DATA'AI
SUMMIT

BY & databricks

Best Exploration of
Columnar Shuffle
Design

Binwei Yang

Rong Ma
Chengcheng Jin

Intel Spark Team
2023

About Us

* Intel Big Data Analytics Team

- Start Gazelle Project in May. 2020. TPCH boosts by 1.8x, TPCDS 1.5x
« Transform to Gluten Project in Jan. 2022.

* Velox backend, latest perf: TPCH boosts by 3x, TPCDS 2.5x

+ Gazelle uses Apache Arrow based in house designed SQL engine

- Gluten is a thin layer to offload Spark SQL engine to 3 library like Velox and

Gluten: A Middle Layer to Offload Spark SQL to Native Engines for Execution
Acceleration

https://www.youtube.com/watch?v=006qgHT N-1U

https://github.com/oap-project/gluten

https://www.youtube.com/watch?v=0Q6gHT_N-1U
https://github.com/oap-project/gluten

Why We Care about Shuffle?

TPCH Elapsed Time Breakdown by Operators In Gluten

120%
100% sort
midle
® PreProject
80% m Project
m Stream input
8% m postProject
60% 9% m shuffle write
m split
[
10% not counted
40%
compress
hash probe
12% ® hash build
20% :
aggregation

H scan and filter

0%

Shuffle related operations takes up to 28% of total elapsed time

Spark Shuffle

Spark Shuffle

Output

Input Intermediate Data Shuffle (Multiple iterations) A HDFS file

_ __ _AHDFSfile __ __ Each Map’s output

I) |
| |
| |
| Input r |
| split0) |
I .. I
| Partiton 1 | |
| |
I I
I I
| Input |
I ' I
| Sp“tl > reduce |
I " I
| Partition 1 |
| |
| |
: Input :
| split2 Partition 1 q reduce Output 2 | |
I ’ |
| | |
| | | |
——— e — — I . J L b

*Best Practice of Compression Codecs in Spark - Sophia Sun, etc. <

Spark Shuffle Operations

Mapper Reducer

Decompress

| |

compress J . T

Current Spark ShuffleWritter

BypassMergeSortShuffle

- < _}' =

Split

@

4

L Smallfile

Persistent

Single file per partition

UnsafeSortWrite

=

4 A
L

- -

v

Spill on out of memory

Columnar
Shuffle

Columnar Shuffle Changes

Mapper Reducer

I Decompress l

Compress

Hash Based Columnar Shuffle (1)

RecordBatch

Split

'y — 4

RecordBatch

Split

Memory block is pre-allocated
And reused €

Hash Based Columnar Shuffle (2)

S . ” Split Batch Cached Batch
I
P P 2 p >
RecordBatch HE HE
Split ;
[c2 Compress =E ==
| — == == ristEs \ == Q==
Cg c4 - 2 5 5
Batch Memory Block
Spill on OOM Keep growing until OOM

- w4 one file per spill V,\eﬁ‘c’ae

Split Memory Block ; ‘]

pre-allocated == ==

and reused — = — =

A —{
Next() loop 7\/ L

Hash Based Columnar Shuffle (3)

Merge
—F— , File 1
-~
Pid=0
File 2
Pid=2 Pia=g
Spill batches
ordered by partid]
Pid=1

Merge files by partition id
Seq. read, seq. write

Merge
File 3

File# = OOM#
Same as

unsafesort

Single File Per Spill

Pid=1

Pid=2

000

000

000

LWL

000

C

OO0 ooo

Remote Shuffle Service Support

Node2
RecordBatch

S C
[ompress
B >
0
O | -
C »
(0] NN
o OO0 |9 O
O 00 oo
1
1
1
Lo e e e e e e e e e e e e e e e - |
". |||||||||||||||||||| |
: 1
: 1
: 1
1
1
1
15 :
o 1
+
'R RIS I3[—
1 m :
1 Dn_nu 0|00 |BI0lo I N
I Compress I
1 _
; 3
| - C
| o
[o !
= S |
| & 3
1
“ I
: 1
1
1
1 < !
O 1
— +—
= 1
I S _
—
(0] o
| O o !
I (@) o |
: pd 1
: 1

Pushed Shuffle

Aggregate

Project

-»I EI}@DI}

Split Function

Split Function

/" reducer0 "\ /" reducer0
Recsoizrgiimh Column 1 Column 2 5
. N\) G— G
c w c2 c
c D c2
C o) c2
G C c2
© @D c2
< reducerl % —222— reducerl
2 = & :
S 5 -/ <
Random Read
reducer?2 reducer?2
U
for ¢ in columns: « Each column is scaned reducers# times
for d in reducers:
for r in row_offsets in d: . . .
d[r++)=clo_offeat[z]] Key is to keep column data in L1/L2 cache

