kishore Sundar Jonathon Long

Sr. Manager, Data Engineering @ Inari Staff Data Engineer @ Inari




We are the
SEEDesign™
company.

We make seeds that address
the world’s needs, pushing the
boundaries of what is possible
for a more sustainable, nature-
positive food system.

A combination of Al-powered
predictive design and a
pioneered multiplex gene
editing toolbox is enabling us to
unlock the full potential of seed.

Our step-change products
lead to more productive acres
and a more sustainable future
benefiting the population, the
planet and the people who
grow our food.



Cutting-Edge Technology Platform

Predictive Design Advanced Multiplex Gene Editing

DEEP UNDERSTANDING OF NATURE’S COMPLEXITY MULTIPLE CHANGES AT THE SAME TIME

W Sequence ‘l & @ PR/ o %

Plant Up/Down

k
Characteristics
_/
S

- Field

Performance .
’77 | W‘ P

Replace

arlamirn
XODC

D4

The Blueprint The Inari Toolbox | N ’_\ R |




Inari At a Glance

FOUNDING | DRIVEN BY A DIVERSITY

2016 (by Flagship Pioneering) OF EXPERIENCE

EQUITY CAPITAL RAISED el e

$575+ million to date Deloitte. T  \
- \ 4

EMPLOYEES & VVE vy

>300 FTEs, with backgrounds across plant & human

biology, physics, crop & data science, software, etc. AGRICULTURE

PATENTS ESN CORTEVA  [1-BASF

PIONEER.

B
r-Y
MONSANTO @ g‘enta
. syn £
ACADEMIA
HARVARD I i
UNIVERSITY I I I I M
ST, F
FEEs . s
Eﬁ:’f Cornell University PURDUE s

uuuuuuuuuuu
Innnvat_ive
Genomics

Institute

>125 patents filed and ~2,400 patented traits filed

LOCATIONS

¢ Cambridge, Massachusetts
- Headquarters & Science

% V

7MY Product & Commercial

* Research & .Dévelc.npment




Infroduction

WHAT TO EXPECT

What is our talk about? Who is it for?

« How the Data Engineering team at Inari « Data Engineering

onboarded their first project onto Databricks
« Data Management

« How we developed a strategy that would guide
future data engineering projects at Inari, using « Data Governance

Unity Catalog and Delta Live Tables.




Early Data Landscape (2022-23)

Fields

87

LIMS, ELN, other 3rd
party apps

L 5

Raw/semi-processed
stored in file-sharing apps

>

Raw/semi-processed
data stored in S3

>

D, =

O

Argo Workflows
on EKS

(©)

Scheduled cron
Jobs

Amazon
RDS

Amazon
RDS

Amazon
RDS

~h

Bl Tools

Local IDEs &
terminals

Downloaded
reports stored in
file-sharing apps

INARIL



Opportunity

* Major LIMS migration project in mid-2023 gave us the opportunity to design a
Databricks-centric solufion.

* Existing data views were created with complex queries(~5 hours execution time)
running as CRON jobs within SQL databases attached to the existing LIMS software.

* These data views were critical to key decisions made in our entire product pipeline.




Opportunity

SPECS & REQUIREMENTS

Source data:
o 25+ tables, between 10-50 columns in each table, between 500k — 20M records each and

always growing

Expected outcome:
o 15 tables, each being a product of joining and transforming several source tables and meant
to answer specific operational or scientific questions.

o Must follow FAIR data principles
o Cenftralized governance and sharing

o Ensure data quality and freshness




Unity Catalog App




Why Unity Cataloge

* Unified governance and management solufion for all data assefts

* Allows sharing, governing, and managing data across all workspaces and external
applications using SQL warehouses and service principals.

* Auditing and lineage capabilities
* Enables FAIR data.

* Became clear that features & improvements to Databricks would be built around Unity
Catalog




Unity Catalog

Bronze

Raw data ingested
from a system of
record.

