Code & Tutorial Slack Q& A

@ Colossal-Al

Scaling Al Models in Big Model Era

https://github.com/hpcaitech/Colossal Al

James Demmel Yang You

demmel@berkeley.edu youy@comp.nus.edu.sg

UC Berkeley Distinguished Professor PhD from UC Berkeley

IEEE-CS Early Career Excellence Award

National Academy of Sciences (USA)
National Academy of Engineering (USA) Presidential Young Professor at NUS
IEEE/ACM/SIAM/AMS/AAAS Fellow Most cited fresh PhD in HPC (2020)

Berkeley NATIONAL ACADEMY OF SCIENCES @IEEE Berkeley NS @IEEE

of Singap:

https://github.com/hpcaitech/ColossalAI

‘ Outline

Challenges & Opportunity in Big Model Era

N-Dim Parallelism System

Outstanding Performance & Use Cases

Efficient Memory System

~

1 ~ Challenges & Opportunity
- in Big Model Era

‘ Problem

Params (millions))
Switch T (1.6T)

o
100
S
GPT-3(175B) & .
°® (oo growing gap between
105 \\\,‘b demand and supply
R QG‘
o® e
\fb((\ ot
o 4>" @ Turing-NLP(17B)
104 A v
o* ® GPT-2(8.3B) GPU
(%
memory/compute
o GPT-2(1.5B)
103
@ BERT(0.34B)
Transformer
@
o GPT-1
102 ResNet-50
®
Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan 2020 Jan 2021

https.//www.youtube.com/watch?v=tgB671SFS4w

https://www.youtube.com/watch?v=tgB671SFS4w

' Problem

Params (millions) .
Switch T (1.6T)

@
10%
S
growing gap between
10° demand and supply
° ° ° 7B)
10 Scalable & Efficient Computing SR
103
@ BERT(0.34B)
Transformer
(]
o GPT-1

102 ResNet-50

®

Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan 2020 Jan 2021

https.//www.youtube.com/watch?v=tgB671SFS4w

https://www.youtube.com/watch?v=tgB671SFS4w

@ why Do We Believe in Large Models?

80
78
76
74
72
70
68
66
64
62
60

Larger Model: Better Performance

Accuracy

76.20
63.24

. I [Param

77.90

GPT-2 GPT-3 PaLM
18 ottt 175B 540B

Zero-shot Performance on LAMBADA

103

102

10!

100

Models Used in SMEs are Growing Exponentially

GPT-2(1.5B)
Params (million) .
BERT-Large
°
[)
ResNet-50 BERT-Base
)
LeNet
®
2015 2016 2017 2018 2019 2020

“Small Models” are Growing Exponentially

@ why Do We Believe in Large Models?

80
70
60
50
40
30
20
10
0

Tflops / $ 105 Average Real $/GB of DRAM
104 \
.\w
. 3
Prices of GPU and Memory ‘\
45 x Are Falling Exponentially L \-\
10! N\,
w ¥ ol
100
2015 2016 2017 2018 2019 2020 1995 2000 2005 2010 2ue
#Tflops per dollar is rising around 1.86x per year The price / GB of DRAM -33% per year
oy
Budget
$3M

With Colossal-Al

$73K

2020 2021 2022 2023 2024 2025 2026

Training Cost of GPT-3 in 2026 can be reduced to $73K

‘ Challenges of Using Large AI Models

PaLM : 300 years by 1 NV A100 GPUs, $9.2M+

=+ ed (2 v
X = 3 @,- @@
Training Inference Fine-tuning Deployment
* GPT-2(2019): “COVID- « A cluster of GPUs is required simply A company needs 70 people
19 is a high capacity to load & make predictions building their internal tools
LED-emitter.” for AI: $20M per year
+ GPT-3: 2400+ GB; NV A100 GPU: 80 (impossible for startups)
« GPT-J (2021): “COVID- GB

19 is a novel
coronavirus.”

needs to re-train on new single GPU server is Expensive Infrastructure
data repeatedly out-of-memory and Systems

@ cColossal-AI = Performance + Efficiency + Cheapness

Hardwqre COIOSSGI_AI ®© o o o o o o o o o» Frqmework
CPU f
Layer 3: Low Latency Inference System
O PyTorch
Uf GPU Layer 2: N-Dim Parallelism System Keras
@ TPy Layer 1: Efficient Memory System (%) Hugging Face
>, 000

iBIFPGA 0 Lightaing™

Maximize computational e Minimize code refactoring

efficiency e Dynamic adaptive scaling

Minimize system running time o Reduce memory footprint

Minimize communication

‘ Fast Growing Open Source Community

github stars

31,000
30,000
29,000
28,000
27,000
26,000
25,000
24,000
23,000
22,000
21,000
20,000
19,000
18,000
17,000
16,000
15,000
14,000
13,000
12,000
11,000
10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000
0

Months Since

Inception

-- @ Colossal-AI

15 Grafana

R " ClickHouse

. mongoDB.

§g kafka

|

T L S A LA VNN NS (AR] Gy A [N ON LASP NN 1S LA (NN LSO LA W L LA (NN o LA M [V LA [N N A |

10 1 12 13 14 15 16 17 18
e hpcaitech/ColossalAl s ClickHouse/ClickHouse «====grafana/grafana e====mongodb/mongo =====apache/kafka =====apache/spark

Colossal-Al is public and available at https:/qithub.com/hpcaitech/ColossalAl

https://github.com/hpcaitech/ColossalAI

‘ Stargazers of Colossal-Al are All Over the World

o
island

@ Users from Global AI Ecosystems

O PyTorch Get Started Ecosystem Mobile

ECOSYSTEM

TOOLS Lightning 1.8: Colossal-Al, Secrets for Apps, and more

Posted on November 1, 2022 by Li Team - Lightning Releases

o Lightning ®* Apps & Components v Features Pricing Community v Docs v Careers a

Tap into a rich ecosystem of tools, libraries, and more to support, accelerate,
and explore Al development.

