
Building apps
for the Lakehouse
with Databricks SQL
Data + AI Summit 2023

Adriana Ispas, Chris Stevens
Databricks R&D

©2023 Databricks Inc. — All rights reserved

Databricks SQL
Run SQL on the Lakehouse with your tools of choice

2

- Connect to the lakehouse using well
established BI tools, e.g., Power BI,
Tableau, or Looker.

- Easily ingest and transform data
in-place using your favorite tools like
Fivetran or dbt.

- Leverage existing applications to find
insights or build data apps with tools
and languages you already know.

©2023 Databricks Inc. — All rights reserved

Build apps powered by the Lakehouse
Benefit from a rich ecosystem

3

{REST:API}

©2023 Databricks Inc. — All rights reserved

SQL Statement Execution API
Access and manage data by executing SQL statements over HTTP

- Build custom data applications

- Integrate with a wide range of
applications and computing devices

- Create a generic integration layer for
enterprise services

- Create client libraries for your
programming language of choice

4

©2023 Databricks Inc. — All rights reserved

SQL Statement Execution API
Access and manage data by executing SQL statements over REST

5

Submit SQL statement for execution
POST /sql/statements

Check the execution status and retrieve results
GET /sql/statements/{statement_id}

Cancel the execution of a SQL statement
POST /sql/statements/{statement_id}/cancel

Business user

Data
Application

</>

SQL Warehouse

©2023 Databricks Inc. — All rights reserved

Integrate with
Google Sheets

6

©2023 Databricks Inc. — All rights reserved 7Blog post: https://www.databricks.com/blog/2023/03/07/databricks-sql-statement-execution-api-announcing-public-preview.html

https://www.databricks.com/blog/2023/03/07/databricks-sql-statement-execution-api-announcing-public-preview.html
https://www.databricks.com/blog/2023/03/07/databricks-sql-statement-execution-api-announcing-public-preview.html

©2023 Databricks Inc. — All rights reserved

Demo
Basics of the API using Postman

8

©2023 Databricks Inc. — All rights reserved

Default: wait_timeout ∈ [5, 50]s. Then, continue async & fetch results in subsequent calls via ID

POST /sql/statements

statement : “SELECT * FROM my_table”

wait_timeout : “15s”

on_wait_timeout: “CONTINUE”

→

wait up to 15s ...

statement_id: “ID123”

status: { state: “RUNNING” }

Asynchronous: wait_timeout = 0 → Execute async & fetch results in subsequent calls via ID

POST /sql/statements

statement : “SELECT * FROM my_table”

wait_timeout : “0s”
→

no wait

statement_id: “ID123”

status: { state: “PENDING” }

Synchronous: wait_timeout ∈ [5, 50]s and return results in the same call. Otherwise, cancel.

POST /sql/statements

statement : “SELECT * FROM my_table”

wait_timeout : “15s”

on_wait_timeout: “CANCEL”
→

wait up to 15s, then cancel

statement_id: “ID123”

status: { state: “SUCCEEDED” }

manifest: { ... }

result: { ... }

9

Submit SQL statement for execution
Three modes: synchronous, asynchronous and hybrid

©2023 Databricks Inc. — All rights reserved

Inline: Results returned as payload, limited to 16 MiB, usually chunked, formats: JSON/CSV

POST /sql/statements

…
disposition: “INLINE” →

…
result:

 chunk_index: 0,

 row_offset: 0,

 row_count: 1000,

 data_array: [["1234","3.14159"],...]

External links: Results returned via resolved pre-signed URLs; 100 GB, formats: JSON/CSV/Arrow

POST /sql/statements

…
disposition :

“EXTERNAL_LINKS”

→

…
result:

 external_links:

 - chunk_index: 0,

 row_offset: 0,

 row_count: 257500,

 next_chunk_index": 1,

 next_chunk_internal_link: "/api/2.0/sql/statements/…/result/chunks/1?row_offset=..."

 external_link: "https://cloud.store/path/chunk00_abc?token=YYZ"

 expiration: "2022-09-22T19:21:03Z" 10

Fetching results
Two modes: INLINE or EXTERNAL_LINKS

©2023 Databricks Inc. — All rights reserved 11

Retrieve results w/ EXTERNAL_LINKS (1)
Check execution status using the handle & retrieve the 1st result chunk if ready

GET /sql/statements/ID123

→

total_chunk_count: 3

chunks:

- chunk_index: 0

row_offset: 0

row_count: 257500

…
result:

 external_links:

 - chunk_index: 0,

 row_offset: 0,

 row_count: 257500,

 next_chunk_index": 1,

 next_chunk_internal_link:

"/api/2.0/sql/statements/…/result/chunks/1?row_offset=..."

 external_link: "https://cloud.store/path/chunk00_abc?token=YYZ"

 expiration: "2022-09-22T19:21:03Z"

GET https://cloud.store/path/chunk00_abc?token=YYZ → [["4444","2.0"],...]