Pulled incrementally
stored as delta
tables/materialized
views

Can use DLT
autoloader where
applicable

Silver

Enriched datasets

Data from a single

source joined, pivoted,

or aggregated to
create materialized
VIEWS.

Used for reporting,
decision making.

Gold

One schema for each
data product, which
would consist of severadl
tables made up of
curated datasets

Data from multiple
bronze/silver data
sources joined together
to create materialized
Views.

Used for reporting,
analytics, and decision
making.



Unity Catalog

MANAGEMENT & SHARING

* Each data team at Inari operates in a different workspace and has groups associated
with them

* Enabled data sharing at any level of granularity across multiple workspaces and
groups.

* Service principals for access to external systems where applicable.

* Highly scalable SQL warehouses to query the data in any way possible




Data Sources

@ Data Engineering Prod
Workspace

= = =

DLT Autoloader Databricks Jobs DLT Pipelines

é% Data Engineering Dev
Workspace

= = =

DLT Autoloader Databricks Jobs DLT Pipelines

Access .
Lineage
controls

inari_prod_bronze | inari_prod_silver

- lims - enriched datasets

-eln - reporting

- assays - Aggregated &
. transformed data
- field_data

Data

Dictionary

inari_prod_gold

- curated &
connected data
products

m

inari_dev_gold

‘ Auditing 1 ‘ Discovery

‘ inari_dev_bronze inari_dev_silver

- lims - enriched datasets - curated &

. connected data
-eln - reporting products

- assays - Aggregated &
. transformed data
- field_data

AN

~

J

¢ Decisions ¢ Proof of
* Reporting Concepts
¢ Regulatory o UAT
e Apps * Testing
UNITY CATALOG
V| g SOL Warehouses 8@ Service Principals

Alerts Local IDE
development

<>

Internal
Apps

% Other workspaces

E3

Databricks Jobs Bl &

Notebooks Dashboarding
Tools

Workspaces for functional
groups

= Iz

\

INARIL



Unity Catalog

CHALLENGES WE FACED

Not all clusters defined within other workspaces were UC enabled

* Single user compute clusters cannot access materialized views and streaming tables
created by DLT

* Ris not supported in shared access mode

* Enforcing granular access control and governance on Bl/dashboarding tools where
service principals were used




Delta Live Tak
Approach




Why Delta Live Tables?

Requirements Considerations

- Three month deadline - Small feam

- 25 data source tables - New data models

- 15 aggregated data product tables - Company'’s first Data Engineering project

in Databricks

- Strict deadline




Why Delta Live Tables?

REDUCED COMPLEXITY FOR DEVELOPERS

All you need are DataFrames No manual orchestration No manual maintenance
Given deadline, focus was - DLT handles dependencies - DLT manages maintenance of
entirely on learning new between views and tables for tables behind the scenes
models and building out you Tables are auto-vacuumed
fables - Creates a DAG for data and optimized as part of the
Everything in DLT is a Spark loading process
Dataframe Also allows for concurrent - No additional work required by
Only concerns are data loading of data between non- developers to maintain tables
ingestion and transformation dependent tables

INARI



Handling Complexity

CODE BREAKDOWN

Common Intermediate Enriched
Views of the data that were - Views of the data specific to - Final output tables
shared across multiple data enriched outputs Left joins on our intermediate
Sources Could draw on common views views on primary key
Created once, used many or direct from staging tables Little additional processing "
fimes Where most of the business beyond the intermediate views
After initial deployment - logic lives

candidates for temporary
table creation for improved
performance

INARIL



Handling Complexity

SO MANY VIEWS!

|
Over 100 views feeding our i
materialized views e
Lineage tracked in Unity Catalog —j'""—‘—m.uw | I:
ks = e

Creation of these views within the | 13 |
pipeline completely managed by § | | R
DLT Shamne ' 1 ||

= i

/ [ o s TR iR
7 i ‘I;_ _ |L —1




Programmatic Views

Impart aLt
DLT allows for creating views

. from lims_delta pipeline.staging.util import C_LIMS_TABLES
programmatically

Define a function that creates

different views based on pcssed ef create_view(spark, name, catalog, schema):
@dlt.view(name=name)

arguments def t(]:

Reduces code re-use. likelihood return spark.table(f"{catalog}.{schema}.{name}"}

of errors

ef create_staging_views(spark, catalog, schema):
for t in C_LIMS_TABLES:
create_view(spark, t, catalog, schema)




F)rC)ngCJrerY1(]11(: \/|€3\A/S def create_lineage_view(parent_sampletype: str, child_sampletype: str):

parent = parent_sampletype.lower().replace(" ", "_")
child = child_sampletype.lower().replace(" ", "_")

Internal data lineage managed L2 S T G e (Rl

within @ single table parent_id = f"{parent}_sampleid"
child_id = f"{child}_sampleid"

Over 20 parent to child sample
relationships

@dlt.view(name=name)
def t():

Need views for many of these RO |
dlt.read("all_lineage")
relo’rionships for our OUTpUTS .filter(F.col("parent_sampletype") == parent_sampletype)
. . ) .filter(F.col("child_sampletype") == child_sampletype)
CreOTlng a new view — Oddlng a .withColumnRenamed("sampleid", parent_id)
Tuple to a list .withColumnRenamed (" childsampleid", child_id)
)

return df

def create_lineage_views():
"""Creates DLT views for all lineages in SAMPLE_LINEAGES."""
for s1 in SAMPLE_LINEAGES:
create_lineage_view(s1[0], sl[1])




Testing Transformafion Logic

One of our use cases — grouping
many rows into a single JSON
string

Keys and values for JSON
needed transformation

Deduping to take latest

Extracting transformation code
to functions allows for local
testing (pytest, unittest)

Can’'t test this locally

@dlt.view()
plant_samples_jsonplant():
df = dlt.read("plant_plantsamples_dna_view")

df = create_jsonplant_column(df, "sampleid")
return df

Can test this!

create_jsonplant_column{
df: DataFrame,

groupbycol: str
) —= DataFrame:




Developer Ex

Improvements




Typing Stubs

typings > @ dlt.pyi > ...
As of Jonuqry 2024, from pyspark.sql import DataFrame

Datalbricks provides a PYPi from pyspark.sql.types import StructType
package databricks-dIt

Use thi k | from typing import Union
se this packagel!

. . def read(tbl_name: str) —> DataFrame: ...
Prior to this, could not get def tablel

code hints, code name: str,
completion, etc from IDE comment: str,

. . spark_conf: dict,
without own typing stub

table_properties: dict,
path: str,
partition_cols: list,
schema: Union[str, StructTypel,
temporary: bool,
) —=> None: ...
def view(name: str, comment: str) -> None:




Development on Clusters

ass FauxDLT:
def __init__ (self, catalog="staging", schema="1lims"}:
spark.sql{f"USE CATALOG {catalog}")
spark.sql({f"USE SCHEMA {schemal}")

def read(self, name):
return spark.read.table({name]

def view(self, name=None, comment=Mone}:
def wrapper(func):
@functools.wraps(func)
def create_view(#args, skkwargs):
df = func(*args, #*kkwargs)
if name is not None:
temp_name = name
else:
temp_name = func._ name__
df.create0rReplaceTempView( " {temp_name}
return df

return create view

return wrapper

")

Cannot run DLT on an All-
Purpose cluster, requires
running pipeline

This can slow down
development

Can mimic functionality with
a faux DLT class

This is only for ad-hoc
developmentl!



