DATA'AIl
SUMMIT

BY & databricks

Streaming Schema
Drift Discovery, and

Controlled Mitigation

Presented by: Alexander Vanadio

Databricks
2023

Prologue

About me

- | have been doing some combination of
Software/Data/ML Engineering for about 15 years

- Consulted for a Fortune 100 company for a few years
to help with their PB scale big data problems

- Big fan of computer science, music, and memes

“Alex, | have a time sensitive
query that | need to run
against [a Delta table], but
don’t see some fields that
should be there. What's going
on!?”

Schema Drift

Schema Drift

Moving the goals

- The data you ingested into your Delta Table today,
might be different tomorrow

- Some keys might be so sparse that you didn’t even
know they were there

- Vendors and upstream data providers usually aren’t
going coordinate with you before they change
something

X

P
.o,
@®©
)
o
)
| -
<
(7p)
-
)
O
>
@)
-
al
©
)
©
QO

Ii
AllYlIIlII |
llllElI'EﬂTEll
;f Iﬂﬂ“l““s

imgflip.com

Merge Schema

== True

- We're putting a lot of trust in our data providers and
removing human gates

- A table with 10 columns today could have 100
tomorrow

- This is especially bad when incoming data contains
dynamically generated keys

Now we're onto something

A

|
|

Auto Loader Schema Evolution

4 Unique Strategies

- What if we want to utilize the badRecordsPath
option?

- What if we don’t want to add all new columns to our
table?

. What if we don’t want to stop the stream (prioritize
low-latency and availability)

Auto Loader Schema Evolution

Selecting the rescue strategy

- Incoming data that doesn’'t match the internal
schema file, ends up in a new String column called
_rescued_data

. This is actually serialized JSON data (e.g. ' {"key" :
llvaluell} I)

Drift Detection

Quantifying Drift

Leveraging the _rescued_data column

- Every single record that comes in has well-formed
JSON describing drift, but it's not useful as is

- What if we deserialized that data, transform it using a
vectorized UDF, and write it to a new table?

Column
eventDate
window
window.start
window.end

tokens

avgNewKeysPerRecord

maxNewKeysPerRecord

dateSource
tableName

totalNewKeys

Type
date
struct
timestamp
timestamp

array<string>

array<string>

double
int
string
string

int

Quantifying Drift — The Drift Table

Comment

O
©)
®

The date of the originating event (UTC)

Drift window (aggregation)

Dot delimited value captures. abc.def
represents:
{"abc": { "def": "value" }}

The leaf node captures AKA the inner
most key. ' key could be | {"key":
"value"} or {"nested": { "key":

"value" }}

human readable upstream data source

originating Delta table

Drift Detection - Dashboard

Visualizing Drift

- SQL Workspace is a pretty awesome place to make
visualizations and dashboards

- Let's create some visualizations and add it to the pre-
existing Ingest Dashboard

- It's possible to create alerts based on SQL queries

Drift — Word Cloud Across N Data Sources

nforcement.invitee.type

additional_details.shield_external_collab_enforcement.additionallnfo
| il i [,‘ axterna .y | ~F rvice.service

additional_deta collab_enforcement.service.

debugContext.debugData.providerMessage

debugContext.debugData.responselime
additional_details.shield_external_collab_enforcement.item.id debugConteXt.debugDa’[a.C|IentSecre’[S

additional_detaiIsshield_extema_collab_enforcerﬁvent.mviter.id add itiona |_de’[ai|S.Ol‘ig | na |_i’[em_’[ype

s S s e i o debugContext.debugData.countryCodeIso2‘ |

1 debugContext.debugData.promptingPolicyTypes
DestMailboxOwnerUPN
U debugData. tid platformSource
additional_details.original_item_id SearchQueryText
debugContext.debugData.appContextName DeviceDisplavName
debugContext.debugData.dtHash Pray

SR ol AppAch)lesfsContext TokenlssuedAtTime
atform

Drift - Tabular

Results - Rescued Keys - Last X Hours

dataSource
0365
0365
0365
0365
0365
0365
0365
0365
0365
0365
0365

0365

© a minute ago

tableName

cta.bronze_0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_o0365_sharepoint
cta.bronze_o0365_sharepoint

cta.bronze_o0365_aad

token

BrowserVersion

IsManagedDevice

platformSource
AppAccessContext.UniqueTokenld
DeviceDisplayName
BrowserName

AuthenticationType
ListServerTemplate
AppAccessContext.TokenlssuedAtTime
SearchQueryText

Platform

platformSource

windowCount

key

BrowserVersion
IsManagedDevice
platformSource
UniqueTokenld
DeviceDisplayName
BrowserName
AuthenticationType
ListServerTemplate
TokenlssuedAtTime
SearchQueryText
Platform

Platform
platformosuvurce

Controlled

Mitigation

Controlled Mitigation

Selectively Promoting Rescued Keys

- We've been monitoring the drift discovery dashboard
and think some of these keys are actually useful

. We also see some that definitely are not (e.g.
debugContext. *)

. Now what?

Back to Auto Loader

Schema Management

- During schema inference a schema definition file is
written, and then later referenced for all incoming

data

- We can't promote any rescued keys to our Delta table
because this will always block us

Back to Auto Loader

Looking at the Schema File

- It turns out that the schema file is mostly a stringified
StructType

- It should be possible to read this file, unmarshal the
StructType, apply changes, then overwrite the file

Controlled Mitigation

Writing a Library to Modify The Schema File

- Let's write a simple python library with an api like
add_field(field: StructField)

- This lets us represent arbitrarily complex data
structures

- When we're done adding fields, the api should write all
of the changes to the schema file

Controlled Mitigation

Operation Impact

- The streaming job has been continually running

- When the evolution notebook is ready to go, then the
streaming job shuts down

. The notebook takes a minute or so to run, then the
stream is resumed

Merge Schema
== True (Again)

- We will be utilizing mergeSchema now that it only
OCcurs on our terms

- Auto Loader schema evolution is the gatekeeper, and
we only augment it when necessary

Conclusion

imgfiip.cofin

Only
Merge Schema

Auto Loader Rescue
+

Elbow Grease
+

Merge Schema

Conclusion

Summary

- We can achieve schema drift detection across all
Auto Loader streaming data sources that support

rescue

We can create visualizations, dashboards, and even
alerts to help understand and assess drift

Conclusion

Summary Continued

- We can selectively decide what new columns to
promote to our Delta sinks

We can minimize streaming job downtime to a few
minutes, during the evolution process

Conclusion

Limitations

- Specifically regarding modifying the schema file,
Databricks can alter their internal process in a way
that is not backwards compatible

- It's wise to test this out for new DBR's before jumping
IN

Conclusion
Blog

- All of this code, and a more detailed technical writeup,
will be available in our upcoming Databricks blog!

Thanks!

You can reach out to avanadio@gmail .com