Note: the disposition = EXTERNAL_LINKS is specified when submitting the execution request

©2023 Databricks Inc. — All rights reserved 12

Retrieve results w/ EXTERNAL_LINKS (2)

Retrieve a specific chunk in the result set

GET /sql/statements/ID123/result/chunks/1/

?row_offset=...

→

external_links:

 - chunk_index: 1,

 row_offset: 257500,

 row_count: 257500,

 next_chunk_index": 2,

 next_chunk_internal_link:

"/api/2.0/sql/statements/…/result/chunks/2?row_offset=..."

 external_link: "https://cloud.store/path/chunk00_abc?token=YYZ"

 expiration: "2022-09-22T19:21:03Z"

GET https://cloud.store/path/chunk01_abc?token=YYZ → [["4444","2.0"],...]

Note: the disposition = EXTERNAL_LINKS is specified when submitting the execution request

©2023 Databricks Inc. — All rights reserved

Parameterized SQL statements
Improved security and reusability

13

POST /api/2.0/sql/statements HTTP/1.1
Host: <base_HOST>
Authorization: Bearer <personal_access_token>
Content-Type: application/json
{
 "statement": "SELECT * FROM stores WHERE store_id = :store_id",
 "warehouse_id": "<warehouse_ID>",
 "parameters": [
 {
 "name":"store_id",
 "type":"INT",
 "Value": 1234
 }
]
}

©2023 Databricks Inc. — All rights reserved

Build a data app

14

©2023 Databricks Inc. — All rights reserved

Get all stores

GET /stores
→

state: “SUCCEEDED”

stores: [[“123”, “Acme, Inc”, …], [“456”, “Databricks”, …], …]

Get sales for a store

GET /stores/<store_id>/sales

request_id: Optional[token]

limit: Optional[int]

format: “CSV”

→

request_id: “ID456”

state: “PENDING”

links: Optional[Array]

Create new sale

POST /stores/<store_id>/sales

date: “2023-06-29”

quantity: 10

price: 2.50

item_id: 1234

→

sale_id: “ID789”

15

Acme, Inc’s Data API
Manage stores and their sales

©2023 Databricks Inc. — All rights reserved

List Stores
Synchronous mode, inline small data

16

Acme Inc’s API Request SQL Statement Execution API Request

GET /stores

→

POST /sql/statements

statement: “SELECT * FROM stores”

wait_timeout: “50s”

on_wait_timeout: “CANCEL”

Acme Inc’s API Response SQL Statement Execution API Response

state: “SUCCEEDED”

stores: [

 [“123”, “Acme, Inc”, …],

 [“456”, “Databricks”, …]

] ←

statement_id: “ID123”

status: { state: “SUCCEEDED” }

manifest: { ... }

result: {

 data_array: [

 [“123”, “Acme, Inc”, …],

 [“456”, “Databricks”, …]

]

}

©2023 Databricks Inc. — All rights reserved

Download Sales for a Store
Asynchronous mode, large data with external links

17

Acme Inc’s API Request SQL Statement Execution API Request

GET /stores/123/sales

format: “CSV”

→

POST /sql/statements

statement: “SELECT * FROM stores where store_id = :store_id”

parameters: [

 { name: “store_id”, value: “123”, type: “INT” }

]

disposition: “EXTERNAL_LINKS”

wait_timeout: “0s”

on_wait_timeout: “CONTINUE”