Join the Ecosystem

Sort v We're excited to announce the release of Lightning 1.8 # (release notes). Related Content

v1.8 of Lightning is the culmination of work from 52 contributors who have

worked on features, bug fixes, and documentation for a total of over 550 Guide to Distributed

Training

commits since 1.7.0.
BoTorch 25k

ighligh
BoTorch is a library for Bayesian Optimization. It provides a modular, ng Ig ts
extensible interface for composing Bayesian optimization primitives. How to Deploy

e Colossal-Al strategy Diffusion Models

o Secrets for Lightning Apps
¢ CLI Commands for Lightning Apps

ColossalAl 0 73«

Colossal-Al is a Unified Deep Learning System for Big Model Era

Lightning AI Users
PyTorch Users

@ Users from Global AI Ecosystems

= README.md
B huggingface / diffusers Public ®Watch 104 ~ ¥ Fo

Using OPT with Colossal-Al

<> Code (O Issues 247 11 Pullrequests 53 (® Actions [Projects (© Security |~ Insights

The OPT models are now supported in the Colossal-Al, which helps users to efficiently and quickly deploy OPT
¥ main - diffusers / examples / research_projects / colossalai / Go to fil models training and inference, reducing large Al model budgets and scaling down the labor cost of learning and

deployment.
o Fazziekey update to latest colossalai (#1951) X @89fofa

Getting Started in Metaseq

[README.md Feature/colossalai (#1793)
Follow setup instructions here to get started.
3 inference.py Feature/colossalai (#1793)
i & 1 lai 2
3 requirement.txt Feature/colossalai (#1793) Documentatlon on WOrkﬂOWS
D train_dreambooth_colossalai.py update to latest colossalai (#1951)
o Training

= README.md * API

DreamBooth by colossalai Background Info

DreamBooth is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. The ¢ Background & relationship to fairseq

train_dreambooth_colossalai.py script shows how to implement the training procedure and adapt it for stable diffusion. o Chronicles of training OPT-175B

Hugging Face Users Facebook OPT Users

1

N-Dim Parallelism System

@ Overview of N-Dim Parallelism System

Pipeline Tensor parallelism Sequence
parallelism 1-D 2-D 3-D 2.5-D parallelism
- - . . . Bal & Partition a data
Partition layers 1. Partition a model in 1/2/3 dimensions alance memory .
. . communication point
into stages 2. Distribute a model to many processors
3. Minimize the communication
up to 240% higher up to 50% longer
up to 47% faster up to 130% faster : Througl:pu? sequence length,

50% faster

\4 \4 v \4

Data Parallelism powered by Large-Batch Algorithms

All in N-Dim Parallelism System
from Colossal-Al

‘ Data Parallelism

Batch Size Epochs Iterations
512 100 250,000
1024 100 125,000
2048 100 62,500
4096 100 31,250
8192 100 15,625
1,280,000 100 100

e Larger batch size, faster training

source: NUS CS5260

1123(4|5

:

4
Partitio/ \
4

1E ‘3 56
L— — /e,
local FP+BP local FP+BP local FP+BP
l‘ average
T /e, 7

update weight update weight update weight

‘ Challenges of Large Scale Parallel Data Processing

e Reduced accuracy e sharp minimum problem

100

—8— Baseline

Training Function
¢ —*— Large Batch '

/
/ v
/
/
I
|
|

! Testing Function

Accuracy

Flat Minimum Sharp Minimum

00 05 10

20 25 30 35

1Igpochs batch size upper limit: 8K
N 2 4

Scalable Large-scale Optimizers
source: NUS C55260 LARS/ LAMB

' Scalable Large-scale Optimizers: LARS/LAMB

Benefits

e Maximize the use of GPU resources and achieve near linear acceleration
with guaranteed convergence.

300 h 175000 -
GPU Batch size epochs
(hour)
150000 A
1 128 73
< 125000 -
4 512 21 $
2 100000 A
3
16 2048 5.88 g 75000 1
64 8192 1.67 —t
128 16k 0.83 ——
200 32k 0.68 o+~
0 25 50 75 100 125 150 175 200

GPUs

ViT-B/32 ImageNet-1K

‘ LARS/LAMB's Achievement & Industry Impact

The world's leading deep learning training optimizer

LARS LAMB
World record for ImageNet training

1 hour Tradition LAMB
3 days " 76 minutes

Facebook

Berkeley 14 minutes Training Time BERT
Tencen 6.6 minut
t .6 minutes Tradition LAMB
16 chips " 1024 chips
Sony 3.7 minutes Scalability Google TPU
Speed up
Google 2.2 minutes 60 times
LAMB
State of
the art > _72 times
Fujitsu 1.3 minutes Training Speed | [neredse
Source: Nvidia
SGD
Google 1.1 minutes Bl LARS Tradition LAMB
512 T 64K

Parallelism

https.//github.com/hpcaitech/ColossalAl

A leap breakthrough in performance

Widely used in the industry

=& Microsoft

SimCLR SEER DeepSpeed
fast.ai :
MLPerf

Expand AI Industry AI Training
Scale Benchmark

TEé“FXPLORE Qz&- ‘ N
NG
— X
y/

@ Model Parallelism

()

