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Challenges & Opportunity
in Big Model Era1
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Why Do We Believe in Large Models? 

Zero-shot Performance on LAMBADA
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Why Do We Believe in Large Models? 

2019

Tflops / $ 

2015 2016 2017 2018 2020

#Tflops per dollar is rising around 1.86x per year

Training Cost of GPT-3 in 2026 can be reduced to $73K 

The price / GB of DRAM -33% per year
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Challenges of Using Large AI Models

• GPT-2 (2019): “COVID-

19 is a high capacity 
LED-emitter.”

• GPT-J (2021): “COVID-
19 is a novel 
coronavirus.”

• A cluster of GPUs is required simply 

to load & make predictions 

• GPT-3: 2400+ GB; NV A100 GPU: 80 

GB

A company needs 70 people 

building their internal tools 
for AI: $20M per year 
(impossible for startups)

PaLM：300 years by 1 NV A100 GPUs，$9.2M+

Training Inference Fine-tuning Deployment

needs to re-train on new 
data repeatedly

single GPU server is 
out-of-memory

Expensive Infrastructure 
and Systems
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Colossal-AI = Performance + Efficiency + Cheapness

Colossal-AI Hardware Framework

GPU

CPU

TPU

FPGA

Layer 2: N-Dim Parallelism System   

Layer 1: Efficient Memory System

Layer 3: Low Latency Inference System 

● Maximize computational 

efficiency

● Minimize system running time

● Minimize communication

● Minimize code refactoring

● Dynamic adaptive scaling

● Reduce memory footprint



Fast Growing Open Source Community

Colossal-AI is public and available at https://github.com/hpcaitech/ColossalAI

Months Since 
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https://github.com/hpcaitech/ColossalAI
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Stargazers of Colossal-AI are All Over the World



Users from Global AI Ecosystems

Lightning AI Users

PyTorch Users
Lightning AI Users

12



Users from Global AI Ecosystems

Facebook OPT UsersHugging Face Users

13
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N-Dim Parallelism System2



Partition a data 
point 

Pipeline 
parallelism

Partition layers 
into stages

up to 47% faster

1-D                2-D

1. Partition a model in 1/2/3 dimensions
2. Distribute a model to many processors
3. Minimize the communication

up to 130% faster

3-D

Data Parallelism powered by Large-Batch Algorithms

2.5-D

Balance memory & 
communication

up to 240% higher 
throughput

Sequence 
parallelism

Tensor parallelism 

Overview of N-Dim Parallelism System

up to 50% longer 
sequence length, 

50% faster

All in N-Dim Parallelism System
from Colossal-AI 15



Data Parallelism
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● Larger batch size, faster training

source: NUS CS5260



Challenges of Large Scale Parallel Data Processing

● Reduced accuracy

17

● sharp minimum problem

batch size upper limit: 8K

source: NUS CS5260

Scalable Large-scale Optimizers

LARS/LAMB  



• Maximize the use of GPU resources and achieve near linear acceleration
with guaranteed convergence.

Benefits

18

# GPU Batch size
300 epochs 

(hour)

1 128 73

4 512 21

16 2048 5.88

64 8192 1.67

128 16k 0.83

200 32k 0.68

ViT-B/32 ImageNet-1K

Scalable Large-scale Optimizers: LARS/LAMB  
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LARS/LAMB's Achievement & Industry Impact

https://github.com/hpcaitech/ColossalAI 

LARS
World record for ImageNet training

The world's leading deep learning training optimizer

LAMB
A leap breakthrough in performance

Training Time
3 days 76 minutes

Tradition LAMB

BERT

16 chips 1024 chips

Tradition LAMB

Google TPUScalability

Training Speed
72 times 
increase

State of 
the art

LAMB

Source: Nvidia

512 64K

Tradition LAMB

Parallelism

Widely used in the industry

1.1 minutes

3.7 minutes

2.2 minutes

14 minutes

Sony

1 hour

Tencen
t 6.6 minutes

Google

Google

Berkeley

1.3 minutes

Facebook

Fujitsu

Speed up
60 times

LARS

SGD

SimCLR

BYOL

SEER

Expand AI 
Scale

DeepSpeed

Industry AI Training 
Benchmark
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● Existing parallelism for distributed training 

Model Parallelism

Model Parallelism



• Megatron — NVIDIA
• Featuring by 1-D tensor splitting

• DeepSpeed — Microsoft 
• Compatible with Megatron
• Support Zero Redundancy Optimizer (Eliminate memory redundancies)

Existing Solutions Regarding Model Parallelism

(b) self attention

21

(a) MLP

Shoeybi, Mohammad, et al. "Megatron-lm: Training multi-billion parameter language models using model parallelism." arXiv preprint arXiv:1909.08053 (2019).