 It's a random read/sequential write patten

Memory

Target

Source 7~ reducer0
S To solve the target memory allocation issue:
21 82 wn
: 5| 3 * Memory allocation for each reducer is delayed
g @ . o
c ' reducerl = until the reducer is touched
C © 2 < . .
c o <2 =} * Target row size is calculated based on
< e @ : :
S available memory when first record batch
\) (X c4
Sucers arrives
o . : reducer
S.'Z.e = NUITL_FONE SRl sie The less row size, the higher overhead of batch switch
Fit into L1/L2 cache
* Experimental sort based shuffle is
num_rows=4K]))
int Column is 16K s) implementing by community

Pre-allocated size =
data size * num_rows * num_columns *
num_reducers * num_executor_cores *
num_executors

4k row, 8 int column, 1k reducer, 256 threads
system needs 32G pre-allocated memory

Sort is not a Columnar format friendly operation!

Split Performance
Split Function Elapsed Time over Data Size of One Column

L2 Cache size

(o]

ol

I

Elapsed Time in Sec
w

N

H

o

1024 2048 3072 4096 5120
Data Size in KB

o

« Scalable to column number, reducer number but not column data size

Compress

Speedup on Cluster

Gluten vs. Vanilla Spark Performance Speedup Ratio

2.41x "
N 2.13x "

N 1.79x "

Single Node 3 node cluster using 100Gbps network 3 nodes cluster using 25Gbps NIC

*Not the latest Performance

The Network Bottleneck

SF6T Power Test
100Gbps Network

Spark

Gluten+Velox

Shuffle Data Size (GB)

9,176

8,085

CPU%

81%

/1%

Network Throughput (MB/s)

- Faster processing leads to higher pressure to |I/O

Solutions: faster network or less data

Accelerator in 4th Gen Intel® Xeon®
Scalable processors

= = N N -
o o o & o

Compression Time

o
o

0.0

0.8

lanag ayL

Compression Code Comparison
Normalized to LZ4

zstd
LZ4 QAT Accelerator
The Better
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Compression Ratio (Higher is better)

QAT vs. LZ4: Similar Compression Time, higher compression Ratio

Performance Boost From QAT

2.2

2.0

1.8

1.6

1.4

1.2

1.0

Gluten Speedup Ratio over Vanilla Spark on 3 nodes cluster with
25Gbps network

2.14x

1.79x

Gluten + LZ4 Gluten + QAT

More optimizations on QAT is going on, like async mode

Reducer

Fetch in Async

Fetch Thread]

Fetch Thread?2

Fetch Thread3 E :

-

A

~

Pipeline in Task Thread

Filter Project

f

T.

1:

Join

O

A

gregate

~

J

4

Start the pipeline once one record batch is fetched instead of whole
block (Vanilla Spark)

* One block is the size a reducer fetches from a mapper

Recap

With SQL engine implementation, Columnar Shuffle is a key operator to
Performance

Columnar Shuffle brings unique challenges

Accelerator can be effectively used in shuffle

	Slide 1: Best Exploration of Columnar Shuffle Design
	Slide 2: About Us
	Slide 3: Why We Care about Shuffle?
	Slide 4: Spark Shuffle
	Slide 5: Spark Shuffle
	Slide 6: Spark Shuffle Operations
	Slide 7: Current Spark ShuffleWritter
	Slide 8: Columnar Shuffle
	Slide 9: Columnar Shuffle Changes
	Slide 10: Hash Based Columnar Shuffle (1)
	Slide 11: Hash Based Columnar Shuffle (2)
	Slide 12: Hash Based Columnar Shuffle (3)
	Slide 13: Remote Shuffle Service Support
	Slide 14: Pushed Shuffle
	Slide 15: Split Function
	Slide 16: Split Function
	Slide 17: Memory
	Slide 18: Split Performance
	Slide 19: Compress
	Slide 20: Speedup on Cluster
	Slide 21: The Network Bottleneck
	Slide 22: Accelerator in 4th Gen Intel® Xeon® Scalable processors
	Slide 23: Performance Boost From QAT
	Slide 24: Reducer
	Slide 25: Fetch in Async
	Slide 26: Recap
	Slide 27: Q&A