()

(a) data parallel

(b) tensor parallel
N\

I?
:A:

1

[;l
:A:

\ GPUO)

data

>

. GPU1

(c) pipeline parallel

J

Y

Model Parallelism

e Existing parallelism for distributed training

‘ Existing Solutions Regarding Model Parallelism

 Megatron — NVIDIA
» Featuring by 1-D tensor splitting

o e e e -

// Y = GeLU(XA) % Z = Dropout(Y B) N Y = Self-Attention(X) P ——
i — .; N \: ! il — \: _ﬁﬁ 'E' Z = Dropout(Y B) \‘.
I R = 1 i
i ® [% | |
| =|X|=| XA, r:»E:oYl T:: YiB, |2|Z|= u | = ﬁﬂméaém@mé% . |
| . & % | & S | | =& i |
: X[= il ! =M= ! X|= . ¥ :
) I __ . ¥ |
| mi 1] = | M=CE]
i =X = XA, :»,g;)r:n’,%#:» YoB; |25 = : = . ®a§q§‘:®m—¢§- Y,B, |
| <) L - : ==t B & |
| ™ e i . | =[] =[
\\ A — [Al, A2] /' ‘\ B = 1 ,’ Q =[Q1,Q2] ; \\\ ____________ ?2_ ____________
_ - b B2 _// \\\ split attention heads — ¢ K = (K, Ky /
""""""""""""""""""""" V=Ml
(a) MLP (b) self attention

» DeepSpeed — Microsoft
» Compatible with Megatron
» Support Zero Redundancy Optimizer (Eliminate memory redundancies)

Shoeybi, Mohammaa, et al. "Megatron-im: Training multi-billion parameter language models using model parallelism.” arXiv preprint arXiv:1909.08053 (2019).

@ Overview of N-Dim Parallelism System

Pipeline Tensor parallelism Sequence
parallelism 1-D 2-D 3-D 2.5-D parallelism
- - . . . Bal & Partition a data
Partition layers 1. Partition a model in 1/2/3 dimensions alance memory .
. . communication point
into stages 2. Distribute a model to many processors
3. Minimize the communication
up to 240% higher up to 50% longer
up to 47% faster up to 130% faster : Througl:pu? sequence length,

50% faster

\4 \4 v \4

Data Parallelism powered by Large-Batch Algorithms

All in N-Dim Parallelism System
from Colossal-Al

@ Tensor Parallelism

Output

Weights

Input

(a) 1D tensor parallelism

(b) 2D tensor parallelism

t=r=r
r~=r=7
-t 1)
1yl
-1)
1] 1)
I
1~ r -
ez rer=7!
1) ~1)
1y 1yl
-1 -¥1)
1 1) 1 . 1)
I___Vv I ooV
T r—r=r
=21 re=y=21
A | __/|)
1)1 1y
E{_J’I) G‘J’I)
T LA S ¢
¥ IV

(c) 2.5D tensor parallelism (d) 3D tensor parallelism

e Tensor parallel illustration

@ 2-D/2.5-D Tensor Parallelism

2-D Tensor Parallelism 2.5-D Tensor Parallelism
A:[a,b] B:[b,c] Processors:[q,q] A:[a,b] B:[b,c] Processors:[q,q,d]
y [[
a
a A4 ' o A . Split matrix 4 into gd Xgq parts
Split matrix 4 mto g Xgq parts I Split matrix B mto g Xgq parts
5 Split matrix B into ¢ Xq parts 5 L1 Broadcast:
b/q Broadcast: —bg A;y; along the 7 direction
A;; along the i direction B.,; along the 7 direction
B bl B,; along thej direction bl
b b | B
c ‘ c/q c ¢/q forijin {0...., g-1} do,kin {0,...,
o . for ij m {0...., g-1} do Combination of matrix ¢~ -1} do
Combination of matrix C fo;'] p m{{O,...,qq-l}} do |:| |:| for tm {0,..., g-1} do
Ci; = Cij + Ay * By, I Cijie = Ciji + Ak * Buji
c end for] C end for
end for [i "
combine all C;; accordingly to C combine all Cj; accordingly to C

' 2-D/2.5-D Tensor Parallelism

Strong scaling setting
(the number of processors is increased while the problem size remains constant)

Parallelization #GPU forward backward throughput inference
time/batch time/batch
Megatron-LM | 4 0.1225 0.4749 1.6739 8.1633
16 0.1143 0.4293 1.8396 8.7489
64 0.1195 0.5306 1.5382 8.3682
2-D Tensor 4 0.1676 0.5019 1.4937 5.9666
Parallelism
16 0.2099 0.6159 1.2109 4.7642
64 0.1329 0.3986 1.8815 7.5245
2.5-D Tensor 4 0.1666 0.5014 1.4970 6.0024
Parallelism
16 0.1444 0.4343 1.7280 6.9252

64 0.0869 0.2636 2.8531 11.5075

' 2-D/2.5-D Tensor Parallelism

Weak scaling setting
(both the number of processors and the problem size are increased)

Parallelization #GPU forward backward throughput inference
time/batch time/batch
Megatron-LM | 4 0.0793 0.2613 2.9360 12.6103
16 0.2081 0.5149 1.3831 4.8054
64 0.4638 1.0963 0.6410 2.1561
2-D Tensor 4 0.0827 0.2445 3.0562 12.0919
Parallelism
16 0.1829 0.5458 1.3723 5.4675
64 0.1962 0.5964 1.2617 5.0968
2.5-D Tensor 4 0.0867 0.2557 2.9206 11.5340
Parallelism
16 0.1177 0.3553 2.1142 8.4962

64 0.1155 0.3468 2.1631 8.6580

' 3-D Tensor Parallelism

e 3-D matrix multiplication example : C= ABon a 2 x 2 x 2 processors

J 1 Q

1 | 8y, | SplitA and B into 2x2 _A:_’_ S
partitions Ag
0 Ag 1 A;; —processor (i, 0, l). ‘ Broz
. By; — processor (0, j, I). : RPN i
0 | 1 2 DNE I DI
. Ci: c
o Reduce C;j; t(l)](i, J> 0) along = Processor Cy;; =A;x By;
the 7 direction

e Advantage: Smaller communication cost. In this example, only 3 communications
are required, and each communication is only carried out on P'/? processes.

