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Introduction

Can we use ML to detect cyber security events at Scale?

Problem Statement
e Cyber security events difficult to detect at scale with
non-restrictive lookback windows.
e Too much datal
e ~30k Adobe Actors.
e ~1.5 million logins per day.
e How to extract the most probable events of interest.

e How to understand Adobe Employee’s Login
behavior.

The Plan

Use ML to detect and understand anomalies.
Apply rules to anomalies for specific use cases.
Return prioritized list of anomalies for human review.

Explore blending data sources.
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What Happens Today

How Most Authentication Software Monitors for Anomalies

Heuristic Model

Last 20-50 logins
Can be increased at

~1.5 million cost of compute time
Lefgine complex behavior

Lots of rules, hard

to maintain

Limited to a single

data source
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Can Machine Learning Help?

Use a model as a filter to eliminate most of the rules.

Feature Engineering
and
Machine Learning

Less
~1.5 million » Complex
Logins Heuristic
Model
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Machine Learning Challenges

Feature Engineering

2] W@

00O
Establish User Baselines Encode Violations Send them to the model
e Where do they live? e Latitude / Longitude encoding e Training / Validation Workflow.
e What do they use? e How to establish accurate e Inference Workflow.
ines?
e What devices do they have? baselines? e Model Store.
e Pyspark / MLFlow to create

e What IP Addresses do they

: ncodings.
login to? encodings
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Feature Engineering

Encoding Multi-dimensional data

import zCurxve
Import pyspark.sql.functions as fn

e Break down multi-dimensional

features to one dimension i i iy R L))

def process_zcurve(input_arxr):
int_process = [int(x) for x in input_arr]
e Need to clean up noise curve = zCurve.interlace(*int_process, dims=2,
bits_per_dim=8)
2 return float(curve
e Embedding layer may occur . :
df = spark.sql(f"SELECT * FROM {input_table}")

too far downstream vec_assembler =
VectorAssembler (inputCols=['device_os_encode',
A Z—Order Curve, haShing are 'device_browser_encode'], outputCol="features")
gOOd Options silver_df = vec_assembler.transform(df)

# Apply Zcurve to device features
silver_df = silver_df.withColumn(“zcurve_device”,
process_zcurve(fn.col(“features”))
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Feature Engineering - Geohash

Encoding Features —Reducing Noise

Features are High Dimensional Need to widen a range and assign an area to a user

Latitude / Longitude - Too noisy Geohashing - 3bit precision

Oregon - Latitude / Longitude
60°W 0 60°E
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Wilson Score Interval

Creating User Baselines

Logins — Samples of Truth ]\ Applying Wilson Score -80% CI

« We want to estimate the ground truth Number of Successful Logins from Y.

from the sample. e Where Y is a location, application or device.
» Retrieve probabilities of successful e« pxl) =1
logins. *

e 7z, =1.28 (or 1.96 etc)

e Use Wilson Score Interval to estimate . Determines Cl window (1.28 is 80% CI)

population confidence intervals.

2
e w,wt= é(p+§—iizf\/4np(1—l9)+zé)
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Wilson Score Interval

Code —Implement Baselines

Wilson Scoring

Apply Wilson Score Threshold

from pyspark.sql.types import ArrayType, DoubleType

@fn.udf(returnType=ArrayType(DoubleType()))
def wilson_score_interval(login_counts, n):

if n == 0:
return [0.0, 0.0]
else:
p = login_counts / n
z = 1.28155156554

upper_left = p + (math.pow(z, 2) / (2 * n))

/ (4 * math.pow(n, 2))))
lower = 1 + (math.pow(z, 2) / n)

w_lower_estimate
w_upper_estimate

(upper_left - upper_right) / lower
(upper_left + upper_right) / lower

return [w_lower_estimate, w_upper_estimate]

upper_right = z * math.sqrt(((p* (1-p))/n) + (math.pow(z, 2)

@fn.udf(returnType=DoubleType())
def wilson_mean(login_counts):
return sum(login_counts) / len(login_counts)

gold_df =
df _agg_zcurve_counts.withColumn("wilcox_90%_conf_interval",
wilson_score_interval(fn.col("device_counts"),
fn.col("zcurve_count_total")))

gold_df = gold_df.withColumn("mean_frequency",
wilson_mean(fn.col("wilcox_90%_conf_interval")))

