
©2024 Databricks Inc. — All rights reserved

Exploring
Anomalies in
Authentication
Logs with
Autoencoders
Hayden Beadles and Jericho Cain, Adobe Inc.
Last updated April 2024

1

©2024 Databricks Inc. — All rights reserved

• Cyber security events difficult to detect at scale with
non-restrictive lookback windows.

• Too much data!

• ~30k Adobe Actors.

• ~1.5 million logins per day.

• How to extract the most probable events of interest.

• How to understand Adobe Employee’s Login
behavior.

• Use ML to detect and understand anomalies.

• Apply rules to anomalies for specific use cases.

• Return prioritized list of anomalies for human review.

• Explore blending data sources.

Problem Statement The Plan

2

Introduction
Can we use ML to detect cyber security events at Scale?

©2024 Databricks Inc. — All rights reserved 3

What Happens Today
How Most Authentication Software Monitors for Anomalies

~1.5 million
Logins

Heuristic Model

• Last 20-50 logins
• Can be increased at

cost of compute time
• Hard to capture

complex behavior
• Lots of rules, hard

to maintain
• Limited to a single

data source

Anomalies

©2024 Databricks Inc. — All rights reserved 4

Can Machine Learning Help?
Use a model as a filter to eliminate most of the rules.

~1.5 million
Logins Anomalies

Less
Complex
Heuristic

Model

Feature Engineering
and

Machine Learning

©2024 Databricks Inc. — All rights reserved

Establish User Baselines Encode Violations Send them to the model

5

Machine Learning Challenges

• Where do they live?

• What do they use?

• What devices do they have?

• What IP Addresses do they
login to?

• Latitude / Longitude encoding

• How to establish accurate
baselines?

• Pyspark / MLFlow to create
encodings.

• Training / Validation Workflow.

• Inference Workflow.

• Model Store.

Feature Engineering

©2024 Databricks Inc. — All rights reserved

• Break down multi-dimensional
features to one dimension

• Need to clean up noise

• Embedding layer may occur
too far downstream

• Z-order curve, hashing are
good options

Feature Engineering

6

Encoding Multi-dimensional data

import zCurve
Import pyspark.sql.functions as fn

@fn.udf(returnType=DoubleType())
def process_zcurve(input_arr):

int_process = [int(x) for x in input_arr]
curve = zCurve.interlace(*int_process, dims=2,
bits_per_dim=8)
return float(curve)

df = spark.sql(f"SELECT * FROM {input_table}")
vec_assembler =

VectorAssembler(inputCols=['device_os_encode',
'device_browser_encode'], outputCol="features")

silver_df = vec_assembler.transform(df)
Apply Zcurve to device features
silver_df = silver_df.withColumn(“zcurve_device”,

process_zcurve(fn.col(“features”))

©2024 Databricks Inc. — All rights reserved

Feature Engineering - Geohash

7

Encoding Features – Reducing Noise

Features are High Dimensional

Latitude / Longitude – Too noisy

Need to widen a range and assign an area to a user

Geohashing – 3bit precision

©2024 Databricks Inc. — All rights reserved

Wilson Score Interval

8

• We want to estimate the ground truth
from the sample.

• Retrieve probabilities of successful
logins.

• Use Wilson Score Interval to estimate
population confidence intervals.

Logins – Samples of Truth Applying Wilson Score – 80% CI

• Number of Successful Logins from Y.
• Where Y is a location, application or device.

• 𝑝𝑝 𝑥𝑥 𝑌𝑌 = 𝑛𝑛𝑠𝑠
𝑠𝑠

• 𝑧𝑧𝑎𝑎 = 1.28 (𝑜𝑜𝑜𝑜 1.96 𝑒𝑒𝑒𝑒𝑒𝑒)
• Determines CI window (1.28 is 80% CI)

• 𝑤𝑤−,𝑤𝑤+ = 1

1+𝑧𝑧𝑎𝑎
2

𝑛𝑛

(𝑝𝑝 + 𝑧𝑧𝑎𝑎2

2𝑛𝑛
± 𝑧𝑧𝑎𝑎

𝑛𝑛
4𝑛𝑛𝑛𝑛 1 − 𝑝𝑝 + 𝑧𝑧𝑎𝑎2)

Creating User Baselines

©2024 Databricks Inc. — All rights reserved

Wilson Score Interval

9

Code – Implement Baselines

Apply Wilson Score Threshold

@fn.udf(returnType=DoubleType())
def wilson_mean(login_counts):

return sum(login_counts) / len(login_counts)

gold_df =
df_agg_zcurve_counts.withColumn("wilcox_90%_conf_interval",
wilson_score_interval(fn.col("device_counts"),
fn.col("zcurve_count_total")))

gold_df = gold_df.withColumn("mean_frequency",
wilson_mean(fn.col("wilcox_90%_conf_interval")))