‘ Tensor Parallelism

Efficiency:
--
Computation
(parameters) (activations) (bandwidth) (latency)
F E 0(1) 0(1) o(P)
1 1 1 1
?P °(5) () () () oo
22D P P P Jap P

FREC

® P:number of processors

3D 0(

| -
~

0 (%) O(ogP)
P3

‘ Long Sequences Matter

® Long sequence is common: document, image, amino acids in protein, etc.

® Pre-trained GPT-2 on the next token prediction task

70%
60%
50%

40%

Accuracy

30%

—Avg. Top-5 Accuracy

20%

Avg. Top-1 Accurac
10% 2) "

0%
1 10 100 1000

Position in Sequence
* A larger context helps to better predict which token is about to come next.

https://medium.com/@cerebras/context-is-everything-why-maximum-sequence-length-matters-for-ai-fa1f4c81009f

‘ Memory Bottleneck of Sequence Length

GPT-J required memory vs sequence length

100,000
* Model —
* Weights _
. o 10,000
* Gradients o
* Optimizer — fixed g -
e States 5
£
— 8 100 P @ *
¢ Input Data 3
& 10

e Activation }

S
2

1 8 64 512 4,096 32,768 262,144 2,097,152
Sequence length

* Transformer (Attention) has quadratic complexity at memory.

* When data dimension is large, it can become the memory bottleneck.

https://medium.com/@cerebras/context-is-everything-why-maximum-sequence-length-matters-for-ai-fa1f4c81009f

@ Sequence Parallelism

Why Sequence Parallelism?

* Limitation: Transformer based models are required to hold the whole sequence on
single device during training, and distribute the long sequence on multiple devices.

| .
| | | |
| (Layer 2]()_‘jr>[Layer 2 j |
l#l l#l
N | N O . Parallelize in the sequence dimension -> reduce
|| i U | | 7 U | memory consumption by input data and activation
| T_'_f : | 1‘_,_? : * Model weights are replicated across devices
: [Layer 1 J<_‘::">(Layer 1 j |
Y _ A
Micro Batch1 | [This || is | | | [sequence]| parallel | |
Micro Batch 2 | [We || are | | | | using_ﬂl it | |
- | -

@ Ring Self-Attention

(b) Transmitting value embeddings among devices to calculate the output of attention layers

» Inspired by Ring All-reduce
« Communicate query, key and value embeddings for self-attention calculation

=
=
Q.
=]
()}
=
o
=
=
=

@ Training Benchmark

Scaling BERT with Max Batch Size Scaling BERT with Pipeline Parallelism

95,000
90,000
85,000
80,000
75,000
70,000
65,000
60,000
55,000

Colossal-Al Colossal-Al

Colossal-Al
Scaling BERT with Sequence Length

2,200
2,100
2,000
1,900
1,800
1,700
1,600
1,500
1,400
1,300
1,200

1,100

100,000
95,539

95,000 /M
90,000 87,961

85,000

80,000

75,000

70,000

65,000

60,000

55,000

8 8

Throughput

Sequence Length

8
#GPU

--Megatron-LM - Colossal-Al

#GPU Pipeline Parallelism Size

~"Megatron-LM " Colossal-Al ~“Megatron-LM " Colossal-Al

e 1.55x faster training, or 50% longer sequence length vs
Megatron-LM.

‘ Auto-Parallelism

» First automatically search for parallel strategies on PyTorch (static graph analysis)
* Maximize compute efficiency
e Minimize communication time

¢ Minimum code change required —— One Line of Code

« Seamlessly integrates with Hugging Face and Timm

B— vi—8—-@0—4»

Distributed
Executable

Graph Tracing Solver Solution Annotation Sharding

wrap the model using auto_engine
model, optimizer = auto_engine(model, optimizer, cluster_info)

normal training Lloop

1

3 Efficient Memory System

e
—@

@ Data Movement on a Heterogeneous System

.

« ——>

|

data swapping data swapping

GPU Memory CPU Memory Disk

e Heterogeneous system illustration

@ Existing Solution: ZeRO (Zero Redundancy Optimizer)

Memory q:<=12

=7.5B

gpu, gpu; gPUy., Consumed N =64

Baseline 2+2+K)+W | 12068

K*W¥Y
P 2% +2% + = | 31468
Q+K)*¥
Pos+g 29 + N, 16.6GB
P w 1.9GB
OS+g+p N,
Parameters Gradients Optimizer States

e Partition the model states (weights, gradients, and optimizer states) across available

devices.

e Offload GPU memory to both CPU and NVMe memory for huge memory savings.

Eliminate memory redundancies in data and model parallelism.

Rajbhandari, Samyam, et al. "Zero: Memory optimizations foward training frillion parameter models.” SC20: International Conference for

High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

@ Our Solution: Heterogeneous Memory Management

CPU
(NVMe)
memory

\/

GPU <
memory

ChunkMgr

77

runtime modules !

