
Best Exploration of 
Columnar Shuffle 
Design
Binwei Yang
Rong Ma
Chengcheng Jin

Intel Spark Team
2023



About Us
• Intel Big Data Analytics Team

• Start Gazelle Project in May. 2020. TPCH boosts by 1.8x, TPCDS 1.5x

• Transform to Gluten Project in Jan. 2022.

• Velox backend, latest perf: TPCH boosts by 3x, TPCDS 2.5x

• Gazelle uses Apache Arrow based in house designed SQL engine

• Gluten is a thin layer to offload Spark SQL engine to 3rd library like Velox and 
Clickhouse using Substrait to pass query plan

Gluten: A Middle Layer to Offload Spark SQL to Native Engines for Execution 
Acceleration
https://www.youtube.com/watch?v=0Q6gHT_N-1U

https://github.com/oap-project/gluten

https://www.youtube.com/watch?v=0Q6gHT_N-1U
https://github.com/oap-project/gluten


19%

12%

11%

10%

9%

7%

6%

6%

8%

6%

0%

20%

40%

60%

80%

100%

120%

sort

idle

PreProject

Project

Stream input

postProject

shuffle write

split

not counted

compress

hash probe

hash build

aggregation

scan and filter

Why We Care about Shuffle?
TPCH Elapsed Time Breakdown by Operators In Gluten

Shuffle related operations takes up to 28% of total elapsed time



1_DAIS_Title_SlideSpark Shuffle



Spark Shuffle

Map

Map

Input

A HDFS file

Map
reduce

Output

A HDFS file

reduce

reduce

Intermediate Data

Each Map’s output

Shuffle (Multiple iterations)

Partition 0

Partition 1

Partition 0

Partition 2

Partition 1

Partition 0

Partition 2

Partition 0

Partition 2

Partition 1

Output 0

Output 1

Output 2

Input 

split0

Input 

split1

Input 

split2

*Best Practice of Compression Codecs in Spark - Sophia Sun, etc.



Spark Shuffle Operations

Split

Mapper

Spill

Serialize

Persistent

Reducer

Load

Compress

Deserialize

Fetch

Decompress



Current Spark ShuffleWritter

Hash

Split

Sort

BypassMergeSortShuffle

UnsafeSortWrite

Spill on out of memory

Small file

Persistent

Single file per partition



1_DAIS_Title_Slide

Columnar 
Shuffle



Columnar Shuffle Changes

Mapper Reducer

Load

Deserialize

Fetch

Decompress

Split

Spill

Serialize

Persistent

Compress



Hash Based Columnar Shuffle (1)
Split

Hash

Split

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

Memory block is pre-allocated
And reused

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4



Hash Based Columnar Shuffle (2)
Spill

11

Hash

Split

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch

Split Batch

Split Memory Block 
pre-allocated
and reused

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

Merge

Next() loop

Spill on OOM
one file per spill

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

Compress

Cached Batch

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

Batch Memory Block
Keep growing until OOM



Hash Based Columnar Shuffle (3)
Merge

Spill batches 
ordered by partid

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

Merge

File 1

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

File 2

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

File 3

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

File# = OOM#
Same as 

unsafesort

Merge files by partition id
Seq. read, seq. write

Pid=0

Pid=2 Pid=0

Pid=1
Pid=1

Pid=2

Single File Per Spill

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c
1

c
1

c
1

c
2

c
2

c
2

c
3

c
3

c
3

c
4

c
4

c
4

c
1

c
1

c
1

c
2

c
2

c
2

c
3

c
3

c
3

c
4

c
4

c
4

c
1

c
1

c
1

c
2

c
2

c
2

c
3

c
3

c
3

c
4

c
4

c
4



C
om

press

Remote Shuffle Service Support

Hash

Split

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch
c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

Send on Full

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch

Hash

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

C
om

press

Node1 Node2

Remote Shuffle Service



Pushed Shuffle

Hash

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

Mapper

Reducer

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

Join

Σ

AggregateProject

f
f
f

Hash

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

c1

c1

c1

c2

c2

c2

c3

c3

c3

c4

c4

c4

Mapper



1_DAIS_Title_SlideSplit Function



Split Function

• Each column is scaned reducers# times

• Key is to keep column data in L1/L2 cache

• It’s a random read/sequential write patten

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

RecordBatch
Size: 4K

c1
c1
c1

Column 1

c1
c1
c1
c1
c1
c1

reducer0

reducer1

reducer2

c2
c2
c2

Column 2

c2
c2
c2
c2
c2
c2

reducer0

reducer1

reducer2

c1
c1
c1

c1

c1
c1

c1
c1
c1

for c in columns:
for d in reducers:
for r in row_offsets in d:
d[n++]=c[c_offset[r]]

