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About Us
• Intel Big Data Analytics Team

• Start Gazelle Project in May. 2020. TPCH boosts by 1.8x, TPCDS 1.5x

• Transform to Gluten Project in Jan. 2022.

• Velox backend, latest perf: TPCH boosts by 3x, TPCDS 2.5x

• Gazelle uses Apache Arrow based in house designed SQL engine

• Gluten is a thin layer to offload Spark SQL engine to 3rd library like Velox and 
Clickhouse using Substrait to pass query plan

Gluten: A Middle Layer to Offload Spark SQL to Native Engines for Execution 
Acceleration
https://www.youtube.com/watch?v=0Q6gHT_N-1U

https://github.com/oap-project/gluten

https://www.youtube.com/watch?v=0Q6gHT_N-1U
https://github.com/oap-project/gluten
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Why We Care about Shuffle?
TPCH Elapsed Time Breakdown by Operators In Gluten

Shuffle related operations takes up to 28% of total elapsed time
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Spark Shuffle
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*Best Practice of Compression Codecs in Spark - Sophia Sun, etc.



Spark Shuffle Operations
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Current Spark ShuffleWritter

Hash

Split

Sort

BypassMergeSortShuffle

UnsafeSortWrite

Spill on out of memory

Small file

Persistent

Single file per partition
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Columnar Shuffle Changes
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Hash Based Columnar Shuffle (1)
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Hash Based Columnar Shuffle (2)
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Keep growing until OOM



Hash Based Columnar Shuffle (3)
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Remote Shuffle Service Support
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Pushed Shuffle
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Split Function

• Each column is scaned reducers# times

• Key is to keep column data in L1/L2 cache

• It’s a random read/sequential write patten
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Memory
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Size = num_rows * data size

Fit into L1/L2 cache

num_rows=4K

int Column is 16K
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Pre-allocated size = 

data size * num_rows * num_columns * 

num_reducers * num_executor_cores * 

num_executors

4k row, 8 int column, 1k reducer, 256 threads 

system needs 32G pre-allocated memory
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To solve the target memory allocation issue:

• Memory allocation for each reducer is delayed 
until the reducer is touched

• Target row size is calculated based on 
available memory when first record batch 
arrives
• The less row size, the higher overhead of batch switch

• Experimental sort based shuffle is 
implementing by community
• Sort is not a Columnar format friendly operation!



Split Performance
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• Scalable to column number, reducer number but not column data size
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Speedup on Cluster

2.41x *

2.13x *

1.79x *

Single Node 3 node cluster using 100Gbps network 3 nodes cluster using 25Gbps NIC

Gluten vs. Vanilla Spark Performance Speedup Ratio

*Not the latest Performance



The Network Bottleneck

SF6T Power Test
100Gbps Network Spark Gluten+Velox

Shuffle Data Size (GB) 9,176 8,085
CPU% 81% 71%

Network Throughput (MB/s) 4,540 7,871

• Faster processing leads to higher pressure to I/O

• Solutions: faster network or less data



Accelerator in 4th Gen Intel® Xeon® 
Scalable processors

QAT vs. LZ4: Similar Compression Time, higher compression Ratio
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Performance Boost From QAT

1.79x

2.14x

1.0
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1.6

1.8
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Gluten + LZ4 Gluten + QAT

Gluten Speedup Ratio over Vanilla Spark on 3 nodes cluster with 
25Gbps network

More optimizations on QAT is going on, like async mode
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Fetch in Async

• Start the pipeline once one record batch is fetched instead of whole 
block (Vanilla Spark)

• One block is the size a reducer fetches from a mapper
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Recap
• With SQL engine implementation, Columnar Shuffle is a key operator to 

Performance

• Columnar Shuffle brings unique challenges

• Accelerator can be effectively used in shuffle



Q&A
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