Partition a data 
point 

Pipeline 
parallelism

Partition layers 
into stages

up to 47% faster

1-D                2-D

1. Partition a model in 1/2/3 dimensions
2. Distribute a model to many processors
3. Minimize the communication

up to 130% faster

3-D

Data Parallelism powered by Large-Batch Algorithms

2.5-D

Balance memory & 
communication

up to 240% higher 
throughput

Sequence 
parallelism

Tensor parallelism 

Overview of N-Dim Parallelism System

up to 50% longer 
sequence length, 

50% faster

All in N-Dim Parallelism System
from Colossal-AI 22



Tensor Parallelism
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● Tensor parallel illustration



2-D/2.5-D Tensor Parallelism

2-D Tensor Parallelism 2.5-D Tensor Parallelism 
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aa/qa/q

Combination of matrix C

A:[a,b] B:[b,c] Processors:[q,q]

a

b

a/q

b/q

b

c

b/q

c/q

A

B

A:[a,b] B:[b,c] Processors:[q,q,d]

b

c

b/q

c/q

Combination of matrix C

B

C
C
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Parallelization #GPU forward 
time/batch

backward 
time/batch

throughput inference

Megatron-LM 4 0.1225 0.4749 1.6739 8.1633

16 0.1143 0.4293 1.8396 8.7489

64 0.1195 0.5306 1.5382 8.3682

2-D Tensor 
Parallelism

4 0.1676 0.5019 1.4937 5.9666

16 0.2099 0.6159 1.2109 4.7642

64 0.1329 0.3986 1.8815 7.5245

2.5-D Tensor 
Parallelism

4 0.1666 0.5014 1.4970 6.0024

16 0.1444 0.4343 1.7280 6.9252

64 0.0869 0.2636 2.8531 11.5075

2-D/2.5-D Tensor Parallelism
Strong scaling setting

(the number of processors is increased while the problem size remains constant)
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Parallelization #GPU forward 
time/batch

backward 
time/batch

throughput inference

Megatron-LM 4 0.0793 0.2613 2.9360 12.6103

16 0.2081 0.5149 1.3831 4.8054

64 0.4638 1.0963 0.6410 2.1561

2-D Tensor 
Parallelism

4 0.0827 0.2445 3.0562 12.0919

16 0.1829 0.5458 1.3723 5.4675

64 0.1962 0.5964 1.2617 5.0968

2.5-D Tensor 
Parallelism

4 0.0867 0.2557 2.9206 11.5340

16 0.1177 0.3553 2.1142 8.4962

64 0.1155 0.3468 2.1631 8.6580

2-D/2.5-D Tensor Parallelism
Weak scaling setting

(both the number of processors and the problem size are increased)



3-D Tensor Parallelism  

28

● 3-D matrix multiplication example： C = AB on a 2 × 2 × 2 processors

1 2

4 3

● Advantage: Smaller communication cost. In this example, only 3 communications 
are required, and each communication is only carried out on           processes.



Tensor Parallelism

Efficiency: 

29



Long Sequences Matter  

30
• A larger context helps to better predict which token is about to come next.

● Long sequence is common: document, image, amino acids in protein, etc.

● Pre-trained GPT-2 on the next token prediction task 

https://medium.com/@cerebras/context-is-everything-why-maximum-sequence-length-matters-for-ai-fa1f4c81009f



Memory Bottleneck of Sequence Length 

• Model
• Weights
• Gradients

• Optimizer
• States

• Input Data
• Activation

• Transformer (Attention) has quadratic complexity at memory.

• When data dimension is large, it can become the memory bottleneck.

fixed

vary

31
https://medium.com/@cerebras/context-is-everything-why-maximum-sequence-length-matters-for-ai-fa1f4c81009f



• Limitation: Transformer based models are required to hold the whole sequence on 
single device during training, and distribute the long sequence on multiple devices.

