
Scaling AI Models in Big Model Era

UC Berkeley Distinguished Professor

National Academy of Sciences (USA)

National Academy of Engineering (USA)

IEEE/ACM/SIAM/AMS/AAAS Fellow

James Demmel
demmel@berkeley.edu

PhD from UC Berkeley

IEEE-CS Early Career Excellence Award

Presidential Young Professor at NUS

Most cited fresh PhD in HPC (2020)

Yang You
youy@comp.nus.edu.sg

Code & Tutorial

https://github.com/hpcaitech/ColossalAI

Slack Q&A

https://github.com/hpcaitech/ColossalAI

Colossal-AI

2

Outline

3 Efficient Memory System

4 Outstanding Performance & Use Cases

Challenges & Opportunity in Big Model Era1

2 N-Dim Parallelism System

3

Challenges & Opportunity
in Big Model Era1

4

Problem

Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan 2020 Jan 2021

ResNet-50

Transformer
GPT-1

BERT(0.34B)

GPT-2(1.5B)

Turing-NLP(17B)

GPT-3(175B)

Switch T (1.6T)

GPT-2(8.3B)

Params (millions)

GPU
memory/compute

growing gap between
demand and supply

106

105

104

103

102

40x every 18 months

34
0x e

ve
ry

 18
 m

onth
s

1.7x every 18 months

https://www.youtube.com/watch?v=tgB671SFS4w

https://www.youtube.com/watch?v=tgB671SFS4w

5

Problem

Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan 2020 Jan 2021

ResNet-50

Transformer
GPT-1

BERT(0.34B)

GPT-2(1.5B)

Turing-NLP(17B)

GPT-3(175B)

Switch T (1.6T)

GPT-2(8.3B)

Params (millions)

GPU memory

growing gap between
demand and supply

106

105

104

103

102

40x every 18 months

34
0x e

ve
ry

 18
 m

onth
s

1.7x every 18 months

https://www.youtube.com/watch?v=tgB671SFS4w

Scalable & Efficient Computing

https://www.youtube.com/watch?v=tgB671SFS4w

6

Why Do We Believe in Large Models?

Zero-shot Performance on LAMBADA

Param

63.24

76.20
77.90

GPT-2
1.5B

GPT-3
175B

PaLM
540B

Accuracy

Models Used in SMEs are Growing ExponentiallyLarger Model: Better Performance

100

101

102

103

2015 2016 2017 2018 2019 2020

LeNet

ResNet-50 BERT-Base

BERT-Large

GPT-2(1.5B)
Params (million)

“Small Models” are Growing Exponentially

7

Why Do We Believe in Large Models?

2019

Tflops / $

2015 2016 2017 2018 2020

#Tflops per dollar is rising around 1.86x per year

Training Cost of GPT-3 in 2026 can be reduced to $73K

The price / GB of DRAM -33% per year

1995 2000 2005 2010 2015

105

104

103

102

100

101

Average Real $/GB of DRAM

20242020 2021 2022 2023 2025 2026

$3M

$73K

With Colossal-AI

Budget

Prices of GPU and Memory
Are Falling Exponentially45 x

0

10

20

30

40

50

60

70

80

8

Challenges of Using Large AI Models

• GPT-2 (2019): “COVID-

19 is a high capacity
LED-emitter.”

• GPT-J (2021): “COVID-
19 is a novel
coronavirus.”

