
▓▓▓ Data Engineering with

▓▓▓ Rust and Delta Lake

buoyantdata.com Data engineering with Rust and Delta Lake 1 / 28

██ About me ▓▓▓ artist's rendering

Howdy! My name is R. Tyler Croy

• I helped create the delta-rs project.
• I write lots of Rust.
• I authored a chapter in Delta Lake: The Definitive Guide.
• I help organizations build cloud-native data platforms.
• I can help you lower the cost of your Databricks and AWS bills!

buoyantdata.com Data engineering with Rust and Delta Lake 2 / 28

▓▓▓ Let's define our terms

buoyantdata.com Data engineering with Rust and Delta Lake 3 / 28

▓▓▓ Delta Lake

• Data storage format which is basically:
◦ JSON transaction log files
◦ Apache Parquet data files

• In AWS we store Delta tables in S3

s3://bucket/delta-table

├── ds=2024-04-01
│ ├── part-00000-d361a60627e3.c000.snappy.parquet
│ └── part-00001-5d1872324d6f.c000.snappy.parquet
├── ds=2024-04-02
│ ├── part-00000-de0b22b62bbd.c000.snappy.parquet
│ └── part-00001-25f7559cd150.c000.snappy.parquet
└── _delta_log

└── 00000000000000000000.json

buoyantdata.com Data engineering with Rust and Delta Lake 4 / 28

▓▓▓ Delta Lake

cat deltatbl-partitioned/_delta_log/00000000000000000000.json

buoyantdata.com Data engineering with Rust and Delta Lake 5 / 28

▓▓▓ Rust

▍ Rust is a multi-paradigm, general-purpose programming
▍ language that emphasizes performance, type safety, and
▍ concurrency. It enforces memory safety—meaning that all
▍ references point to valid memory—without a garbage
▍ collector

there are a lot of different ways to use rest for data engineering and processing but the big
reason we want it is because it allows us to correctly Implement high performance programs with
less work

buoyantdata.com Data engineering with Rust and Delta Lake 6 / 28

▓▓▓ our tools

• arrow
• deltalake
• datafusion
• and more

buoyantdata.com Data engineering with Rust and Delta Lake 7 / 28

▓▓▓ our tools: arrow

arrow is the foundation for almost all consequential data processing in Rust.

the big things that the arrow-rs project gives us are the in-memory columnar data representation of
RecordBatch and a parquet reader/writer library

let arrow_array: Vec<Arc<dyn Array>> = vec![
Arc::new(TimestampMicrosecondArray::from(ts)),
Arc::new(Int32Array::from(temp)),
Arc::new(Float64Array::from(lat)),
Arc::new(Float64Array::from(long)),

];

RecordBatch::try_new(arrow_schema_ref, arrow_array)
.expect("Failed to create RecordBatch")

buoyantdata.com Data engineering with Rust and Delta Lake 8 / 28

▓▓▓ our tools: arrow

working with arrow directly is typically a little more difficult than most people want so
serde_arrow library helps and a couple other ways to generate RecordBatch structs

https://github.com/chmp/serde_arrow

buoyantdata.com Data engineering with Rust and Delta Lake 9 / 28

▓▓▓ our tools: deltalake

cargo add --features datafusion deltalake

• metapackage contains:
◦ deltalake-aws
◦ deltalake-azure
◦ deltalake-gcp

#[tokio::main]
async fn main() {

deltalake::aws::register_handlers(None);
let dt = deltalake::open_table("s3://bucket/table")

.await

.expect("Failed to open");
//

}

buoyantdata.com Data engineering with Rust and Delta Lake 10 / 28

▓▓▓ our tools: datafusion

▍ DataFusion is a very fast, extensible query
▍ engine for building high-quality data-centric
▍ systems in Rust, using the Apache Arrow
▍ in-memory format.

just about every rust data project uses datafusion in some form or another

• datafusion::DataFrame
• Datafusion SQL

buoyantdata.com Data engineering with Rust and Delta Lake 11 / 28

▓▓▓ async/await

async fn main() -> Result<(), deltalake::errors::DeltaTableError> {
let table_path = "../test/tests/data/delta-0.8.0";
let table = deltalake::open_table(table_path).await?;

println!("{table}");
Ok(())

}

buoyantdata.com Data engineering with Rust and Delta Lake 12 / 28

▓▓▓ references!