Random Read

S
e

q
u

e
n

tia
l w

rite



Memory

c1
c1
c1
c1
c1
c1
c1
c1
c1

reducer0

reducer1

reducer2
Size = num_rows * data size

Fit into L1/L2 cache

num_rows=4K

int Column is 16K

S
e
q
u
e
n
tia

l w
rite

Pre-allocated size = 

data size * num_rows * num_columns * 

num_reducers * num_executor_cores * 

num_executors

4k row, 8 int column, 1k reducer, 256 threads 

system needs 32G pre-allocated memory

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

Source 

Target 

To solve the target memory allocation issue:

• Memory allocation for each reducer is delayed 
until the reducer is touched

• Target row size is calculated based on 
available memory when first record batch 
arrives
• The less row size, the higher overhead of batch switch

• Experimental sort based shuffle is 
implementing by community
• Sort is not a Columnar format friendly operation!



Split Performance

0

1

2

3

4

5

6

7

0 1024 2048 3072 4096 5120

E
la

p
s
e
d

 T
im

e
 i
n
 S

e
c

Data Size in KB

Split Function Elapsed Time over Data Size of One Column

L2 Cache size

• Scalable to column number, reducer number but not column data size



1_DAIS_Title_SlideCompress



Speedup on Cluster

2.41x *

2.13x *

1.79x *

Single Node 3 node cluster using 100Gbps network 3 nodes cluster using 25Gbps NIC

Gluten vs. Vanilla Spark Performance Speedup Ratio

*Not the latest Performance



The Network Bottleneck

SF6T Power Test
100Gbps Network Spark Gluten+Velox

Shuffle Data Size (GB) 9,176 8,085
CPU% 81% 71%

Network Throughput (MB/s) 4,540 7,871

• Faster processing leads to higher pressure to I/O

• Solutions: faster network or less data



Accelerator in 4th Gen Intel® Xeon® 
Scalable processors

QAT vs. LZ4: Similar Compression Time, higher compression Ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

C
o
m

p
re

s
s
io

n
 T

im
e

Compression Ratio (Higher is better)

Compression Code Comparison
Normalized to LZ4

T
h

e
 B

e
tte

r

The Better

LZ4 QAT Accelerator

zstd



Performance Boost From QAT

1.79x

2.14x

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Gluten + LZ4 Gluten + QAT

Gluten Speedup Ratio over Vanilla Spark on 3 nodes cluster with 
25Gbps network

More optimizations on QAT is going on, like async mode



1_DAIS_Title_SlideReducer



Fetch in Async

• Start the pipeline once one record batch is fetched instead of whole 
block (Vanilla Spark)

• One block is the size a reducer fetches from a mapper

JoinFilter

Σ

AggregateProject

f
f
f

Pipeline in Task Thread

Buffer

Fetch Thread1

Fetch Thread2

Fetch Thread3

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4

c1
c1
c1

c2
c2
c2

c3
c3
c3

c4
c4
c4



Recap
• With SQL engine implementation, Columnar Shuffle is a key operator to 

Performance

• Columnar Shuffle brings unique challenges

• Accelerator can be effectively used in shuffle



Q&A


	Slide 1: Best Exploration of Columnar Shuffle Design
	Slide 2: About Us
	Slide 3: Why We Care about Shuffle?
	Slide 4: Spark Shuffle
	Slide 5: Spark Shuffle
	Slide 6: Spark Shuffle Operations
	Slide 7: Current Spark ShuffleWritter
	Slide 8: Columnar Shuffle
	Slide 9: Columnar Shuffle Changes
	Slide 10: Hash Based Columnar Shuffle (1)
	Slide 11: Hash Based Columnar Shuffle (2)
	Slide 12: Hash Based Columnar Shuffle (3)
	Slide 13: Remote Shuffle Service Support
	Slide 14: Pushed Shuffle
	Slide 15: Split Function
	Slide 16: Split Function
	Slide 17: Memory
	Slide 18: Split Performance
	Slide 19: Compress
	Slide 20: Speedup on Cluster
	Slide 21: The Network Bottleneck
	Slide 22: Accelerator in 4th Gen Intel® Xeon® Scalable processors
	Slide 23: Performance Boost From QAT
	Slide 24: Reducer
	Slide 25: Fetch in Async
	Slide 26: Recap
	Slide 27: Q&A