• Parallelize in the sequence dimension -> reduce
memory consumption by input data and activation

• Model weights are replicated across devices

Sequence Parallelism  

Why Sequence Parallelism?

32



Ring Self-Attention

33

• Inspired by Ring All-reduce
• Communicate query, key and value embeddings for self-attention calculation
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Training Benchmark

● 1.55x faster training, or 50% longer sequence length vs 
Megatron-LM.



• First automatically search for parallel strategies on PyTorch (static graph analysis)
• Maximize compute efficiency
• Minimize communication time 

• Minimum code change required —— One Line of Code 
• Seamlessly integrates with Hugging Face and Timm 

Auto-Parallelism 

Graph Tracing Solution Annotation Sharding Distributed 
Executable

Solver

37
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Efficient Memory System3



Data Movement on a Heterogeneous System 

● Heterogeneous system illustration

39



Existing Solution: ZeRO (Zero Redundancy Optimizer)

● Partition the model states (weights, gradients, and optimizer states) across available 
devices.

● Offload GPU memory to both CPU and NVMe memory for huge memory savings.

Eliminate memory redundancies in data and model parallelism.
Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC20: International Conference for 
High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

40



Our Solution: Heterogeneous Memory Management 

● The static memory partition in DeepSpeed ● The Gemini architecture of Colossal-AI

41Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management." IEEE 
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC20: International Conference for High 
Performance Computing, Networking, Storage and Analysis. IEEE, 2020.



● Colossal-AI can handle situations where DeepSpeed cannot

Colossal-AI: Heterogeneous Memory Management 

42

gradient fp16

Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management." IEEE 
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.



● Colossal-AI can handle situations where DeepSpeed cannot

Colossal-AI: Heterogeneous Memory Management 

43

gradient fp16

Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management." IEEE 
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.



Training Benchmark

45

● 120x larger model size on the same hardware, higher acceleration
● One RTX 3080
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Benchmark & Use Cases4



● Up to 24x larger model size on the same hardware vs PyTorch, 
over 3x acceleration vs DeepSpeed

47

Training Benchmark



Inference Benchmark
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● Low-Cost Inference for 176B BLOOM with BNB

● Inference services on 8-GPU server using 3090/4090 

● Reduce hardware deployment costs by more than 10x

● Online 176B Bloom model serving demo



Stable Diffusion - Training Benchmark
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● Reduce GPU memory consumption by up to 5.6x
● Reduce hardware cost by up to 46x (from A100 to RTX3060)
● Can extend to multiple GPUs in parallel



Stable Diffusion - Inference Benchmark
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● 2.5 times lower memory consumption (3.1 GB memory required) 

● Quantized for inference with a single line of code
model = replace_module(model)



Stable Diffusion - DreamBooth Fine-tuning with ColosslalAI+LoRA
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● Only 3-5 images of a desired subject to personalize text-to-image models

● Reducing GPU memory from 16GB to 4GB for common user
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ChatGPT

● ChatGPT
Ouyang, Long, et al. "Training language models to follow instructions with human feedback." arXiv preprint arXiv:2203.02155 (2022).
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ColossalChat

● The first most practical open-source project that closely resembles the 
original ChatGPT technical solution!

● 10 billion parameters achieving comparable results to ChatGPT and GPT-3.5.
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● RLHF-Stage3’s Complete Flowchart

ColossalChat



Replicates ChatGPT Training: 7.73x Faster, Lowest at 1.6GB GPU Memory

55

PyTorch DDP Colossal-AI

Scaling ChatGPT with Throughput (Inference)

# GPU

Throughput

PyTorch DDP Colossal-AI
# GPU

Throughput

Scaling ChatGPT with Throughput (Training)

0

1
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3
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9

0.12
0.78

2.00

6.00

8.00

0.34
0.78 0.78

❌ ❌

❌

Model Size (Billions)

OOM

PyTorch DDP

Colossal-AI

Consumer-grade GPU 3080 10GB+128GB A100 40GB+256GB A100 80GB+512GB A100 80GB+1TB Device

