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██ About me ▓▓▓ artist's rendering

Howdy! My name is R. Tyler Croy

• I helped create the delta-rs project.
• I write lots of Rust.
• I authored a chapter in Delta Lake: The Definitive Guide.
• I help organizations build cloud-native data platforms.
• I can help you lower the cost of your Databricks and AWS bills!
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▓▓▓ Let's define our terms
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▓▓▓ Delta Lake

• Data storage format which is basically:
◦ JSON transaction log files
◦ Apache Parquet data files

• In AWS we store Delta tables in S3

s3://bucket/delta-table

├── ds=2024-04-01
│   ├── part-00000-d361a60627e3.c000.snappy.parquet
│   └── part-00001-5d1872324d6f.c000.snappy.parquet
├── ds=2024-04-02
│   ├── part-00000-de0b22b62bbd.c000.snappy.parquet
│   └── part-00001-25f7559cd150.c000.snappy.parquet
└── _delta_log

└── 00000000000000000000.json
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▓▓▓ Delta Lake

cat deltatbl-partitioned/_delta_log/00000000000000000000.json
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▓▓▓ Rust

▍ Rust is a multi-paradigm, general-purpose programming                                            
▍ language that emphasizes performance, type safety, and                                           
▍ concurrency. It enforces memory safety—meaning that all                                          
▍ references point to valid memory—without a garbage                                               
▍ collector                                                                                        

there are a lot of different ways to use rest for data engineering and processing but the big
reason we want it is because it allows us to correctly Implement high performance programs with 
less work
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▓▓▓ our tools

• arrow
• deltalake
• datafusion
• and more
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▓▓▓ our tools: arrow

arrow is the foundation for almost all consequential data processing in Rust.

the big things that the arrow-rs project gives us are the in-memory columnar data representation of
RecordBatch and a parquet reader/writer library

let arrow_array: Vec<Arc<dyn Array>> = vec![
Arc::new(TimestampMicrosecondArray::from(ts)),
Arc::new(Int32Array::from(temp)),
Arc::new(Float64Array::from(lat)),
Arc::new(Float64Array::from(long)),

];

RecordBatch::try_new(arrow_schema_ref, arrow_array)
.expect("Failed to create RecordBatch")
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▓▓▓ our tools: arrow

working with arrow directly is typically a little more difficult than most people want so
serde_arrow library helps and a couple other ways to generate RecordBatch structs

https://github.com/chmp/serde_arrow
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▓▓▓ our tools: deltalake

cargo add --features datafusion deltalake

• metapackage contains:
◦ deltalake-aws
◦ deltalake-azure
◦ deltalake-gcp

#[tokio::main]
async fn main() {

deltalake::aws::register_handlers(None);
let dt = deltalake::open_table("s3://bucket/table")

.await

.expect("Failed to open");
// ....                                              

}
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▓▓▓ our tools: datafusion

▍ DataFusion is a very fast, extensible query                                                      
▍ engine for building high-quality data-centric                                                    
▍ systems in Rust, using the Apache Arrow                                                          
▍ in-memory format.                                                                                

just about every rust data project uses datafusion in some form or another

• datafusion::DataFrame
• Datafusion SQL
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▓▓▓ async/await

async fn main() -> Result<(), deltalake::errors::DeltaTableError> {
let table_path = "../test/tests/data/delta-0.8.0";
let table = deltalake::open_table(table_path).await?;

println!("{table}");
Ok(())

}
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▓▓▓ references!

Rust is very strict about references:

• &foo cannot be sent between threads safely
• Arc<Foo> can be read safely between threads
• Arc<Mutex<Foo>> can be read and modified between threads
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▓▓▓ let's engineer some data
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▓▓▓ building..

cargo new --bin uniproc
cd uniproc
ls

cd uniproc
cargo run
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▓▓▓ building..

we'll need deltalake with its rich integration with DataFusion

cd uniproc
cargo add --features macros tokio 
cargo add --features datafusion deltalake
cat Cargo.toml
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▓▓▓ building..

1 let ctx = SessionContext::new();
2 let table = deltalake::open_table("../deltatbl-partitioned")
3 .await?;
4 ctx.register_table("demo", Arc::new(table))?;
5                                                                 
6 let batches = ctx
7 .sql("SELECT * FROM demo LIMIT 3").await?
8 .collect()
9 .await?;
10 print_batches(&batches).expect("Failed to print batches");

cp sql-main.rs uniproc/src/main.rs
cd uniproc && cargo run
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▓▓▓ appending!

DataFrame is very powerful.

With the deltalake APIs if you can get a RecordBatch you can do almost anything.

1 let df = ctx.read_csv("../example.csv", 
2 CsvReadOptions::new()).await?;
3 let table = DeltaOps::from(table)
4 .write(df.collect().await?)
5 .await?;
6                                                
7 ctx.register_table("demo", Arc::new(table))?;
8 let batches = ctx
9 .sql("SELECT * FROM demo LIMIT 3").await?
10 .collect()
11 .await?;
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▓▓▓ appending!

cat example.csv
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▓▓▓ appending!

tree deltatbl-partitioned

buoyantdata.com Data engineering with Rust and Delta Lake 20 / 28



▓▓▓ appending!

rm -rf deltatbl-partitioned-write
cp -R deltatbl-partitioned deltatbl-partitioned-write
cp write-main.rs uniproc/src/main.rs
cd uniproc && cargo run
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▓▓▓ appending!

tree deltatbl-partitioned-write
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▓▓▓ other operations

use deltalake::DeltaOps;

• Merge
• Update
• Optimize
• ZOrder
• Vacuum
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▓▓▓ kafka-delta-ingest

• ingests avro and json
• utilizes txn action for state tracking
• should be deployed 1 per topic:partition

{"commitInfo":{...}}
{"add":{"path":"f3",...}}
{"add":{"path":"f4",...}}
{"txn":{"appId":"3ae45b72","version":4389}}
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▓▓▓ arroyo

CREATE TABLE delta_sink (
id INTEGER,
name STRING,
age INTEGER

) WITH (
'connector' = 'delta',
'path' = 's3://my_bucket/my_table',
'format' = 'parquet',
'filename.strategy' = 'uuid'

);
INSERT INTO delta_sink SELECT id, name, age FROM my_source;
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▓▓▓ see also

• roapi
• ParadeDB
• Apache Comet
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▒▒▒▒ thanks!
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▓▓▓ Q&A

buoyantdata.com
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