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• Cyber security events difficult to detect at scale with 
non-restrictive lookback windows.

• Too much data!

• ~30k Adobe Actors.

• ~1.5 million logins per day.

• How to extract the most probable events of interest.

• How to understand Adobe Employee’s Login 
behavior.

• Use ML to detect and understand anomalies.

• Apply rules to anomalies for specific use cases.

• Return prioritized list of anomalies for human review.

• Explore blending data sources.

Problem Statement The Plan
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Introduction
Can we use ML to detect cyber security events at Scale?



©2024 Databricks Inc. — All rights reserved 3

What Happens Today
How Most Authentication Software Monitors for Anomalies

~1.5 million 
Logins

Heuristic Model

• Last 20-50 logins
• Can be increased at 

cost of compute time
• Hard to capture 

complex behavior
• Lots of rules, hard 

to maintain
• Limited to a single 

data source

Anomalies
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Can Machine Learning Help?
Use a model as a filter to eliminate most of the rules.

~1.5 million 
Logins Anomalies

Less 
Complex 
Heuristic 

Model

Feature Engineering 
and

Machine Learning
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Establish User Baselines Encode Violations Send them to the model
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Machine Learning Challenges

• Where do they live?

• What do they use?

• What devices do they have?

• What IP Addresses do they 
login to?

• Latitude / Longitude encoding

• How to establish accurate 
baselines?

• Pyspark / MLFlow to create 
encodings.

• Training / Validation Workflow.

• Inference Workflow.

• Model Store.

Feature Engineering
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• Break down multi-dimensional 
features to one dimension

• Need to clean up noise

• Embedding layer may occur 
too far downstream

• Z-order curve, hashing are 
good options

Feature Engineering
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Encoding Multi-dimensional data

import zCurve
Import pyspark.sql.functions as fn

@fn.udf(returnType=DoubleType())
def process_zcurve(input_arr):

int_process = [int(x) for x in input_arr]
curve = zCurve.interlace(*int_process, dims=2, 
bits_per_dim=8)
return float(curve)

df = spark.sql(f"SELECT * FROM {input_table}")
vec_assembler = 

VectorAssembler(inputCols=['device_os_encode', 
'device_browser_encode'], outputCol="features")

silver_df = vec_assembler.transform(df)
# Apply Zcurve to device features
silver_df = silver_df.withColumn(“zcurve_device”, 

process_zcurve(fn.col(“features”))
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Feature Engineering - Geohash
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Encoding Features – Reducing Noise

Features are High Dimensional

Latitude / Longitude – Too noisy

Need to widen a range and assign an area to a user

Geohashing – 3bit precision
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Wilson Score Interval
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• We want to estimate the ground truth 
from the sample.

• Retrieve probabilities of successful 
logins.

• Use Wilson Score Interval to estimate 
population confidence intervals.

Logins – Samples of Truth Applying Wilson Score – 80% CI

• Number of Successful Logins from Y.
• Where Y is a location, application or device.

• 𝑝𝑝 𝑥𝑥 𝑌𝑌 = 𝑛𝑛𝑠𝑠
𝑠𝑠

• 𝑧𝑧𝑎𝑎 = 1.28 (𝑜𝑜𝑜𝑜 1.96 𝑒𝑒𝑒𝑒𝑒𝑒)
• Determines CI window (1.28 is 80% CI)

• 𝑤𝑤−,𝑤𝑤+ = 1

1+𝑧𝑧𝑎𝑎
2

𝑛𝑛

(𝑝𝑝 + 𝑧𝑧𝑎𝑎2

2𝑛𝑛
± 𝑧𝑧𝑎𝑎

𝑛𝑛
4𝑛𝑛𝑛𝑛 1 − 𝑝𝑝 + 𝑧𝑧𝑎𝑎2)

Creating User Baselines
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Wilson Score Interval
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Code – Implement Baselines