THRESHOLD = .1
final_df = gold_df.filter(f"mean_frequency > {THRESHOLD}")
final_df =

final_df.groupBy("actor_id").agg(fn.collect_set(fn.col("zcurv
e_device")).alias("device_set"),
fn.collect_set(fn.col("device_arr")).alias("device_set_full")
)

final_df = final_df.withColumn("threshold", fn.lit(THRESHOLD))

Wilson Scoring

from pyspark.sql.types import ArrayType, DoubleType

@fn.udf(returnType=ArrayType(DoubleType()))
def wilson_score_interval(login_counts, n):

if n == 0:
return [0.0, 0.0]

else:
p = login_counts / n
z = 1.28155156554

upper_left = p + (math.pow(z, 2) / (2 * n))
upper_right = z * math.sqrt(((p* (1-p))/n) + (math.pow(z, 2)
/ (4 * math.pow(n, 2))))
lower = 1 + (math.pow(z, 2) / n)

w_lower_estimate = (upper_left - upper_right) / lower
w_upper_estimate = (upper_left + upper_right) / lower

return [w_lower_estimate, w_upper_estimate]

©2024 Databricks Inc. — All rights reserved

Apply Hashing Wilson Score Baselines

Bringing it together

10

What it looks like

To Feature
Table

©2024 Databricks Inc. — All rights reserved

• How do we update encodings for different features?

• Model needs to be trained frequently

• Answer – MLFlow!
• Pass info via Experiments
• Metrics

ML Challenge – Changing Encodings

11

How to track Encoding State? When to update?

©2024 Databricks Inc. — All rights reserved

• Feature Engineered Metrics
• How to pass them to the model?

• Answer: Experiments

MLFlow – Approaches

12

Encoding Dimension, testing ideas

Experiment

First Approach

Experiment

Better Approach

Experiment Per User

Add actor as feature

User Train Model

Encoding Dim

Encoding Dim

Single Model

©2024 Databricks Inc. — All rights reserved

MLFlow – Code Snippets

13

Generating Parameters, using them in training

Scala – Generating Parameters

import org.mlflow.tracking.MlflowContext

// Create function to create or replace mlflow run
def upsert_run(context: MlflowContext, run_name: String) ={
… // Create or replace mlflow run…

}
//Create Run, save metrics as json string,
val active_run = upsert_run(mlflowContext, cur_date_string)
val active_run_id = active_run.getId
// Log Encoding Map
client.logParam(active_run_id, "encoding_json_map", agg_json_str)
client.logParam(active_run_id, "job_new_type", "daily_alpha_job")
//Terminate run
client.logArtifact(active_run_id, file)
client.setTerminated(active_run_id)

Python - Training

client = MlflowClient()
Retrieve experiment

experiment = client.get_experiment_by_name(input_mlflow_path)
experiment_id = experiment.experiment_id
Pull down run
lookup_run = client.search_runs([experiment_id],

filter_string=f"attributes.run_name = ‘{2024-01-22}'")[0]
lookup_run_id = lookup_run.info.run_id
Download json artifact

local_dir = "/tmp/artifact_downloads"
if not os.path.exists(local_dir):
os.mkdir(local_dir)
encoding_map = client.download_artifacts(lookup_run_id,

"encodings.json", local_dir)

©2024 Databricks Inc. — All rights reserved

Databricks – Training Workflow

14

• Baselines help determine AutoEncoder output.

• Allow us to build validation data.

• Store encodings and version it.
• Encodings change if the vocab changes.

• Encoder / Decoder layer sizes?

• Batch Size / Epochs?

• Final Features?
• actor_id, baseline fields, event date, event

hour, login event.

Feature Engineering – Key Pre-step Training Param Considerations

Journey so far

Hashing BaselinesScore Interval TrainingMLFlow

©2024 Databricks Inc. — All rights reserved

Databricks - Training

15

Workflow

What happens
here?

©2024 Databricks Inc. — All rights reserved

Heuristic Models Supervised Models Unsupervised Models

16

Model Considerations

• Difficult to maintain for all use
cases.

• Lookback restrictions.

• Difficult to scale.

• Difficult to blend with new data
sources.

• Difficult to discover new edge
cases and anomaly types.

• Requires Labels.

• Introduce bias.

• No lookback restrictions.

• Easily blend with new data
sources.

• Easy to maintain.

• Does not require labels.

• No lookback restrictions.

• Easily blend with new data
sources.

• Easy to maintain.

• Can reveal unexpected
patterns.

• Flexible.

©2024 Databricks Inc. — All rights reserved 17

Deep Learning
Autoencoder

The picture can't be displayed.