THRESHOLD = .1

final_df = gold_df.filter(f"mean_frequency > {THRESHOLD}")

final_df
final_df.groupBy("actor_id").agg(fn.collect_set(fn.col("zcurv
e_device")).alias("device_set"),
fn.collect_set(fn.col("device_arr")).alias("device_set_full")

final_df = final_df.withColumn("threshold", fn.lit(THRESHOLD))
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Bringing it together
What it looks like

Apply Hashing Wilson Score Baselines

(lat, lon), (P(X'Y)> (P(X'Y)> (P(X'Y)> actor_id geohash set | threshold
(lat, lon) @adobe.com 79q9” 3

vdobe.com
...@adobe.com

y/A

CIln CII CIu’ CII

CIua CII

<

T,,15,15,14. ..

To Feature
Table
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ML Challenge - Changing Encodings

How to track Encoding State? When to update?

e How do we update encodings for different features?

e Model needs to be trained frequently

Leam Core Components

e Answer — MLFlow!

. . . ] v O )\ )
e Pass info via Experiments ll_'ID Evaluation D&iof
. uT MLOps

* Metrics miflow

Re_gistry

T rackinS,

N
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MLFlow

Approaches

Encoding Dimension, testing ideas

DATA'Al SUMMIT

m ‘ | || || | / Encoding Dim

Feature Engineered Metrics First Approach 5
e How to pass them to the model? ] =
Answer: Experiments ’m ' User Train Model
Experiment Per User Encoding Dim i Féq ;_
O e e =
m — ‘ﬁh” Better Approach
Experiment Single Model
Add actor as feature O Hﬁ
0.0 Ll R z
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MLFlow - Code Snippets

Generating Parameters, using them in training

Scala - Generating Parameters

Python - Training

import org.mlflow.tracking.MlflowContext

// Create function to create or replace mlflow run
def upsert_run(context: MlflowContext, run_name: String) ={
.. // Create or replace mlflow run.

//Create Run, save metrics as json string,

val active_run = upsert_run(mlflowContext, cur_date_string)

val active_run_id = active_run.getId

// Log Encoding Map

client.logParam(active_run_id, "encoding_json_map", agg_json_str)
client.logParam(active_run_id, "job_new_type", "daily_alpha_job")
//Terminate run

client.logArtifact(active_run_id, file)
client.setTerminated(active_run_id)

client = MlflowClient()
# Retrieve experiment

experiment = client.get_experiment_by_name(input_mlflow_path)

experiment_id = experiment.experiment_id

# Pull down run

lookup_run = client.search_runs([experiment_id],
filter_string=f"attributes.run_name = ’'{2024-01-22}'")[0]

lookup_run_id = lookup_run.info.run_id

# Download json artifact

local_dir = "/tmp/artifact_downloads"

if not os.path.exists(local_dir):

os.mkdir(local_dir)

encoding_map = client.download_artifacts(lookup_run_id,
"encodings.json", local_dir)

DATA'Al SUMMIT
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Databricks - Training Workflow

Journey so far

Vo Em o| | ;
o= | BE |8 :
Hashing Score Interval Baselines MLFlow Training

Feature Engineering —Key Pre-step Training Param Considerations
o Baselines help determine AutoEncoder output. e Encoder / Decoder layer sizes?
e Allow us to build validation data. e Batch Size / Epochs?
e Store encodings and version it. e Final Features?

e Encodings change if the vocab changes. e actor_id, baseline fields, event date, event

hour, login event.
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Databricks - Training

Workflow

Freeze
Actors

DATA'Al SUMMIT
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Model Considerations

v

Heuristic Models

e Difficult to maintain for all use
cases.

e | ookback restrictions.
e Difficult to scale.

e Difficult to blend with new data
sources.

e Difficult to discover new edge
cases and anomaly types.

DATA'Al SUMMIT

Supervised Models

Requires Labels.
e [ntroduce bias.
No lookback restrictions.

Easily blend with new data
sources.

Easy to maintain.
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Unsupervised Models

Does not require labels.
No lookback restrictions.