Gemini
momentum et
variance t
param fp32) Stateful i PyTorch
.. : S SE——
(Optimizer States, OS) param fp16 | ChunkLists TensorLists ! Tensor
____________ gradientfple ___ _______. i |
Space \/ static modules!
param fpl6 § | T — j_ Model
ensor-Chunk Mapper | éonb g

FWD BWD ADAM

e The static memory partition in DeepSpeed

e The Gemini architecture of Colossal-AI

‘ Colossal-AI: Heterogeneous Memory Management

E A
9 "
momentum
. momentum
CPU aniane variance
memory | param fp32 CPU < aram fp32
(Optimizer States, OS) memory 'p) P
X (Optimizer States, OS)
e gradient fp16 gradient fp16
__Unsatisfied __________________.
0 F_P_U_Tf[“_o_r! ___________________ > - ¥ “evicted chunks
1 param fp16 (1~ R — — ~ ~ ~ =~ ==~
param fp16
GPU Qb oo, GPU | o ____ Max
IEIDORK memory [~ 77T T gl " T T Non-model
data
\ N
FWD BWD ADAM FWD BWD ADAM
DeepSpeed(stage3) Gemini

GPU Memory is not enough

e Colossal-AI can handle situations where DeepSpeed cannot

Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management.” IEEE
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.

‘ Colossal-AI: Heterogeneous Memory Management

Unsatisfied
CPU memory
PLoccocoocooooc mamentum - - - o ____ L o e
variance
param fp32 momentum
CPU < (Optimizer States, OS) CPU variance)
memory gradient fp16 memory param fp32 gradient fp16
| ________(optimizerstates 0s) GPU
} margin
--- space
GPU |l _______ REEUTC TN GPU |- ___ paramfplé _____________.
<
memory memory Max
Non-model
data
FWD BWD ADAM FWD BWD ADAM
DeepSpeed(stage3) Gemini

CPU Memory is not enough

e Colossal-AI can handle situations where DeepSpeed cannot

Fang, Jiarui, et al. "Parallel Training of Pre-Trained Models via Chunk-Based Dynamic Memory Management.” IEEE
Transactions on Parallel and Distributed Systems 34.1 (2022): 304-315.

‘ Training Benchmark

Colossal-Al

Scaling GPT-2 with Model Size

Colossal-Al

TRrouEnoAt Scaling GPT-2 with Throughput

0.35
a0 0.297

Model Size (Billions)
14

12

02580997

10

0.027
|

12
BDeepSpeed M Colossal-Al Model Size (Billions)
: Raise OOM Errors

0'1 l

PyTorch DeepSpeed DeepSpeed Colossal-Al Colossal-Al
(NVMe) (ZeRO+Gemini) (ZeRO+Gemini
+NVMe)

e 120x larger model size on the same hardware, higher acceleration
e One RTX 3080

<

4 Benchmark & Use Cases

e
—@

‘ Training Benchmark

Colossal-Al
Scaling GPT-2 with Throughput

Colossal-Al
Scaling GPT-2 with Model Size

2 -
2 =
3)
o =
p= <)
£
=

4

[Pytorch [l Colossal-Al [l peepspeed [l Colossal-Al

e Up to 24x larger model size on the same hardware vs PyTorch,
over 3x acceleration vs DeepSpeed

Inference Benchmark

Text Generation

Configuration

Low-Cost Inference for 176B BLOOM with BNB .

10

Example Model

Conversation v [Bloom-1768 v]

Inference services on 8-GPU server using 3090/4090 o

Reduce hardware deployment costs by more than 10x

Online 176B Bloom model serving demo |

Clear Generate

Colossal-Al Colossal-Al

Quantizing Bloom-175B with TP=8 Quantizing Bloom-175B with TP=8

GPU Memory(GB) Batch Size 1 GPU Memory(GB) Batch Size 8
50 65
B 4478 4528 46.31 61.28

20
max_seq_len 128

60
40 55
e 50
45
39.69
40
2375 24.72

35
30

- il

128 256 256

max_seq_len

M Colossal-Al int8 lfp16 M Colossal-Al int8 lfp16

‘ Stable Diffusion - Training Benchmark

Flash GPU RAM

Stable Diffusion v1 False
DDP
Stable Diffusion v2 True 31.9
A100 4 64
Stable Diffusion v1 False 30.0
Colossal-Al
Stable Diffusion v2 True 11.6

. Flash . GPU RAM

Model Strategy Device #GPU |, ¢ tion Batch Size (GB)

1 16 23.0

DDP 4 64 31.9

Stable Diffusion v2 A100 . True — L
1 16 5.6

Colossal-Al 4 64 11.6

8 128 19.8

e Reduce GPU memory consumption by up to 5.6x
e Reduce hardware cost by up to 46x (from A100 to RTX3060)
e Can extend to multiple GPUs in parallel

@ stable Diffusion - Inference Benchmark

FP32 FP32-Int8 FP16 FP16-Int8
7.68 5.73 352 3.10

GPU RAM (GB)

Performance

e 2.5 times lower memory consumption (3.1 GB memory required)

e Quantized for inference with a single line of code
model = replace_module(model)

‘ Stable Diffusion - DreamBooth Fine-tuning with ColosslalAI+L

e Only 3-5 images of a desired subject to personalize text-to-image models

e Reducing GPU memory from 16GB to 4GB for common user

@ cChaiGPT

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

~
G

Explain reinforcement

learning to a 6 year old.

;

)

4

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This datais used
to train our
reward model.

™™

~/
Explain reinforcement
learning to a 6 year old.