VSCode Tasks and Databricks CLI

{

"version": "2.0.8",
"tasks": [

Process to update
DCITCIbI’iCkS Repo Gnd re- "label": "Update my DBX Repo",

"type": "shell",
run pipe“ne ViO GU| can "eommand": "databricks repos update /Repos/jlong@inari.com/lims-delta-pipeline --branch $(git rev-parse ——abbrev-ref HEAD)",
. “group”: “build",
be TedIOUS "nresentation": {
“reveal”: "never”,
“panel": "shared"

Same commands exist .

in Databricks CLI ,

"label": “Run my DLT pipeline",

Use the Databricks CLI type®s "shell",
Ond VSCOde TOS'(S .I.O "command" ! tabricks pipelines start-update @1234567-89ab-cdef-8123-456789abcdef -p dev",

group”: "build",
make it smoother! wpresentation®: {

“reveal": "never"

“panel": "dedicated"

}







Success!

Successful project completion

Able to complete the project in the 3-month

timeframe without any interruption to our product

pipeline

Strong foundations and better perfformance

Greatly improved processing times backed by
Apache Spark means fresh data available for
making decisions

Ability to answer greater breadth of research &
development questions through ingesting
different data products into Unity

FAIR data

Simplified, yet governed data sharing

Ability to join and query across data products
seamlessly

Improved Development Practices
Code readability greatly increased
Testing for complex aggregations

Simple and efficient deployment process



Current Data Landscape

@ Github Repos

Y

0]

I-l-_l-l R Airflow R Mwan
- E>

> =
Labs LIMS, ELN, other 3rd I: % Dev Workspace - Bl/Dashboarding
party apps D Tools
ev
/A .\‘ Catalogs
E @ q E> —— @ Prod Workspace @
REEEE — >
Greenhouses Raw/semi-processed :;; | |:f|>
stored in file-sharing apps |: DLT Autoloader  DLT Pipelines Databricks
- . * Notebooks
h -:D Prod
Databricks Jobs Catalogs
Raw/semi-processed |: I 1
data stored in S3
SQL Warehouse
@ Other Workspaces UNITY for all other uses
CATALOG

INARIL



What the future holds...

Regulatory/
Commercial/
Inventory
Data

ILI.L |:> app

LIMS, ELN, other 3rd
party apps

> Raw/semi-processed

data stored in 53

Fas

I |
\//’

@ Github Repos £ Circlecl

Data Dictionary
2 Airflow nertng
| > Internal Apps
< -
Dev Workspace
X P AN I
Dev I I
Catalogs
@ Prod Workspace Bl/Dashboarding
Tools
-
///\\\ DLT Autoloader Prod L (/__\\ @ g?é?.:;
s
oo N & Catalogs Ef{f T
gxpenla‘hnrﬁ/ DLT P-i elines M. Model
N " Training
S o
- C
=) <
Databricks Jobs |:> =
o~ Databricks
% Other Workspaces UNITY |:> MNotebooks
CATALOG ﬁ
sz
S0L Warehouse

for all other uses

INARIL



Summary

Unity Catalog helped us break down data siloes and connect data between data
products which was not easy to do

Unity Catalog puts us on a path of unified governance, allows us to frack lineage,
and monitor data quality

Delta Live Tables works seamlessly with Unity Catalog and allows making changes
rapidly and deploy into production

Data processing fimes are down to a handful of minutes without any significant
optimization efforts, compared to several hours previously

This approach has allowed us to reuse code, configuration, and CI/CD

Cluster start times remain a bottleneck, and we are exploring serverless or cluster
pooling






	Data Evolution at Inari: Harnessing Delta Live Tables & Unity Catalog
	Speakers
	Inari Agriculture
	Slide Number 4
	Slide Number 5
	Introduction
	Early Data Landscape (2022-23)
	Opportunity
	Opportunity
	Unity Catalog Approach
	Why Unity Catalog?
	Unity Catalog
	Unity Catalog
	Slide Number 14
	Unity Catalog
	Delta Live Tables Approach
	Why Delta Live Tables?
	Why Delta Live Tables?
	Handling Complexity
	Handling Complexity
	Programmatic Views
	Programmatic Views
	Testing Transformation Logic
	Developer Experience Improvements
	Typing Stubs
	Development on Clusters
	VSCode Tasks and Databricks CLI
	Results
	Success!
	Current Data Landscape
	What the future holds…
	Summary
	Slide Number 33