Easily blend with new data
sources.

Easy to maintain.

Can reveal unexpected
patterns.

Flexible.
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Deep Learning

Autoencoder

« Autoencoder: reconstruct input
from latent space representation.

« Feature engineering minimizes
historically missed anomalies in
training set - small loss.

» Compute average standard
deviation across all samples: o,

« Store model and o, in
MLFLOW.
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Databricks - Validation
Workflow

Validation
I'_E I r Freq I St ep
ncode .
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Anomaly Detection

Validation Workflow for a Single User

Inject Anomalies
j=1,2,3,...,k

Use Z-Score of
L Avg.
Injections to create S train

thresholds _

I S N
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Validation: Use Case of

Impossible Travel

e Injected Anomalies
 Geohash change, reasonable time of travel.

e Normal event times.
e Abnormal event times.

e Geohash change, unreasonable time of travel.

e Normal event times.
e Abnormal event times.

e No Geohash change.

e Abnormal event times.

e Reasonable time of travel?

o Compute effective travel velocity.

 Does it exceed speed of commercial passenger jet?
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DATA'Al SUMMIT

Validation: Use Case of

Impossible Travel

L Considered 100 users

® Test Set
e 18 injected anomalies

® Recovered 17/18 anomalies
® All geohash change anomalies recovered
e high to low loss, highest when event time also abnormal
e All but 1 non—-geohash change anomalies recovered
e User has broad spectrum of login times

True Positive

Predicted Positive ' 17

Predicted Negative
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Interest

True Negative

0
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Validation - Scale It Up

Inject anomalies for all 30k users

e Compute average standard deviation
from training. A 613 |1 |71 [527 [86 |
B (718 |1 |66 | 600 | 118

e Create validation set for each user. 'C 1198 |1 |77  |1029 | 169 |

659 7.9 o276 | 83

e User specific mean loss wide distribution E=
- single z-score won't do. P |7 169 | t688 |20

e A z-score exists for each user that G 815 1 [8 |69l [124

captures all injected anomalies. Table 1: A sample of 7 out of 30k users. Each user data set
leads to user specific z-scores to create thresholds capturing

e This z-score serves as threshold when ..
each injected anomaly.

scoring new incoming data.

e F1average across all users 98%
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Inference

Workflow

DATA'Al SUMMIT
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PI):;II'g?ﬂrSch Modeling O PyTO I’Ch

Training Model Testing
e Test on CPU before CUDA e Multiprocessing can be used
e To avoid any CUDA related errors alongside the GPU
e Use Parquet tables to store vectors, e Be aware of 10 bounds when using
rather than Delta multiple GPUs
o Petastorm Library helps with larger e Use P3 Ec2 instances
data sets
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Anomalies Found
Types of Anomalies Caught

Session Hijacking Impossible Travel Interesting Edge Cases
e User uses session on one e Someone logs in from X e Unexplainable things
device in new location. device, location, application happening at the edge.
e Model caught travel over L?r:en impossible window of  Odd VPN behaviors.
locations in an impossible ’ o Device registry
window. e Can be due to other factors. behaviors.

e Third-party VPNs.

e Registering new
device.
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Edge Cases Found

Anomalies that drive policy change

DATA'Al SUMMIT

Baseline

New Device

Login <7

New Location

©2024 Databricks Inc. — All rights reserved

Explanation: User
enrolled a new
device. Cloudflare
assigned a login 1ip
to the new device
when registering,
that logged it in a
separate location
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Edge Cases Found

Anomalies that drive policy change

S S

Explanation: Multiple users registered anomalies to
the same external ip or area. Turns out a proxy was
being used
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Future Work

Review raw anomalies prior to use case rules with high loss.
e Are these malicious?
e Create anomaly type and edge case type classifications.
e Could malicious activity look like edge cases - if not can we safely ignore?
e Can we automatically classify anomaly type without a heuristic?
e Explore loss associated with other use cases.

Explore other unsupervised anomaly detection approaches.

Blend multiple data sources.
e View user behavior holistically
e OKTA
e EntraID (Azure AD Formerly)
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Q/A

Anomalies in Authentication Logs

DATA'Al SUMMIT
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