0-0-0-0

'

RM
. 9

LRI

0-0-0-0

e ChatGPT

Ouyang, Long, et al. "Training language models to follow instructions with human feedback.” arXiv preprint arXiv:2203,02155 (2022).

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is S
sampled from Wite a story
the dataset. about otters.
{
The PPO model is .o
initialized from the N,
supervised policy. W

The policy generates
an output.

The reward model -
calculates a reward N
for the output. N
The reward is used +

to update the rk

policy using PPO.

@ colossalChat

I'm going to Singapore. Do you have any
recommendations for places to visit? @

Yes, there are many great places to visit in Singapore.
Some of the most popular attractions include the
Singapore Zoo, the Night Safari, the Singapore Flyer, the
Marina Bay Sands, the Botanic Gardens, and the
Singapore Art Museum. Additionally, you can explore the
many different ethnic neighborhoods, such as
Chinatown, Little India, and Kampong Glam. There are
also many great shopping malls, restaurants, and bars to
explore. Whatever your interests, there is something for
@ everyone in Singapore. Have a great trip!

e The first most practical open-source project that closely resembles the
original ChatGPT technical solution!

e 10 billion parameters achieving comparable results to ChatGPT and GPT-3.5.

@ colossalChat

PTX (Pretraining Gradient Mixing): Prevent forgetting

<

N’
Pretraining
Dataset

(Instruction; N
Response)

Coati-138 Logits

e - :l—»@» .

() Instruction
Stage1:-,t> Coati-13B (—__) Response
Lptx . —

Backward

Response I =vE [log (7"2 L(x))] Stage 2 ----- -b- needed flow Cc;ssaiéhat
) :] init w *

Frozen Stage 3 Training Framwork

Sampling from Environment woz(c;r:«sezts 3
Coati-13B workers 1
Instructions Actor ‘ LLahéAI-JB
— . — T Gt
Instruction)]
Dataset [V(s) LA
logits (action) Value Function [~ *

LLaMA-7B *
RM

Coati-13B %
SFT Model

l

|:}—> — LKL Prevent forgetting

logits (sft) = - Blog (zg“(y | 2)/=* " (y | 2)) !

\
T ($ yY)
' Evaluation by RM

é Reward R

Reward Calculation (Shared across workers)

Experience Buffer

state value V(s)

logits (action) [

reward

Advance A = R — V(s)

logits (action) [|— Ratio 7" > Lpro
= min(rA,clip(r,1 —€,1+ €)A)

| 4 models: Actor, Critic, RM, SFT [— LPPO + ‘Cvalue AL ‘Cptx

e RLHF-Stage3’s Complete Flowchart

‘ Replicates ChatGPT Training: 7.73x Faster, Lowest at 1.6GB GPU M

emor‘

Throughput

w Colossal-Al Throughput Colossal-Al

12.77
121 Scaling ChatGPT with Throughput (Inference) 120 Scaling ChatGPT with Throughput (Training) 121.82
A100 80G + 512G RAM A100 80G + 512G RAM
10 9.25 100-
8 80
6.35
. w0 6107
447
4 40
2 1.67 20- 14.14 15.75
1.18 10.27
- | | 2.66
! 4 8 #GPU 1 4 8

'PyTorch DDP [l Colossal-Al #GPU

W PyTorch DDP Colossal-Al

Model Size (Billions)

Colossal-Al

9
8 8.00
7 X oom Scaling ChatGPT with Model Size 600
6 PyTorch DDP
2 B Colossal-Al
4
3
2.00

2

0.78 0.78 0.78
o | —_— I |

Consumer-grade GPU 3080 10GB+128GB A100 40GB+256GB A100 80GB+512GB A100 80GB+1TB Device

‘ ChatGPT - Training

Colossal-Al

Time/Seq for RLHF PPO Stage3 Training OPT-1.3B
on a node with 8*A100-40G GPUs

B Generation [RL Training [l Others

ColossalChat -

(0] 0.02 0.04 0.06 0.08 0.1 | 0.14 0.16 0.18 0.2
Time/Seq (sec)

e Up to 10 times faster for RLHF PPO Stage3 Training

@ colossalChat

©Y) ColossalChat
- Powered by (@) Colossal-AT

1)

w Hello! How can | help you? . ColossalChat

T (e

That is a difficult question to answer, as there have been
many great players throughout the history of the NBA.
Some of the most notable players include Michael
Jordan, Kobe Bryant, LeBron James, and Magic Johnson.

Each of these players has made a significant impact on ﬁEEEEﬁ%ﬂZﬁ#ﬁﬁﬂW%, &ﬂiiﬂlﬁ%. 5’&’\
the game.anfi lhave lefta L.asting legacy. Ult'imat.ely. itis 7J<, ﬂ)ﬁﬁ’ ﬁﬁﬁ EWEE, g#ﬂm, 3’2“] Pgb%
Q) otomennmansoy i, RISOERGL MOEN, FREBRMBTNRE, 1

S, BRGERGRIEDE, ERRERENN, BRKNEN

Q TEE, BHHE, ZHMURER, RESRBATNEE, N

REABRENENMEKT. &E, MMZERRFOERE
Michael Jordan is certainly one of the greatest players in g !,
NBA history. He is widely considered to be one of the
most talented players to ever step on the court, and he
is one of the most decorated players in the league. He is
a 5-time MVP, 6-time champion, and he holds the
record for the most points in a career. He is widely
w considered to be one of the greatest players of all time.