Apply Wilson Score Threshold

@fn.udf(returnType=DoubleType())
def wilson_mean(login_counts):

return sum(login_counts) / len(login_counts)

gold_df = 
df_agg_zcurve_counts.withColumn("wilcox_90%_conf_interval", 
wilson_score_interval(fn.col("device_counts"), 
fn.col("zcurve_count_total")))

gold_df = gold_df.withColumn("mean_frequency", 
wilson_mean(fn.col("wilcox_90%_conf_interval")))

THRESHOLD = .1
final_df = gold_df.filter(f"mean_frequency > {THRESHOLD}")
final_df = 

final_df.groupBy("actor_id").agg(fn.collect_set(fn.col("zcurv
e_device")).alias("device_set"), 
fn.collect_set(fn.col("device_arr")).alias("device_set_full")
)

final_df = final_df.withColumn("threshold", fn.lit(THRESHOLD))

Wilson Scoring

from pyspark.sql.types import ArrayType, DoubleType

@fn.udf(returnType=ArrayType(DoubleType()))
def wilson_score_interval(login_counts, n):

if n == 0:
return [0.0, 0.0]

else:
p = login_counts / n
z = 1.28155156554 

upper_left = p + (math.pow(z, 2) / (2 * n)) 
upper_right = z * math.sqrt(((p* (1-p))/n) + (math.pow(z, 2) 
/ (4 * math.pow(n, 2))))
lower = 1 + (math.pow(z, 2) / n)

w_lower_estimate = (upper_left - upper_right) / lower
w_upper_estimate = (upper_left + upper_right) / lower

return [w_lower_estimate, w_upper_estimate]
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Apply Hashing Wilson Score Baselines

Bringing it together
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What it looks like

To Feature 
Table
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• How do we update encodings for different features?

• Model needs to be trained frequently

• Answer – MLFlow!
• Pass info via Experiments 
• Metrics

ML Challenge – Changing Encodings
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How to track Encoding State? When to update?
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• Feature Engineered Metrics
• How to pass them to the model?

• Answer: Experiments

MLFlow – Approaches
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Encoding Dimension, testing ideas

Experiment

First Approach

Experiment

Better Approach

Experiment Per User

Add actor as feature

User Train Model

Encoding Dim

Encoding Dim

Single Model
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MLFlow – Code Snippets
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Generating Parameters, using them in training

Scala – Generating Parameters

import org.mlflow.tracking.MlflowContext

// Create function to create or replace mlflow run
def upsert_run(context: MlflowContext, run_name: String) ={
… // Create or replace mlflow run…

}
//Create Run, save metrics as json string,
val active_run = upsert_run(mlflowContext, cur_date_string)
val active_run_id = active_run.getId
// Log Encoding Map
client.logParam(active_run_id, "encoding_json_map", agg_json_str)
client.logParam(active_run_id, "job_new_type", "daily_alpha_job")
//Terminate run
client.logArtifact(active_run_id, file)
client.setTerminated(active_run_id)

Python - Training

client = MlflowClient()
# Retrieve experiment

experiment = client.get_experiment_by_name(input_mlflow_path) 
experiment_id = experiment.experiment_id
# Pull down run
lookup_run = client.search_runs([experiment_id], 

filter_string=f"attributes.run_name = ‘{2024-01-22}'")[0]
lookup_run_id = lookup_run.info.run_id
# Download json artifact

local_dir = "/tmp/artifact_downloads"
if not os.path.exists(local_dir):
os.mkdir(local_dir)
encoding_map = client.download_artifacts(lookup_run_id, 

"encodings.json", local_dir)
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Databricks – Training Workflow
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• Baselines help determine AutoEncoder output.

• Allow us to build validation data.

• Store encodings and version it.
• Encodings change if the vocab changes.

• Encoder / Decoder layer sizes?

• Batch Size / Epochs?

• Final Features?
• actor_id, baseline fields, event date, event 

hour, login event.

Feature Engineering – Key Pre-step Training Param Considerations

Journey so far

Hashing BaselinesScore Interval TrainingMLFlow
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Databricks - Training
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Workflow

What happens 
here?



