
Streaming Schema
Drift Discovery, and
Controlled Mitigation
Presented by: Alexander Vanadio

Databricks
2023

Prologue
About me

• I have been doing some combination of
Software/Data/ML Engineering for about 15 years

• Consulted for a Fortune 100 company for a few years
to help with their PB scale big data problems

• Big fan of computer science, music, and memes

“Alex, I have a time sensitive
query that I need to run

against [a Delta table], but
don’t see some fields that

should be there. What’s going
on!?”

1_DAIS_Title_SlideSchema Drift

Schema Drift
Moving the goals

• The data you ingested into your Delta Table today,
might be different tomorrow

• Some keys might be so sparse that you didn’t even
know they were there

• Vendors and upstream data providers usually aren’t
going coordinate with you before they change
something

Data Providers Are Ready

“Can’t we just set
.option(mergeSchema,
True) on our stream?”

Merge Schema
== True

• We’re putting a lot of trust in our data providers and
removing human gates

• A table with 10 columns today could have 100
tomorrow

• This is especially bad when incoming data contains
dynamically generated keys

“How about schema evolution
within Auto Loader?”

Now we’re onto something

Auto Loader Schema Evolution
4 Unique Strategies

• What if we want to utilize the badRecordsPath
option?

• What if we don’t want to add all new columns to our
table?

• What if we don’t want to stop the stream (prioritize
low-latency and availability)

Auto Loader Schema Evolution
Selecting the rescue strategy

• Incoming data that doesn’t match the internal
schema file, ends up in a new String column called
_rescued_data

• This is actually serialized JSON data (e.g. ‘{”key”:
“value”}’)

Can we use this for drift detection?...

1_DAIS_Title_SlideDrift Detection

Quantifying Drift
Leveraging the _rescued_data column

• Every single record that comes in has well-formed
JSON describing drift, but it’s not useful as is

• What if we deserialized that data, transform it using a
vectorized UDF, and write it to a new table?

Quantifying Drift – The Drift Table

“Do I have to manually query
that table? L”

Drift Detection - Dashboard
Visualizing Drift

• SQL Workspace is a pretty awesome place to make
visualizations and dashboards

• Let’s create some visualizations and add it to the pre-
existing Ingest Dashboard

• It’s possible to create alerts based on SQL queries

Drift – Word Cloud Across N Data Sources

Drift - Tabular

1_DAIS_Title_Slide

Controlled
Mitigation

Controlled Mitigation
Selectively Promoting Rescued Keys

• We’ve been monitoring the drift discovery dashboard
and think some of these keys are actually useful

• We also see some that definitely are not (e.g.
debugContext.*)

• Now what?

Back to Auto Loader
Schema Management

• During schema inference a schema definition file is
written, and then later referenced for all incoming
data

• We can’t promote any rescued keys to our Delta table
because this will always block us

Back to Auto Loader
Looking at the Schema File

• It turns out that the schema file is mostly a stringified
StructType

• It should be possible to read this file, unmarshal the
StructType, apply changes, then overwrite the file

Controlled Mitigation
Writing a Library to Modify The Schema File

• Let’s write a simple python library with an api like
add_field(field: StructField)

• This lets us represent arbitrarily complex data
structures

• When we’re done adding fields, the api should write all
of the changes to the schema file

Controlled Mitigation
Operation Impact

• The streaming job has been continually running

• When the evolution notebook is ready to go, then the
streaming job shuts down

• The notebook takes a minute or so to run, then the
stream is resumed

Merge Schema
== True (Again)

• We will be utilizing mergeSchema now that it only
occurs on our terms

• Auto Loader schema evolution is the gatekeeper, and
we only augment it when necessary

1_DAIS_Title_SlideConclusion

Conclusion
Summary

• We can achieve schema drift detection across all
Auto Loader streaming data sources that support
rescue

• We can create visualizations, dashboards, and even
alerts to help understand and assess drift

Conclusion
Summary Continued

• We can selectively decide what new columns to
promote to our Delta sinks

• We can minimize streaming job downtime to a few
minutes, during the evolution process

Conclusion
Limitations

• Specifically regarding modifying the schema file,
Databricks can alter their internal process in a way
that is not backwards compatible

• It’s wise to test this out for new DBR’s before jumping
in

Conclusion
Blog

• All of this code, and a more detailed technical writeup,
will be available in our upcoming Databricks blog!

1_DAIS_Title_SlideThanks!
You can reach out to avanadio@gmail.com

1_DAIS_Title_SlideQ&A