• A cluster of GPUs is required simply

to load & make predictions

• GPT-3: 2400+ GB; NV A100 GPU: 80

GB

A company needs 70 people

building their internal tools
for AI: $20M per year
(impossible for startups)

PaLM：300 years by 1 NV A100 GPUs，$9.2M+

Training Inference Fine-tuning Deployment

needs to re-train on new
data repeatedly

single GPU server is
out-of-memory

Expensive Infrastructure
and Systems

9

Colossal-AI = Performance + Efficiency + Cheapness

Colossal-AI Hardware Framework

GPU

CPU

TPU

FPGA

Layer 2: N-Dim Parallelism System

Layer 1: Efficient Memory System

Layer 3: Low Latency Inference System

● Maximize computational

efficiency

● Minimize system running time

● Minimize communication

● Minimize code refactoring

● Dynamic adaptive scaling

● Reduce memory footprint

Fast Growing Open Source Community

Colossal-AI is public and available at https://github.com/hpcaitech/ColossalAI

Months Since
Inception

gi
th

ub
 s

ta
rs

10

https://github.com/hpcaitech/ColossalAI

11

Stargazers of Colossal-AI are All Over the World

Users from Global AI Ecosystems

Lightning AI Users

PyTorch Users
Lightning AI Users

12

Users from Global AI Ecosystems

Facebook OPT UsersHugging Face Users

13

14

N-Dim Parallelism System2

Partition a data
point

Pipeline
parallelism

Partition layers
into stages

up to 47% faster

1-D 2-D

1. Partition a model in 1/2/3 dimensions
2. Distribute a model to many processors
3. Minimize the communication

up to 130% faster

3-D

Data Parallelism powered by Large-Batch Algorithms

2.5-D

Balance memory &
communication

up to 240% higher
throughput

Sequence
parallelism

Tensor parallelism

Overview of N-Dim Parallelism System

up to 50% longer
sequence length,

50% faster

All in N-Dim Parallelism System
from Colossal-AI 15

Data Parallelism

16

● Larger batch size, faster training

source: NUS CS5260

Challenges of Large Scale Parallel Data Processing

● Reduced accuracy

17

● sharp minimum problem

batch size upper limit: 8K

source: NUS CS5260

Scalable Large-scale Optimizers

LARS/LAMB

• Maximize the use of GPU resources and achieve near linear acceleration
with guaranteed convergence.

Benefits

18

GPU Batch size
300 epochs

(hour)

1 128 73

4 512 21

16 2048 5.88

64 8192 1.67

128 16k 0.83

200 32k 0.68

ViT-B/32 ImageNet-1K

Scalable Large-scale Optimizers: LARS/LAMB

19

LARS/LAMB's Achievement & Industry Impact

https://github.com/hpcaitech/ColossalAI

LARS
World record for ImageNet training

The world's leading deep learning training optimizer

LAMB
A leap breakthrough in performance

Training Time
3 days 76 minutes

Tradition LAMB

BERT

16 chips 1024 chips

Tradition LAMB

Google TPUScalability

Training Speed
72 times
increase

State of
the art

LAMB

Source: Nvidia

512 64K

Tradition LAMB

Parallelism

Widely used in the industry

1.1 minutes

3.7 minutes

2.2 minutes

14 minutes

Sony

1 hour

Tencen
t 6.6 minutes

Google

Google

Berkeley

1.3 minutes

Facebook

Fujitsu

Speed up
60 times

LARS

SGD

SimCLR

BYOL

SEER

Expand AI
Scale

DeepSpeed

Industry AI Training
Benchmark

20

● Existing parallelism for distributed training

Model Parallelism

Model Parallelism

• Megatron — NVIDIA
• Featuring by 1-D tensor splitting

• DeepSpeed — Microsoft
• Compatible with Megatron
• Support Zero Redundancy Optimizer (Eliminate memory redundancies)

Existing Solutions Regarding Model Parallelism

(b) self attention

21

(a) MLP

Shoeybi, Mohammad, et al. "Megatron-lm: Training multi-billion parameter language models using model parallelism." arXiv preprint arXiv:1909.08053 (2019).