Acme Inc’s API Response SQL Statement Execution API Response

request_id: “ID123”

state: “RUNNING”
←

statement_id: “ID123”

status: { state: “RUNNING” }

©2023 Databricks Inc. — All rights reserved

Download Sales for a Store
Asynchronous mode, large data with external links

18

Acme Inc’s API Request SQL Statement Execution API Request

GET /stores/123/sales

request_id: “ID123”
→

GET /sql/statements/ID123

Acme Inc’s API Response SQL Statement Execution API Response

request_id: “ID123”

state: “SUCCEEDED”

links: [

 “https://cloud.store/path/chunk00_abc?token=YYX”,

 “https://cloud.store/path/chunk01_def?token=YYW”,

 “https://cloud.store/path/chunk02_ghi?token=YYZ”

]
←

statement_id: “ID123”

status: { state: “SUCCEEDED” }

manifest: { total_chunk_count: 3 }

result: {

 external_links: [

 {

 external_link:

 “https://cloud.store/path/chunk00_abc?token=YYZ”

 }

]

}

GET /sql/statements/ID123/result/chunks/1

GET /sql/statements/ID123/result/chunks/2

©2023 Databricks Inc. — All rights reserved

Create a new sale
Hybrid, DML

19

Acme Inc’s API Request SQL Statement Execution API Request

POST /stores/123/sales

date: “2023-06-29”

quantity: 10

price: 2.50

item_id: 1234

→

POST /sql/statements

statement: “INSERT INTO …”

Parameters: […]

wait_timeout: “50s”

on_wait_timeout: “CONTINUE”

Acme Inc’s API Response SQL Statement Execution API Response

sale_id: “ID456”

state: “SUCCEEDED” ←
statement_id: “ID123”

status: { state: “SUCCEEDED” }

©2023 Databricks Inc. — All rights reserved

Create a new sales order
Use parameters for improved security

20

POST /api/2.0/sql/statements HTTP/1.1
Host: <base_HOST>
Authorization: Bearer <personal_access_token>
Content-Type: application/json
{
 "statement":
 "INSERT INTO store_sales (ss_sold_date_sk, ss_ticket_number, ss_store_sk, ss_item_sk, ss_quantity, ss_sales_price)
 VALUES (:sold_date, :sale_id, :store_id, :item_id, :quantity, :sales_price)",
 "parameters": [
 { "name": "sold_date", "type": "DATE", "value": “2023-06-29” },
 { "name": "sale_id", "type": "BIGINT", "value": “1234” },
 { "name": "store_id", "type": "INT", "value": “567” },
 { "name": "item_id", "type": "INT", "value": “890” },
 { "name": "quantity", "type": "INT", "value": “10” },
 { "name": "sales_price", "type": "DECIMAL(7,2)", "value": “2.50” }
]
}

©2023 Databricks Inc. — All rights reserved

Further code samples
Check out our Git repo: Postman, cURL, notebooks, etc.
github.com/databricks-demos/dbsql-rest-api

21

https://github.com/databricks-demos/dbsql-rest-api
https://github.com/databricks-demos/dbsql-rest-api

©2023 Databricks Inc. — All rights reserved

SQL Statement Execution API
Simplified data access using a programming language of your choice

- Removes the need to install drivers and manage Cloud infrastructure, or manage
connections

- Allows querying and manipulating data, or defining data objects (DDL, DML, DQL, DCL)

- Allows different execution modes: synchronous, asynchronous, or hybrid

- Allows efficient access to large data sets with EXTERNAL_LINKS

- Leverages authentication options supported by Databricks REST APIs.

22

©2023 Databricks Inc. — All rights reserved

→ Learn more about our connectors and tools

 https://docs.databricks.com/dev-tools/index-driver.html

→ Learn about apps in the marketplace

 https://www.databricks.com/blog/introducing-lakehouse-apps

Build apps powered by the Lakehouse
Learn more and get started

23

https://docs.databricks.com/dev-tools/index-driver.html
https://www.databricks.com/blog/introducing-lakehouse-apps

©2023 Databricks Inc. — All rights reserved

Related talks at Data+AI Summit

• Akamai | Internet-Scale Analytics: Migrating a Mission Critical Product to the Cloud

• AT&T | Building and Managing Data Platform for 13+ PB Delta Lake and 1000s of Users: AT&T's Story

• S&P GLOBAL | Using Databricks to Power Insights and Visualizations on the S&P Global Marketplace

• Land O'Lakes | Self-Service Geospatial Analysis Leveraging Databricks, Apache Sedona, And R

• American Airlines | Making Travel More Accessible For Customers Bringing Mobility Devices