• Autoencoder: reconstruct input
from latent space representation.

• Feature engineering minimizes
historically missed anomalies in
training set  small loss.

• Compute average standard
deviation across all samples: 𝛔𝛔train.

• Store model and 𝛔𝛔train in
MLFLOW.

©2024 Databricks Inc. — All rights reserved

Databricks - Validation

18

Workflow
Validation
Step

©2024 Databricks Inc. — All rights reserved 19

Anomaly Detection
Validation Workflow for a Single User

©2024 Databricks Inc. — All rights reserved

• Injected Anomalies
• Geohash change, reasonable time of travel.

• Normal event times.
• Abnormal event times.

• Geohash change, unreasonable time of travel.
• Normal event times.
• Abnormal event times.

• No Geohash change.
• Abnormal event times.

• Reasonable time of travel?
• Compute effective travel velocity.
• Does it exceed speed of commercial passenger jet?

Validation: Use Case of Interest

20

Impossible Travel

©2024 Databricks Inc. — All rights reserved

• Considered 100 users

• Test Set
• 18 injected anomalies

• Recovered 17/18 anomalies
• All geohash change anomalies recovered

• high to low loss, highest when event time also abnormal
• All but 1 non–geohash change anomalies recovered

• User has broad spectrum of login times

Validation: Use Case of Interest

21

Impossible Travel

©2024 Databricks Inc. — All rights reserved

• Compute average standard deviation
from training.

• Create validation set for each user.

• User specific mean loss wide distribution
– single z-score won’t do.

• A z-score exists for each user that
captures all injected anomalies.

• This z-score serves as threshold when
scoring new incoming data.

• F1 average across all users 98%

Validation – Scale It Up

22

Inject anomalies for all 30k users

©2024 Databricks Inc. — All rights reserved

Inference

23

Workflow
Model
Scoring

©2024 Databricks Inc. — All rights reserved

PyTorch Modeling

24

• Test on CPU before CUDA
• To avoid any CUDA related errors

• Use Parquet tables to store vectors,
rather than Delta

• Petastorm Library helps with larger
data sets

Training Model Testing

• Multiprocessing can be used
alongside the GPU

• Be aware of IO bounds when using
multiple GPUs

• Use P3 Ec2 instances

Insights

©2024 Databricks Inc. — All rights reserved

• User uses session on one
device in new location.

• Model caught travel over
locations in an impossible
window.

Session Hijacking Impossible Travel Interesting Edge Cases

• Someone logs in from X
device, location, application
in an impossible window of
time.

• Can be due to other factors.
• Third-party VPNs.
• Registering new

device.

• Unexplainable things
happening at the edge.

• Odd VPN behaviors.
• Device registry

behaviors.

Anomalies Found

25

Types of Anomalies Caught

©2024 Databricks Inc. — All rights reserved

Edge Cases Found

26

Anomalies that drive policy change

Login

Baseline

New Device

Explanation: User
enrolled a new
device. Cloudflare
assigned a login ip
to the new device
when registering,
that logged it in a
separate location

New Location

©2024 Databricks Inc. — All rights reserved

Edge Cases Found

27

Anomalies that drive policy change

Explanation: Multiple users registered anomalies to
the same external ip or area. Turns out a proxy was
being used

©2024 Databricks Inc. — All rights reserved

• Review raw anomalies prior to use case rules with high loss.
• Are these malicious?
• Create anomaly type and edge case type classifications.

• Could malicious activity look like edge cases – if not can we safely ignore?
• Can we automatically classify anomaly type without a heuristic?
• Explore loss associated with other use cases.

• Explore other unsupervised anomaly detection approaches.

• Blend multiple data sources.
• View user behavior holistically

• OKTA
• Entra ID (Azure AD Formerly)

Next?

28

Future Work

©2024 Databricks Inc. — All rights reserved

Q/A

Anomalies in Authentication Logs

29

	Exploring Anomalies in Authentication Logs with Autoencoders

	Introduction
	What Happens Today
	Can Machine Learning Help?
	Machine Learning Challenges
	Feature Engineering
	Feature Engineering - Geohash
	Wilson Score Interval
	Wilson Score Interval	
	Bringing it together
	ML Challenge – Changing Encodings
	MLFlow – Approaches
	MLFlow – Code Snippets
	Databricks – Training Workflow
	Databricks - Training
	Model Considerations
	Deep Learning
	Databricks - Validation
	Anomaly Detection
	Validation: Use Case of Interest
	Validation: Use Case of Interest
	Validation – Scale It Up
	Inference
	PyTorch Modeling
	Anomalies Found
	Edge Cases Found
	Edge Cases Found
	Next?
	Q/A