Partition a data
point

Pipeline
parallelism

Partition layers
into stages

up to 47% faster

1-D 2-D

1. Partition a model in 1/2/3 dimensions
2. Distribute a model to many processors
3. Minimize the communication

up to 130% faster

3-D

Data Parallelism powered by Large-Batch Algorithms

2.5-D

Balance memory &
communication

up to 240% higher
throughput

Sequence
parallelism

Tensor parallelism

Overview of N-Dim Parallelism System

up to 50% longer
sequence length,

50% faster

All in N-Dim Parallelism System
from Colossal-AI 22

Tensor Parallelism

23

● Tensor parallel illustration

2-D/2.5-D Tensor Parallelism

2-D Tensor Parallelism 2.5-D Tensor Parallelism

24

aa/qa/q

Combination of matrix C

A:[a,b] B:[b,c] Processors:[q,q]

a

b

a/q

b/q

b

c

b/q

c/q

A

B

A:[a,b] B:[b,c] Processors:[q,q,d]

b

c

b/q

c/q

Combination of matrix C

B

C
C

26

Parallelization #GPU forward
time/batch

backward
time/batch

throughput inference

Megatron-LM 4 0.1225 0.4749 1.6739 8.1633

16 0.1143 0.4293 1.8396 8.7489

64 0.1195 0.5306 1.5382 8.3682

2-D Tensor
Parallelism

4 0.1676 0.5019 1.4937 5.9666

16 0.2099 0.6159 1.2109 4.7642

64 0.1329 0.3986 1.8815 7.5245

2.5-D Tensor
Parallelism

4 0.1666 0.5014 1.4970 6.0024

16 0.1444 0.4343 1.7280 6.9252

64 0.0869 0.2636 2.8531 11.5075

2-D/2.5-D Tensor Parallelism
Strong scaling setting

(the number of processors is increased while the problem size remains constant)

27

Parallelization #GPU forward
time/batch

backward
time/batch

throughput inference

Megatron-LM 4 0.0793 0.2613 2.9360 12.6103

16 0.2081 0.5149 1.3831 4.8054

64 0.4638 1.0963 0.6410 2.1561

2-D Tensor
Parallelism

4 0.0827 0.2445 3.0562 12.0919

16 0.1829 0.5458 1.3723 5.4675

64 0.1962 0.5964 1.2617 5.0968

2.5-D Tensor
Parallelism

4 0.0867 0.2557 2.9206 11.5340

16 0.1177 0.3553 2.1142 8.4962

64 0.1155 0.3468 2.1631 8.6580

2-D/2.5-D Tensor Parallelism
Weak scaling setting

(both the number of processors and the problem size are increased)

3-D Tensor Parallelism

28

● 3-D matrix multiplication example： C = AB on a 2 × 2 × 2 processors

1 2

4 3

● Advantage: Smaller communication cost. In this example, only 3 communications
are required, and each communication is only carried out on processes.

Tensor Parallelism

Efficiency:

29

Long Sequences Matter

30
• A larger context helps to better predict which token is about to come next.

● Long sequence is common: document, image, amino acids in protein, etc.

● Pre-trained GPT-2 on the next token prediction task

https://medium.com/@cerebras/context-is-everything-why-maximum-sequence-length-matters-for-ai-fa1f4c81009f

Memory Bottleneck of Sequence Length

• Model
• Weights
• Gradients

• Optimizer
• States

• Input Data
• Activation

• Transformer (Attention) has quadratic complexity at memory.

• When data dimension is large, it can become the memory bottleneck.

fixed

vary

31
https://medium.com/@cerebras/context-is-everything-why-maximum-sequence-length-matters-for-ai-fa1f4c81009f

• Limitation: Transformer based models are required to hold the whole sequence on
single device during training, and distribute the long sequence on multiple devices.

• Parallelize in the sequence dimension -> reduce
memory consumption by input data and activation

• Model weights are replicated across devices

Sequence Parallelism

Why Sequence Parallelism?

32

Ring Self-Attention

33

• Inspired by Ring All-reduce
• Communicate query, key and value embeddings for self-attention calculation

34

Training Benchmark

● 1.55x faster training, or 50% longer sequence length vs
Megatron-LM.