Scaling ChatGPT with Model Size

A100 80G + 512G RAM A100 80G + 512G RAM



ChatGPT - Training

56

● Up to 10 times faster for RLHF PPO Stage3 Training
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● General knowledge quiz

ColossalChat

● Answering in Chinese
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● Write an email

ColossalChat

● Write an algorithm
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● Write a Quicksort in Python

ColossalChat vs. Alpaca by Stanford

● Write an email to a professor 
for a recommendation letter

Rohan, Taori, et al. “Stanford Alpaca: An Instruction-following LLaMA model.” arXiv preprint arXiv:2302.13971 (2023).
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Evaluation - DataSet

● Carefully selected 1000 test 
samples in 10 categories

○ Role-playing
○ Multi-round conversation
○ Open-ended Q&A
○ Closed-ended Q&A
○ Brainstorming
○ Language generation
○ Content Rewriting
○ Categorization 
○ Information extraction
○ Summarization

● 100 test samples per category

● Open-ended Q&A
○ How do you take the derivative of the sin 

function?
● Language generation

○ Can you help me write a formal email to a 
potential business partner proposing a joint 
venture?

● Content Rewriting
○ Translate the following text into English:
我最喜欢的季节是春天，因为我可以看到美丽的花
朵。

● Summarization
○ What information is provided in the table 

below? Summarize the core information in it？

Ranking, Player Name, Team, Position, Salary 
(in millions of dollars)
1, LeBron James, Los Angeles Lakers, SF, 45.0
2, Stephen Curry, Golden State Warriors, PG, 
43.5
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Evaluation - Standard

Evaluation Metrics Target Category

BLEU Closed-ended Q&A, Language generation, 
Content Rewriting, Summarization

ROUGE Closed-ended Q&A, Language generation, 
Content Rewriting, Summarization

Distinct Role-playing, Multi-round conversation, 
Open-ended Q&A, Brainstorming

BERTScore Closed-ended Q&A, Language generation, 
Content Rewriting, Summarization

Precision, Recall, F1 
Score

Categorization 
Information extraction

● GPT-4 API Evaluation with Carefully 
Designed Prompts
○ Language Organization
○ Relevance
○ Creativity
○ Practicality
○ Accuracy
○ Naturalness
○ Engagingness
○ Reasonableness
○ Diversity
○ Fidelity
○ Conciseness

● Human Evaluation
○ Blind rating of the outputs generated 

by different models on randomly 
selected questions 

● Automated Metrics Evaluation
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Evaluation - Benchmark

Summarization - ROUGEInformation extraction
Precision / Recall / F1 Score

● More details about ColossalChat are available on the project homepage
https://github.com/hpcaitech/ColossalAI

https://github.com/hpcaitech/ColossalAI


Dynamic Axial Parallelism Duality Async Operation

Parallel Evoformer Computational Optimizations

Evoformer

3) Long Sequence 
Inference

2) Memory Consumption

1) Time and costs

Challenges:

Backbone of AlphaFold

A novelty approach for efficient model parallelism A PyTorch  extension for communication optimization 

1) Merge GEMM in Attention and Triangle 
Update Module

2) JIT Fusion (bias + dropout + add, etc)

3) Optimized Kernel (LayerNorm, Fused 
Softmax)

For Training
1) Overall training time: 11 days -> 67 hours with 
significant economic cost savings
2) Scaling to 512 × A100 with 6.02 PetaFLOPs

For Inference
1) 7.5 ∼ 9.5× speedup for long sequences
2) makes it possible for inference over extremely long 
sequences

Reducing AlphaFold Training Time (Drug Discovery) from 11 Days to 67 Hours

64



Singular-GPU Inference Sequence Exceeding 10,000, Covering 99.9999% of Proteins

Optimized Kernels Based on Triton Chunk Optimization Parallel Acceleration of Pre-processing

Computation Optimization Memory Optimization

End-to-end Performance on NVIDIA A100

Further Improvement

1) Reduce GPU memory by 75%

2) Over 10K sequence length 
covering 99.9999% of protein

3) overall 5x speedup

Image source: https://openai.com/blog/triton/
65
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Thanks for your time！

https://github.com/hpcaitech/ColossalAI Join Colossal-AI Slack!

Welcome to contribute！

https://github.com/hpcaitech/ColossalAI

