
▓▓▓ Fast, Cheap, and Easy Data Ingestion

▓▓▓ with AWS Lambda and Delta Lake

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 1 / 26

██ About me ▓▓▓ artist's rendering

Howdy! My name is R. Tyler Croy

• I helped create the delta-rs project.
• I write lots of Rust.
• I authored a chapter in Delta Lake: The Definitive Guide.
• I help organizations build cloud-native data platforms.
• I can help you lower the cost of your Databricks and AWS bills!

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 2 / 26

▓▓▓ Let's define our terms

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 3 / 26

▓▓▓ Delta Lake

• Data storage format which is basically:
◦ JSON transaction log files
◦ Apache Parquet data files

• In AWS we store Delta tables in S3

s3://bucket/delta-table

├── ds=2024-04-01
│ ├── part-00000-d361a60627e3.c000.snappy.parquet
│ └── part-00001-5d1872324d6f.c000.snappy.parquet
├── ds=2024-04-02
│ ├── part-00000-de0b22b62bbd.c000.snappy.parquet
│ └── part-00001-25f7559cd150.c000.snappy.parquet
└── _delta_log

└── 00000000000000000000.json

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 4 / 26

▓▓▓ AWS Lambda

▍ AWS Lambda is an event-driven, serverless Function
▍ as a Service. It is designed to enable developers
▍ to run code without provisioning or managing
▍ servers. It executes code in response to events
▍ and automatically manages the computing resources
▍ required by that code

Lambda supports multiple run times but most important are its Python and rust support for our
discussion

• pip install cargo-lambda

▒▒▒▒ Time is money

Lambda charges based on:

• Execution Time: faster is cheaper

• Memory used: smaller is better

• Storage: not really important

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 5 / 26

▓▓▓ Serverless data processing

everything we'll discuss can be done in other serverless environments so long as they support:

• event notifications
• triggered execution
• object storage

Could easily be converted to run on Azure or Google Cloud functions

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 6 / 26

▓▓▓ Lambda

def lambda_handler(event, context):
from deltalake import DeltaTable

dt = DeltaTable(os.environ['TABLE_URL'])
metadata = dt.metadata()

return {
'version' : dt.version(),
'table' : url,
'files' : dt.files(),

'metadata' : {
'name' : metadata.name,
'created_time' : metadata.created_time,
'id' : metadata.id,
'description' : metadata.description,
'partition_columns' : metadata.partition_columns,
'configuration' : metadata.configuration,

},
}

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 7 / 26

▓▓▓ Lambda

async fn function_handler(_event: Request) -> Result<Response<Body>, Error> {
let table_url = std::env::var("TABLE_URL")

.expect("must set TABLE_URL in env");

let response = match deltalake_core::open_table(&table_url).await {
Ok(table) => {

let files: Vec<String> = table
.get_files_iter()?
.map(|p| p.as_ref().to_string())
.collect();

let message = json!({
"table" : table_url,
"version" : table.version(),
"metadata" : table.metadata()?,
"files" : files,

});
Response::builder()

.status(200)

.header("content-type", "application/json")

.body(message.to_string().into())

.map_err(Box::new)?
}
Err(e) => Response::builder()

.status(500)

.header("Content-Type", "text/plain")

.body(format!("error: {e:?}").into())

.map_err(Box::new)?,
};

Ok(response)
}

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 8 / 26

▓▓▓ S3 Event Notifications

S3 event notifications can be configured on a per event basis so that you only get objects created
objects deleted or objects updated with new versions or any combination thereof

event notifications can be configured on a per prefix basis

but there can only be one type of events notification per prefix and suffix combo

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 9 / 26

▓▓▓ Non-S3 event notifications

for a lot of the workloads that I manage I rely on S3 event notifications but when I need to ingest
data from other sources I prefer to trigger Lambda from sqs

• eventbridge
• http payloads
• ???

SQS gives us dead letter queues and replay in case of failures which is important for a fault
tolerant data ingestion process

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 10 / 26

▓▓▓ oxbow

https://github.com/buoyant-data/oxbow

Oxbow started as a single Lambda that built off of S3 Event Notifications and has grown into a
collection of tools and lambdas to manage Delta Lake

• oxbow
• group-events
• glue-create
• glue-sync
• webhook
• sqs-ingest

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 11 / 26

▓▓▓ Case Study: Aurora export

Problem: a key component of most data processing systems is ingesting online data. this can entail
running replicas for ingestion or expensive spark jobs to copy data out of live database systems.