• Collins Aerospace | Jet Streaming Data and Predictive Analytics: How the Lakehouse and Apache Spark™ Enable Collins

Aerospace to Keep Aircraft Flying

• Banco Bradesco | Data Democratization with Lakehouse: An Open Banking Application Case

• Michelin | Data Democratization at Michelin

• Zurich Insurance | dbt Labs | Modernizing the Data Stack: Lessons Learned From the Evolution at Zurich Insurance

• Rec Room | How Rec Room Processes Billions of Events Per Day with Databricks and RudderStack

• RaceTrac Inc. | Unlocking the Power of Real-Time Data to Maximize Data Insights

• dbt Labs | Modernizing the Data Stack: Lessons Learned From the Evolution at Zurich Insurance

24

Customer Talks

https://www.databricks.com/dataaisummit/session/internet-scale-analytics-migrating-mission-critical-product-cloud
https://www.databricks.com/dataaisummit/session/building-and-managing-data-platform-delta-lake-exceeds-13-petabytes-and-has
https://www.databricks.com/dataaisummit/session/using-databricks-power-insights-and-visualizations-sp-global-marketplace
https://www.databricks.com/dataaisummit/session/self-service-geospatial-analysis-leveraging-databricks-apache-sedona-and-r
https://www.databricks.com/dataaisummit/session/making-travel-more-accessible-customers-bringing-mobility-devices
https://www.databricks.com/dataaisummit/session/jet-streaming-data-and-predictive-analytics-how-lakehouse-and-apache-sparktm
https://www.databricks.com/dataaisummit/session/jet-streaming-data-and-predictive-analytics-how-lakehouse-and-apache-sparktm
https://www.databricks.com/dataaisummit/session/data-democratization-lakehouse-open-banking-application-case
https://www.databricks.com/dataaisummit/session/data-democratization-michelin
https://www.databricks.com/dataaisummit/session/dbt-labs-modernizing-data-stack-lessons-learned-evolution-zurich-insurance
https://www.databricks.com/dataaisummit/session/how-rec-room-processes-billions-events-day-databricks-and-rudderstack
https://www.databricks.com/dataaisummit/session/alation-unlocking-power-real-time-data-maximize-data-insights
https://www.databricks.com/dataaisummit/session/dbt-labs-modernizing-data-stack-lessons-learned-evolution-zurich-insurance

©2023 Databricks Inc. — All rights reserved

Related talks at Data+AI Summit

• Databricks | Databricks SQL: Why The Best Serverless Data Warehouse Is A Lakehouse

• Databricks | What's New In Databricks SQL -- With Live Demos

• Databricks | Databricks SQL Serverless Under the Hood: How We Use ML to Get the Best Price/Performance

• Databricks | Best Practices For Setting Up Databricks SQL At Enterprise Scale

• Databricks | Building Apps on the Lakehouse with Databricks SQL

• Databricks | Unlock The Next Evolution Of The Modern Data Stack With The Lakehouse Revolution -- With Live Demos

• Databricks | Unleashing Large Language Models with Databricks SQL's AI Functions

• Databricks | Under the Hood: Intelligent Workload Management

• Databricks | Going Beyond SQL: Python UDFs in Unity Catalog for all your Lakehouse

25

Product Deep Dive

https://www.databricks.com/dataaisummit/session/databricks-sql-why-best-serverless-data-warehouse-lakehouse
https://www.databricks.com/dataaisummit/session/whats-new-databricks-sql-live-demos
https://www.databricks.com/dataaisummit/session/databricks-sql-serverless-under-hood-how-we-use-ml-get-best-priceperformance
https://www.databricks.com/dataaisummit/session/best-practices-setting-databricks-sql-enterprise-scale
https://www.databricks.com/dataaisummit/session/building-apps-lakehouse-databricks-sql
https://www.databricks.com/dataaisummit/session/unlock-next-evolution-modern-data-stack-lakehouse-revolution-live-demos
https://www.databricks.com/dataaisummit/session/unleashing-large-language-models-databricks-sqls-ai-functions
https://www.databricks.com/dataaisummit/session/under-hood-intelligent-workload-management
https://www.databricks.com/dataaisummit/session/going-beyond-sql-python-udfs-unity-catalog-all-your-lakehouse

©2023 Databricks Inc. — All rights reserved 26

