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About Us

* Intel Big Data Analytics Team

- Start Gazelle Project in May. 2020. TPCH boosts by 1.8x, TPCDS 1.5x
« Transform to Gluten Project in Jan. 2022.

* Velox backend, latest perf: TPCH boosts by 3x, TPCDS 2.5x

+ Gazelle uses Apache Arrow based in house designed SQL engine

- Gluten is a thin layer to offload Spark SQL engine to 3 library like Velox and

Gluten: A Middle Layer to Offload Spark SQL to Native Engines for Execution
Acceleration

https://www.youtube.com/watch?v=006qgHT N-1U

https://github.com/oap-project/gluten



https://www.youtube.com/watch?v=0Q6gHT_N-1U
https://github.com/oap-project/gluten

Why We Care about Shuffle?

TPCH Elapsed Time Breakdown by Operators In Gluten
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Shuffle related operations takes up to 28% of total elapsed time



Spark Shuffle




Spark Shuffle

Output

Input Intermediate Data Shuffle (Multiple iterations) A HDFS file

_ __ _AHDFSfile __ __ Each Map’s output

I ) |
| |
| |
| Input r |
| split0 ) |
I .. I
| Partiton 1 | |
| |
I I
I I
| Input |
I ' I
| Sp“tl > reduce |
I " I
| Partition 1 |
| |
| |
: Input :
| split2 Partition 1 q  reduce Output 2 | |
I ’ |
| | |
| | | |
——— e — — I . J L b

*Best Practice of Compression Codecs in Spark - Sophia Sun, etc. <



Spark Shuffle Operations

Mapper Reducer
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Current Spark ShuffleWritter

BypassMergeSortShuffle
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Columnar Shuffle Changes

Mapper Reducer

I Decompress l

Compress




Hash Based Columnar Shuffle (1)

RecordBatch

Split
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RecordBatch

Split

Memory block is pre-allocated
And reused €



Hash Based Columnar Shuffle (2)
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Hash Based Columnar Shuffle (3)
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Remote Shuffle Service Support
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Pushed Shuffle

Aggregate

Project
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Split Function




Split Function
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for ¢ in columns: « Each column is scaned reducers# times
for d in reducers:
for r in row_offsets in d: . . .
d[r++)=clo_offeat[z]] Key is to keep column data in L1/L2 cache

 It's a random read/sequential write patten



Memory

Target

Source 7~ reducer0
S To solve the target memory allocation issue:
21 82 wn
: 5| 3 *  Memory allocation for each reducer is delayed
g @ . o
c ' reducerl = until the reducer is touched
C © 2 < . .
c o <2 =} * Target row size is calculated based on
< e @ : :
S available memory when first record batch
\ ) (X c4
Sucers arrives
o . : reducer
S.'Z.e = NUITL_FONE SRl sie The less row size, the higher overhead of batch switch
Fit into L1/L2 cache
* Experimental sort based shuffle is
num_rows=4K ] ) )
int Column is 16K s ) implementing by community

Pre-allocated size =
data size * num_rows * num_columns *
num_reducers * num_executor_cores *
num_executors

4k row, 8 int column, 1k reducer, 256 threads
system needs 32G pre-allocated memory

Sort is not a Columnar format friendly operation!



Split Performance
Split Function Elapsed Time over Data Size of One Column
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« Scalable to column number, reducer number but not column data size
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Speedup on Cluster

Gluten vs. Vanilla Spark Performance Speedup Ratio

2.41x "
N 2.13x "

N 1.79x "

Single Node 3 node cluster using 100Gbps network 3 nodes cluster using 25Gbps NIC

*Not the latest Performance



The Network Bottleneck

SF6T Power Test
100Gbps Network

Spark

Gluten+Velox

Shuffle Data Size (GB)

9,176

8,085

CPU%

81%

/1%

Network Throughput (MB/s)

- Faster processing leads to higher pressure to |I/O

Solutions: faster network or less data



Accelerator in 4th Gen Intel® Xeon®
Scalable processors
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Compression Code Comparison
Normalized to LZ4

zstd
LZ4 QAT Accelerator
The Better
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Compression Ratio (Higher is better)

QAT vs. LZ4: Similar Compression Time, higher compression Ratio



Performance Boost From QAT
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Gluten Speedup Ratio over Vanilla Spark on 3 nodes cluster with
25Gbps network

2.14x

1.79x

Gluten + LZ4 Gluten + QAT

More optimizations on QAT is going on, like async mode



Reducer




Fetch in Async

Fetch Thread]

Fetch Thread?2
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Start the pipeline once one record batch is fetched instead of whole
block (Vanilla Spark)

* One block is the size a reducer fetches from a mapper



Recap

With SQL engine implementation, Columnar Shuffle is a key operator to
Performance

Columnar Shuffle brings unique challenges

Accelerator can be effectively used in shuffle
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