Write your message!

e General knowledge quiz e Answering in Chinese

@ colossalChat

ColossalChat
Powered by (f)) Colossal-AT

recommendation letter to apply for a Ph.d progral

Dear Professor [Namel,

I'am writing to request a letter of recommendation for
my application to the Ph.D program at [University
Namel. | am confident that | can be a great addition to
the program, as | have a strong academic background
and am passionate about pursuing a career in [field of
studyl.

I have taken several courses with you and have always
performed well. | am particularly interested in the
research you have done in [topicl, and | believe it would
be beneficial to have your insight as | pursue my studies.
| would be grateful if you could take the time to write a
letter of recommendation for me. | am available to
answer any questions you may have about my
application.

Thank you for your time and consideration.

Sincerely,
[Your Namel

[Your Contact Information]

[Your Signature]

Write your message!

e Write an email

for me to

ColossalChat
Powered by (@) Colossal-AT

def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arrllen(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)

Driver Code

arr=13,5,2,6,4.1,7 8

print(quick_sort(arr)

Output: [1, 2, 3, 4, 5. 6, 7. 8]

Time Complexity: O(n log n)

Space Complexity: O(n)

Note: This is a recursive function.

It will call itself until it finds a pivot element.

The pivot element is then used to partition the array.
The elements less than the pivot are placed in the left

e Write an algorithm

Write a quick sort in Python. @

@ cColossalChat vs. Alpaca by Stanford

Dear Professor [Namel,

def quick_sort(arr):
if lentarr) <= 1 | am writing to request your help in applying for a Ph.D. program. |
am confident that my academic record and research experience

return arr make me a strong candidate for the program, and | am hoping F C C
pivot = arrllen(arr) 7/ 21 that you would be w-llinlg to pro:vide a letter of recommendation O I O S S a I h a t
left = Ix for x in arr if x < pivot] h COlossalChat for me.

rr"ddle = Ix fOIt X é” if x == pivotl | have included my CV and a brief description of my research
right = [x for x in arr if x > pivot] i and i d for your lam
return quick_sort(left) + middle + quick_sort(right) available to answer any questions you may have about my
qualifications.
Driver Code | greatly appreciate your help and look forward to hearing from
ar-13.5.2.6.4.1.7.8l you.

print(quick_sort(arr))

Output: [1,2,3.4.5.6.7. 8] [s\;:fr:znep A I p a C a

Time Complexity: O(n log n)
Space Complexity: O(n) [Attached CV and brief description of research experience and
Note: This is a recursive function. academic background]
It will call itself until it finds a pivot element. OTr Bz TPerie o foty ok i ar o eiaeation
The pivot element is then used to partition the array.
@ # The elements less than the pivot are placed in the left [Optional: Please do not hesitate to contact me if you have any
questions.]

Dear Professor [Name],

def quickSort(arr):

[l 1en(arr) Alpaca I am writing to request your help in applying for a Ph.D. program. I am very interested
ifn < s in pursuing a doctoral degree in your field and am confident that I have the necessary q
ualifications and background to be successful in the program.

p=20
for i in r'ange(l’ n): I have attached my resume for your review and would be grateful if you could provide me
with a letter of recommendation. I am sure that your insight and experience will be inva

luable to me as I pursue this next step in my academic career.

if arr[i - 1] > arr
arr[p], arr[i] = arr[i], arr[p]
p=1+1
arr[n - 1], arr[p] = arr[p], arr[n - 1]
return arr

e Write a Quicksort in Python

Thank you for your time and consideration.

Sincerely,

e Write an email to a professor
for a recommendation letter

Rohan, Taori, et al. “Stanford Alpaca: An Instruction-following LLaMA model.” arXiv preprint arXiv:2302.13971 (2023).

Open-ended Q&A
o How do you take the derivative of the sin
function?
Language generation

' Evaluation - DataSet

e Carefully selected 1000 test

samples in 10 categories o Can you help me write a formal email to a
potential business partner proposing a joint
o Role-playing venture?
o Multi-round conversation ° Con’rTenT Rle\J/rvrl;r;]ngf lowing text into Enalish.
o Open-ended Q&A o ronsohe e following text into English:
b= E f =] \\ S) =1 B —-
o Closed-ended Q&A ﬁﬂim%%%wm%%, ﬁ%ﬁ%%@”%””ﬂ’jﬂﬁ
© Brainstorming . ° Sumrromorizo’rion
° I(_:on?uchs getjfroﬂon o What information is provided in the table
o Lonten . ev.vrl 'ng below? Summarize the core information in it ?
o Categorization
© InformoTlon.exTrochon Ranking, Player Name, Team, Position, Salary
o Summarization (in millions of dollars)
1, LeBron James, Los Angeles Lakers, SF, 45.0
e 100 test samples per category 2, Stephen Curry, Golden State Warriors, PG,

43.5

' Evaluation - Standard

e GPT-4 API Evaluation with Carefully Evaluation Metrics
Designed Prompts

o Language Organization SLE

o Relevance

o Creativity ROUGE
o Practicality

© ACCUI‘ch Distinct
o Naturalness

o Engagingness

o Reasonableness BERTScore
o Diversity

o Fidelity Precision, Recall, F1
o Conciseness Score

¢ Human Evaluation
o Blind rating of the outputs generated
by different models on randomly
selected questions