Rust is very strict about references:

• &foo cannot be sent between threads safely
• Arc<Foo> can be read safely between threads
• Arc<Mutex<Foo>> can be read and modified between threads

buoyantdata.com Data engineering with Rust and Delta Lake 13 / 28

▓▓▓ let's engineer some data

buoyantdata.com Data engineering with Rust and Delta Lake 14 / 28

▓▓▓ building..

cargo new --bin uniproc
cd uniproc
ls

cd uniproc
cargo run

buoyantdata.com Data engineering with Rust and Delta Lake 15 / 28

▓▓▓ building..

we'll need deltalake with its rich integration with DataFusion

cd uniproc
cargo add --features macros tokio
cargo add --features datafusion deltalake
cat Cargo.toml

buoyantdata.com Data engineering with Rust and Delta Lake 16 / 28

▓▓▓ building..

1 let ctx = SessionContext::new();
2 let table = deltalake::open_table("../deltatbl-partitioned")
3 .await?;
4 ctx.register_table("demo", Arc::new(table))?;
5
6 let batches = ctx
7 .sql("SELECT * FROM demo LIMIT 3").await?
8 .collect()
9 .await?;
10 print_batches(&batches).expect("Failed to print batches");

cp sql-main.rs uniproc/src/main.rs
cd uniproc && cargo run

buoyantdata.com Data engineering with Rust and Delta Lake 17 / 28

▓▓▓ appending!

DataFrame is very powerful.

With the deltalake APIs if you can get a RecordBatch you can do almost anything.

1 let df = ctx.read_csv("../example.csv",
2 CsvReadOptions::new()).await?;
3 let table = DeltaOps::from(table)
4 .write(df.collect().await?)
5 .await?;
6
7 ctx.register_table("demo", Arc::new(table))?;
8 let batches = ctx
9 .sql("SELECT * FROM demo LIMIT 3").await?
10 .collect()
11 .await?;

buoyantdata.com Data engineering with Rust and Delta Lake 18 / 28

▓▓▓ appending!

cat example.csv

buoyantdata.com Data engineering with Rust and Delta Lake 19 / 28

▓▓▓ appending!

tree deltatbl-partitioned

buoyantdata.com Data engineering with Rust and Delta Lake 20 / 28

▓▓▓ appending!

rm -rf deltatbl-partitioned-write
cp -R deltatbl-partitioned deltatbl-partitioned-write
cp write-main.rs uniproc/src/main.rs
cd uniproc && cargo run

buoyantdata.com Data engineering with Rust and Delta Lake 21 / 28

▓▓▓ appending!

tree deltatbl-partitioned-write

buoyantdata.com Data engineering with Rust and Delta Lake 22 / 28

▓▓▓ other operations

use deltalake::DeltaOps;

• Merge
• Update
• Optimize
• ZOrder
• Vacuum

buoyantdata.com Data engineering with Rust and Delta Lake 23 / 28

▓▓▓ kafka-delta-ingest

• ingests avro and json
• utilizes txn action for state tracking
• should be deployed 1 per topic:partition

{"commitInfo":{...}}
{"add":{"path":"f3",...}}
{"add":{"path":"f4",...}}
{"txn":{"appId":"3ae45b72","version":4389}}

buoyantdata.com Data engineering with Rust and Delta Lake 24 / 28

▓▓▓ arroyo

CREATE TABLE delta_sink (
id INTEGER,
name STRING,
age INTEGER

) WITH (
'connector' = 'delta',
'path' = 's3://my_bucket/my_table',
'format' = 'parquet',
'filename.strategy' = 'uuid'

);
INSERT INTO delta_sink SELECT id, name, age FROM my_source;

buoyantdata.com Data engineering with Rust and Delta Lake 25 / 28

▓▓▓ see also

• roapi
• ParadeDB
• Apache Comet

buoyantdata.com Data engineering with Rust and Delta Lake 26 / 28

▒▒▒▒ thanks!

buoyantdata.com Data engineering with Rust and Delta Lake 27 / 28

▓▓▓ Q&A

buoyantdata.com

buoyantdata.com Data engineering with Rust and Delta Lake 28 / 28

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

