
Data Evolution at Inari: 
Harnessing Delta Live 
Tables & Unity Catalog
Kishore Sundar – Sr. Manager, Data Engineering
Jonathon Long – Staff Data Engineer



Speakers

Sr. Manager, Data Engineering @ Inari

Jonathon Long

Staff Data Engineer @ Inari

Kishore Sundar



3

Inari Agriculture
About Inari Slide with approved text



4



5



WHAT TO EXPECT

Introduction

• How the Data Engineering team at Inari 
onboarded their first project onto Databricks

• How we developed a strategy that would guide 
future data engineering projects at Inari, using 
Unity Catalog and Delta Live Tables.

• Data Engineering

• Data Management

• Data Governance

What is our talk about? Who is it for?



Early Data Landscape (2022-23)

DATA LANDSCAPE



• Major LIMS migration project in mid-2023 gave us the opportunity to design a 
Databricks-centric solution.

• Existing data views were created with complex queries(~5 hours execution time) 
running as CRON jobs within SQL databases attached to the existing LIMS software.

• These data views were critical to key decisions made in our entire product pipeline.

Opportunity



SPECS & REQUIREMENTS

Source data: 
o 25+ tables, between 10-50 columns in each table, between 500k – 20M records each and 

always growing

Expected outcome:
o 15 tables, each being a product of joining and transforming several source tables and meant 

to answer specific operational or scientific questions.

o Must follow FAIR data principles

o Centralized governance and sharing

o Ensure data quality and freshness

Opportunity



Unity Catalog Approach



• Unified governance and management solution for all data assets

• Allows sharing, governing, and managing data across all workspaces and external 
applications using SQL warehouses and service principals.

• Auditing and lineage capabilities

• Enables FAIR data.

• Became clear that features & improvements to Databricks would be built around Unity 
Catalog

Why Unity Catalog?



Unity Catalog

MEDALLION ARCHITECTURE

• Raw data ingested 
from a system of 
record.

• Pulled incrementally 
stored as delta 
tables/materialized 
views

• Can use DLT 
autoloader where 
applicable

• Enriched datasets

• Data from a single 
source joined, pivoted, 
or aggregated to 
create materialized 
views.

• Used for reporting, 
decision making.

• One schema for each 
data product, which 
would consist of several 
tables made up of 
curated datasets

• Data from multiple 
bronze/silver data 
sources joined together 
to create materialized 
views. 

• Used for reporting, 
analytics, and decision 
making.

Bronze Silver Gold



MANAGEMENT & SHARING

• Each data team at Inari operates in a different workspace and has groups associated 
with them

• Enabled data sharing at any level of granularity across multiple workspaces and 
groups.

• Service principals for access to external systems where applicable.

• Highly scalable SQL warehouses to query the data in any way possible

Unity Catalog





CHALLENGES WE FACED

• Not all clusters defined within other workspaces were UC enabled

• Single user compute clusters cannot access materialized views and streaming tables 
created by DLT

• R is not supported in shared access mode

• Enforcing granular access control and governance on BI/dashboarding tools where 
service principals were used

Unity Catalog



Delta Live Tables 
Approach



Why Delta Live Tables?

Requirements

• Three month deadline

• 25 data source tables

• 15 aggregated data product tables

Considerations

•  Small team

•  New data models

•  Company’s first Data Engineering project 
in Databricks

•  Strict deadline



Why Delta Live Tables?

REDUCED COMPLEXITY FOR DEVELOPERS

All you need are DataFrames

• Given deadline, focus was 
entirely on learning new 
models and building out 
tables

• Everything in DLT is a Spark 
DataFrame

• Only concerns are data 
ingestion and transformation

No manual orchestration

• DLT handles dependencies 
between views and tables for 
you

• Creates a DAG for data 
loading

• Also allows for concurrent 
loading of data between non-
dependent tables

No manual maintenance

• DLT manages maintenance of 
tables behind the scenes

• Tables are auto-vacuumed 
and optimized as part of the 
process

• No additional work required by 
developers to maintain tables



Handling Complexity

CODE BREAKDOWN

Common

• Views of the data that were 
shared across multiple data 
sources

• Created once, used many 
times

• After initial deployment – 
candidates for temporary 
table creation for improved 
performance

Intermediate

• Views of the data specific to 
enriched outputs

• Could draw on common views 
or direct from staging tables

• Where most of the business 
logic lives

Enriched

• Final output tables

• Left joins on our intermediate 
views on primary key

• Little additional processing 
beyond the intermediate views



SO MANY VIEWS!

Handling Complexity

• Over 100 views feeding our 
materialized views

• Lineage tracked in Unity Catalog

• Creation of these views within the 
pipeline completely managed by 
DLT



Programmatic Views

DRY DATAFRAME CREATION

• DLT allows for creating views 
programmatically

• Define a function that creates 
different views based on passed 
arguments

• Reduces code re-use, likelihood 
of errors



Programmatic Views

• Internal data lineage managed 
within a single table

• Over 20 parent to child sample 
relationships

• Need views for many of these 
relationships for our outputs

• Creating a new view – adding a 
tuple to a list



Testing Transformation Logic

MAKING SURE THE DATA IS RIGHT

• One of our use cases – grouping 
many rows into a single JSON 
string

• Keys and values for JSON 
needed transformation

• Deduping to take latest

• Extracting transformation code 
to functions allows for local 
testing (pytest, unittest)

• Can’t test this locally

• Can test this!



Developer Experience 
Improvements



Typing Stubs

GETTING AUTO-COMPLETE IN YOUR IDE!

• As of January 2024, 
Databricks provides a PyPi 
package databricks-dlt

• Use this package!

• Prior to this, could not get 
code hints, code 
completion, etc from IDE 
without own typing stub



Development on Clusters

FAKING DLT FUNCTIONALITY… AT YOUR OWN RISK

• Cannot run DLT on an All-
Purpose cluster, requires 
running pipeline

• This can slow down 
development

• Can mimic functionality with 
a faux DLT class

• This is only for ad-hoc 
development!



VSCode Tasks and Databricks CLI

HOW TO RUN YOUR DEVELOPMENT PIPELINE IN TWO COMMANDS

• Process to update 
Databricks Repo and re-
run pipeline via GUI can 
be tedious

• Same commands exist 
in Databricks CLI

• Use the Databricks CLI 
and VSCode tasks to 
make it smoother!



Results



Success!

Successful project completion

• Able to complete the project in the 3-month 
timeframe without any interruption to our product 
pipeline

Strong foundations and better performance

• Greatly improved processing times backed by 
Apache Spark means fresh data available for 
making decisions

• Ability to answer greater breadth of research & 
development questions through ingesting 
different data products into Unity

FAIR data

• Simplified, yet governed data sharing

• Ability to join and query across data products 
seamlessly

Improved Development Practices

• Code readability greatly increased

• Testing for complex aggregations

• Simple and efficient deployment process



Current Data Landscape



What the future holds…



Summary

- Unity Catalog helped us break down data siloes and connect data between data 
products which was not easy to do

- Unity Catalog puts us on a path of unified governance, allows us to track lineage, 
and monitor data quality

- Delta Live Tables works seamlessly with Unity Catalog and allows making changes 
rapidly and deploy into production

- Data processing times are down to a handful of minutes without any significant 
optimization efforts, compared to several hours previously

- This approach has allowed us to reuse code, configuration, and CI/CD

- Cluster start times remain a bottleneck, and we are exploring serverless or cluster 
pooling



Thank You
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