©2024 Databricks Inc. — All rights reserved

Heuristic Models Supervised Models Unsupervised Models
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Model Considerations

• Difficult to maintain for all use 
cases.

• Lookback restrictions.

• Difficult to scale.

• Difficult to blend with new data 
sources.

• Difficult to discover new edge 
cases and anomaly types.

• Requires Labels.

• Introduce bias.

• No lookback restrictions.

• Easily blend with new data 
sources.

• Easy to maintain.

• Does not require labels.

• No lookback restrictions.

• Easily blend with new data 
sources.

• Easy to maintain.

• Can reveal unexpected 
patterns.

• Flexible.
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Deep Learning
Autoencoder

The picture can't be displayed.

• Autoencoder:  reconstruct input 
from latent space representation.

• Feature engineering minimizes 
historically missed anomalies in 
training set  small loss.

• Compute average standard 
deviation across all samples: 𝛔𝛔train.

• Store model and 𝛔𝛔train in 
MLFLOW.
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Databricks - Validation
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Workflow
Validation 
Step
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Anomaly Detection
Validation Workflow for a Single User
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• Injected Anomalies
• Geohash change, reasonable time of travel.

• Normal event times.
• Abnormal event times.

• Geohash change, unreasonable time of travel.
• Normal event times.
• Abnormal event times.

• No Geohash change.
• Abnormal event times.

• Reasonable time of travel?
• Compute effective travel velocity.
• Does it exceed speed of commercial passenger jet?

Validation: Use Case of Interest
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Impossible Travel
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• Considered 100 users

• Test Set
• 18 injected anomalies

• Recovered 17/18 anomalies
• All geohash change anomalies recovered

• high to low loss, highest when event time also abnormal
• All but 1 non–geohash change anomalies recovered

• User has broad spectrum of login times

Validation: Use Case of Interest
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Impossible Travel
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• Compute average standard deviation 
from training.

• Create validation set for each user.

• User specific mean loss wide distribution 
– single z-score won’t do.

• A z-score exists for each user that 
captures all injected anomalies.

• This z-score serves as threshold when 
scoring new incoming data.

• F1 average across all users 98%

Validation – Scale It Up
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Inject anomalies for all 30k users
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Inference
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Workflow 
Model 
Scoring
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PyTorch Modeling
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• Test on CPU before CUDA
• To avoid any CUDA related errors

• Use Parquet tables to store vectors, 
rather than Delta

• Petastorm Library helps with larger 
data sets

Training Model Testing

• Multiprocessing can be used 
alongside the GPU

• Be aware of IO bounds when using 
multiple GPUs

• Use P3 Ec2 instances

Insights
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• User uses session on one 
device in new location.

• Model caught travel over 
locations in an impossible 
window.

Session Hijacking Impossible Travel Interesting Edge Cases

• Someone logs in from X 
device, location, application 
in an impossible window of 
time.

• Can be due to other factors.
• Third-party VPNs.
• Registering new 

device.

• Unexplainable things 
happening at the edge.

• Odd VPN behaviors.
• Device registry 

behaviors.

Anomalies Found
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Types of Anomalies Caught



©2024 Databricks Inc. — All rights reserved

Edge Cases Found
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Anomalies that drive policy change

Login

Baseline

New Device

Explanation: User 
enrolled a new 
device. Cloudflare 
assigned a login ip
to the new device 
when registering, 
that logged it in a 
separate location

New Location
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Edge Cases Found
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Anomalies that drive policy change

Explanation: Multiple users registered anomalies to 
the same external ip or area. Turns out a proxy was 
being used
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• Review raw anomalies prior to use case rules with high loss.
• Are these malicious?
• Create anomaly type and edge case type classifications.

• Could malicious activity look like edge cases – if not can we safely ignore?
• Can we automatically classify anomaly type without a heuristic?
• Explore loss associated with other use cases.

• Explore other unsupervised anomaly detection approaches.

• Blend multiple data sources.
• View user behavior holistically 

• OKTA
• Entra ID (Azure AD Formerly)

Next?
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Future Work
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Q/A

Anomalies in Authentication Logs
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