• First automatically search for parallel strategies on PyTorch (static graph analysis)
• Maximize compute efficiency
• Minimize communication time

• Minimum code change required —— One Line of Code
• Seamlessly integrates with Hugging Face and Timm

Auto-Parallelism

Graph Tracing Solution Annotation Sharding Distributed
Executable

Solver

37

38

Efficient Memory System3

Data Movement on a Heterogeneous System

● Heterogeneous system illustration

39

Existing Solution: ZeRO (Zero Redundancy Optimizer)

● Partition the model states (weights, gradients, and optimizer states) across available
devices.

● Offload GPU memory to both CPU and NVMe memory for huge memory savings.

Eliminate memory redundancies in data and model parallelism.
Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

40

Our Solution: Heterogeneous Memory Management

● The static memory partition in DeepSpeed ● The Gemini architecture of Colossal-AI

41Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management." IEEE
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

● Colossal-AI can handle situations where DeepSpeed cannot

Colossal-AI: Heterogeneous Memory Management

42

gradient fp16

Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management." IEEE
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.

● Colossal-AI can handle situations where DeepSpeed cannot

Colossal-AI: Heterogeneous Memory Management

43

gradient fp16

Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management." IEEE
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.

Training Benchmark

45

● 120x larger model size on the same hardware, higher acceleration
● One RTX 3080

46

Benchmark & Use Cases4

● Up to 24x larger model size on the same hardware vs PyTorch,
over 3x acceleration vs DeepSpeed

47

Training Benchmark

Inference Benchmark

48

● Low-Cost Inference for 176B BLOOM with BNB

● Inference services on 8-GPU server using 3090/4090

● Reduce hardware deployment costs by more than 10x

● Online 176B Bloom model serving demo

Stable Diffusion - Training Benchmark

49

● Reduce GPU memory consumption by up to 5.6x
● Reduce hardware cost by up to 46x (from A100 to RTX3060)
● Can extend to multiple GPUs in parallel

Stable Diffusion - Inference Benchmark

50

● 2.5 times lower memory consumption (3.1 GB memory required)

● Quantized for inference with a single line of code
model = replace_module(model)

Stable Diffusion - DreamBooth Fine-tuning with ColosslalAI+LoRA

51

● Only 3-5 images of a desired subject to personalize text-to-image models

● Reducing GPU memory from 16GB to 4GB for common user

52

ChatGPT

● ChatGPT
Ouyang, Long, et al. "Training language models to follow instructions with human feedback." arXiv preprint arXiv:2203.02155 (2022).

53

ColossalChat

● The first most practical open-source project that closely resembles the
original ChatGPT technical solution!

● 10 billion parameters achieving comparable results to ChatGPT and GPT-3.5.

54

● RLHF-Stage3’s Complete Flowchart

ColossalChat

Replicates ChatGPT Training: 7.73x Faster, Lowest at 1.6GB GPU Memory

55

PyTorch DDP Colossal-AI

Scaling ChatGPT with Throughput (Inference)

GPU

Throughput

PyTorch DDP Colossal-AI
GPU

Throughput

Scaling ChatGPT with Throughput (Training)

0

1

2

3

4

5

6

7

8

9

0.12
0.78

2.00

6.00

8.00

0.34
0.78 0.78

❌ ❌

❌

Model Size (Billions)

OOM

PyTorch DDP

Colossal-AI

Consumer-grade GPU 3080 10GB+128GB A100 40GB+256GB A100 80GB+512GB A100 80GB+1TB Device

Scaling ChatGPT with Model Size

A100 80G + 512G RAM A100 80G + 512G RAM

ChatGPT - Training

56

● Up to 10 times faster for RLHF PPO Stage3 Training

57

● General knowledge quiz

ColossalChat

● Answering in Chinese

58

● Write an email

ColossalChat

● Write an algorithm

59

● Write a Quicksort in Python

ColossalChat vs. Alpaca by Stanford

● Write an email to a professor
for a recommendation letter

Rohan, Taori, et al. “Stanford Alpaca: An Instruction-following LLaMA model.” arXiv preprint arXiv:2302.13971 (2023).