Target Category

Closed-ended Q&A, Language generation,
Content Rewriting, Summarization

Closed-ended Q&A, Language generation,
Content Rewriting, Summarization

Role-playing, Multi-round conversation,
Open-ended Q&A, Brainstorming

Closed-ended Q&A, Language generation,
Content Rewriting, Summarization

Categorization
Information extraction

e Automated Metrics Evaluation

Score

@ Evaluation - Benchmark

Comparison Between Different Models for Category: Extraction

Model
Dolly-v2-7b
Dolly-v2-12b
Stable LM-7b
Cerebras-GPT-6.7b
Cerebras-GPT-13b
MPT-7B-instruct-7b
h2ogpt-oig-oasst1l-512-12b
Pythia-12b-sft-v8-7k-steps
Pythia-sft-v8-2.5k-steps
Pythia-deduped-12b
RedPajama-INCITE-Instruct-7b
RedPajama-INCITE-Chat-7b
Phoenix-chat-7b
Phoenix-inst-chat-7b

o
>

o
N

Precision Recall F1 Score
Metric

o

.0

Information extraction
Precision / Recall / F1 Score

0.6

0.5

0.4

Score
=}
w

°

.1

0.0

Comparison Between Different Models for Category: Summarization

Model
Dolly-v2-7b
Dolly-v2-12b
Stable LM-7b
Cerebras-GPT-6.7b
Cerebras-GPT-13b
MPT-7B-instruct-7b
h2ogpt-oig-oasst1-512-12b
Pythia-12b-sft-v8-7k-steps
Pythia-sft-v8-2.5k-steps
Pythia-deduped-12b
RedPajama-INCITE-Instruct-7b
RedPajama-INCITE-Chat-7b

Phoenix-chat-7b |

Phoenix-inst-chat-7b

ROUGE-1 ROUGE-2 ROUGE-L
Metric

Summarization - ROUGE

e More details about ColossalChat are available on the project homepage
https.//github.com/hpcaitech/ColossalAI

https://github.com/hpcaitech/ColossalAI

‘ Reducing AlphaFold Training Time (Drug Discovery) from 11 Days to 67 Hours

A novelty approach for efficient model parallelism A PyTorch extension for communication optimization

o Evoformer For Training
Challenges: rows)]L o I 1) Overall training time: 11 days -> 67 hours with
: Column < e . .pe . .
1) Time and costs i Attention | Forwad J significant economic cost savings
. : MSA representation) MSA representation 1 1 3 aFL OPS
2) Memory ConSUmphom (Ne: Ne. Hr) | Outer Product Mean 2) chllng fo 512 x A100 with 6.02 Per
3) Long Sequence i 1[1i 7] For Inference
Inference i [+ |} || rRowa | '
5 Upaste [0~ Column % Foeweel [1) 7.5 ~ 9.5x speedup for long sequences
‘ - ’ 2) makes it possible for inference over extremely long
i air representation air representation
e Backboneof AlphaFold U™ sequences
'lr_’_’_‘_’___:_—:__:::_—::::::_—.'-)I
1
! Parallel Evoformer ! Computational Optimizations E
1 o ! 1
E Sequence Axis E :
! — Sequence Axis 1 1) Merge GEMM in Aftention and Triangle i
GPU 0]
E —) | Update Module |
1 h 1 :
! © K ; ‘ ! 1
1 < 3 fe— ! 1 . . 1
T R e | 2 e | 2) JIT Fusion (bias + dropout + add, etc) |
. 3 8 r | '
! o E 3) Optimized Kernel (LayerNorm, Fused E
1 . 1
! it Dy Asyre peratin | Softmax) i
1 1 1
\ Dynamic Axial Parallelism ; ; ! [
| Y Duality Async Operation ! !
! 1
| ' |
! 1

Time (ms)

‘ Singular-GPU Inference Sequence Exceeding 10,000, Covering 99.9999% of Protein

1 1
I 1
! Computation Optimization Memory Optimization s sae S !
1 1
E | | e N i
| Off-Chip On-Chip Off-Chip Clacommer) = ;
1 1
i L1SRAM L1SRAM prelghs e ° :
: Sequence database 0
1 = ~ . 0
| DRAM & i DRAM nput sequence rerren| 1
I (DR ~ = O L2 SRAM S+~ (GDDR MSA :
| /HBM) z e uisram IS /HBM) \&,—\—)7 4965 !
| 5 H e :
: Core (SM) Core (SM) _ Weight T L) :
1 1
' |
i — |
1 1
1 1
i Optimized Kernels Based on Triton Chunk Optimization Parallel Acceleration of Pre-processing :
! 1
1 1
1 1
1 1
--- Further Improvement o
Evoformer Benchmark of bf16 Evoformer Benchmark of fp32 GPU Memory of Single-GPU
01 FastFold v0.1.0 FWD/BWD FastFold v0.1.0 FWD/BWD 8o{ ——- OOM 7
Wi FastFold v0.2.0 FWD/BWD 200 | === FastFold v0.2.0 FWD/BWD —— fastfold-v0.2.0(fp32) I/
120 A 70 { —*— fastfold-v0.1.0 I
175 1 ~— fastfoldv0.2.0(b16) / 1) Reduce GPU memory by 75%
100 | — 60 1 /
=50 2) Over 10K sequence length
80 125 A . .
% w0l covering 99.9999% of protein
100 g
60 %}
7 7 3) overall 5x speedup
401 20 1
50 4
201 10
25 4
. a I 5 I I , 4 = , . , , ,
(256 2001 (53¢ 13311 (3¢ D201 (256 1281 (356 12831 (556 12801 8 20 S o000 Bidad 10000
Input Size Sequence lengtl

End-to-end Performance on NVIDIA A100 Image source: https://openai.com/blog/triton/

Thanks for your time !

https://qithub.com/hpcaitech/ColossalAl Join Colossal-AI Slack!

Welcome to contribute !

https://github.com/hpcaitech/ColossalAI