┌─────────┐ ┌──────────────────┐
│Online DB├────►│Ingestion replicas│
└─────────┘ └────────┬─────────┘

│
│

┌─────────┐ ┌────────▼───────┐
│Data Lake◄─────┤Ingestion job(s)│
└─────────┘ └────────────────┘

Using Cloud native databases like AWS Aurora which now support direct export to AWS S3 in parquet
format Delta tables can be reconstructed directly from the exported data without requiring any
replicas or data processing

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 12 / 26

▓▓▓ Case Study: Aurora export

┌─────────┐ ┌───────────┐
│Online DB├───────►│ S3 bucket │
└─────────┘ └────┬──────┘

│
┌────▼──────┐
│restructure│
│lambda │
└───┬───────┘

│
┌───▼───┐
│ SQS │
└───┬───┘

│
┌───────────┐ ┌───▼─────┐
│ Data Lake │◄─────┤ Oxbow │
└───────────┘ └─────────┘

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 13 / 26

▓▓▓ Case Study: Aurora export

┌─────────┐ ┌───────────┐
│Online DB├───────►│ S3 bucket │
└─────────┘ └───────────┘

there are two ways we can get parquet out of an aurora database:

• direct export of parquet to S3
• through snapshots which export to parquet

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 14 / 26

▓▓▓ Case Study: Aurora export

┌───────────┐
│ S3 bucket │
└────┬──────┘

│
┌────▼──────┐
│restructure│
│lambda │
└───────────┘

once the actual export has occurred the parquet files need to be restructured into the file layout
that we expect in our Delta table this is a good time to do a ds= partition or lay the files out in
any way that is desired

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 15 / 26

▓▓▓ Case Study: Aurora export

┌───────────┐
│restructure│
│lambda │
└───┬───────┘

│
┌───▼───┐
│ SQS │
└───────┘

restructuring the parquet files typically means copying and re-putting them to the same bucket or a
different bucket which can then trigger additional S3 event notifications

these event notifications contain the file size and the key inside of the bucket

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 16 / 26

▓▓▓ Case Study: Aurora export

┌───────┐
│ SQS │
└───┬───┘

│
┌───────────┐ ┌───▼─────┐
│ Data Lake │◄─────┤ Oxbow │
└───────────┘ └─────────┘

one of the nice things about the deltalake crate and how Oxbow uses it is that it never has to read
or understand the data files when the event notification is received from sqs it is translated into
effectively in append on the Delta Lake transaction log

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 17 / 26

▒▒▒▒ Caveats: Aurora export

┌─────────┐ ┌───────────┐
│Online DB├───────►│ S3 bucket │
└─────────┘ └────┬──────┘

│
┌────▼──────┐
│restructure│
│lambda │
└───┬───────┘

│
┌───▼───┐
│ SQS │
└───┬───┘

│
┌───────────┐ ┌───▼─────┐
│ Data Lake │◄─────┤ Oxbow │
└───────────┘ └─────────┘

there are some caveats to this approach however:

• schema evolution is not yet supported because Oxbow doesn't know anything about the
actual data file

• additionally there can be opportunities for lock contention
• some orchestration may be required if Downstream pipelines need to know exactly when a

table has fully completed its export

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 18 / 26

▓▓▓ Benefits: Aurora export

• $$$
• generally speaking this approach is cheaper and simpler than its predecessor using

spark and replicas for Ingestion
• the Oxbow Lambda is about 5 MB and it's run time for most cases is so infrequent and

quick that it fits into the AWS Lambda free tier which effectively means the cost of
ingestion is the cost of storage in S3 and the snapshot operations from Aurora

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 19 / 26

Oxbow is an example written in Rust which is lots of fun but not for everybody

let's talk about python

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 20 / 26

▓▓▓ Python Lambdas

Distributing a Lambda with python typically means uploading a zip file or creating a layer or
creating a Docker image

• .zip a few MBs
• layer: 250MBs total
• image: 10GB

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 21 / 26

▓▓▓ Python + deltalake Lambda

a rust example using the Lambda runtime and the Delta Lake crate along with data Fusion typically
will produce a binary less than 10 MB in size

with python we need to pull in the Delta Lake package and typically will want the AWS SDK for
pandas layer as well

in almost all cases that I have tried that pushes you over the limit of what a layer can contain

save yourself the headache and start with a Docker image

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 22 / 26

▓▓▓ Pandas and Polars

loading a Delta table and then turning that into a panda's data frame is very straightforward but
because of the memory constraint of a Lambda you have to provide additional filters otherwise you
will blow up memory

dt = DeltaTable(table_url)
df = dt.to_pandas(filters=[('ds', '=', '2024-06-01')])

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 23 / 26

▓▓▓ failure modes

• lambdas can run out of memory easily
• can also time out if the runtime is longer than expected
• concurrency can be a challenge when operating on the same table

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 24 / 26

▓▓▓ Q&A

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 25 / 26

▒▒▒▒ thanks!

buoyantdata.com

buoyantdata.com Data Ingestion with AWS Lambda and Delta Lake 26 / 26

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