61

Evaluation - DataSet

● Carefully selected 1000 test
samples in 10 categories

○ Role-playing
○ Multi-round conversation
○ Open-ended Q&A
○ Closed-ended Q&A
○ Brainstorming
○ Language generation
○ Content Rewriting
○ Categorization
○ Information extraction
○ Summarization

● 100 test samples per category

● Open-ended Q&A
○ How do you take the derivative of the sin

function?
● Language generation

○ Can you help me write a formal email to a
potential business partner proposing a joint
venture?

● Content Rewriting
○ Translate the following text into English:
我最喜欢的季节是春天，因为我可以看到美丽的花
朵。

● Summarization
○ What information is provided in the table

below? Summarize the core information in it？

Ranking, Player Name, Team, Position, Salary
(in millions of dollars)
1, LeBron James, Los Angeles Lakers, SF, 45.0
2, Stephen Curry, Golden State Warriors, PG,
43.5

62

Evaluation - Standard

Evaluation Metrics Target Category

BLEU Closed-ended Q&A, Language generation,
Content Rewriting, Summarization

ROUGE Closed-ended Q&A, Language generation,
Content Rewriting, Summarization

Distinct Role-playing, Multi-round conversation,
Open-ended Q&A, Brainstorming

BERTScore Closed-ended Q&A, Language generation,
Content Rewriting, Summarization

Precision, Recall, F1
Score

Categorization
Information extraction

● GPT-4 API Evaluation with Carefully
Designed Prompts
○ Language Organization
○ Relevance
○ Creativity
○ Practicality
○ Accuracy
○ Naturalness
○ Engagingness
○ Reasonableness
○ Diversity
○ Fidelity
○ Conciseness

● Human Evaluation
○ Blind rating of the outputs generated

by different models on randomly
selected questions

● Automated Metrics Evaluation

63

Evaluation - Benchmark

Summarization - ROUGEInformation extraction
Precision / Recall / F1 Score

● More details about ColossalChat are available on the project homepage
https://github.com/hpcaitech/ColossalAI

https://github.com/hpcaitech/ColossalAI

Dynamic Axial Parallelism Duality Async Operation

Parallel Evoformer Computational Optimizations

Evoformer

3) Long Sequence
Inference

2) Memory Consumption

1) Time and costs

Challenges:

Backbone of AlphaFold

A novelty approach for efficient model parallelism A PyTorch extension for communication optimization

1) Merge GEMM in Attention and Triangle
Update Module

2) JIT Fusion (bias + dropout + add, etc)

3) Optimized Kernel (LayerNorm, Fused
Softmax)

For Training
1) Overall training time: 11 days -> 67 hours with
significant economic cost savings
2) Scaling to 512 × A100 with 6.02 PetaFLOPs

For Inference
1) 7.5 ∼ 9.5× speedup for long sequences
2) makes it possible for inference over extremely long
sequences

Reducing AlphaFold Training Time (Drug Discovery) from 11 Days to 67 Hours

64

Singular-GPU Inference Sequence Exceeding 10,000, Covering 99.9999% of Proteins

Optimized Kernels Based on Triton Chunk Optimization Parallel Acceleration of Pre-processing

Computation Optimization Memory Optimization

End-to-end Performance on NVIDIA A100

Further Improvement

1) Reduce GPU memory by 75%

2) Over 10K sequence length
covering 99.9999% of protein

3) overall 5x speedup

Image source: https://openai.com/blog/triton/
65

66

Thanks for your time！

https://github.com/hpcaitech/ColossalAI Join Colossal-AI Slack!

Welcome to contribute！

https://github.com/hpcaitech/ColossalAI

