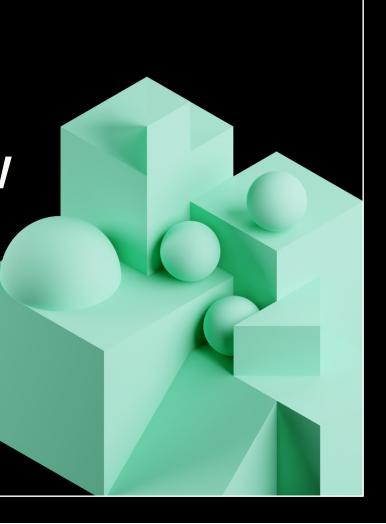


Learnings From the Field: "Migration From Oracle DW and IBM DataStage to Databricks on AWS"

Amine Benhamza, Lead Specialist Solutions Architect at Databricks Himanshu Arora, Resident Solutions Architect at Databricks

Databricks 2023



Agenda

- Migration Pillars
- Data Models' Migration
- Code Migration
- SNCF EDW Migration Project
 - Target Lakehouse Architecture
 - Data pipelines' implementation details
 - Outcomes
 - Best Practices & recommendations
- Q/A

Migration Pillars

 \Rightarrow

- Establish deployment Architecture
- Implement Security and Governance framework

Data Migration

- Map Data Structures and Layout
- Complete
 One time load
- Implement incremental load approach

ETL and Pipelines

 \Rightarrow

 \Rightarrow

- Migrate Data transformation and pipeline code, orchestration and jobs
- Validate: Compare your results with On Prem data and expected results

Bl and Analytics

 Re-write reports and analytics for Business Analysts and Business Outcomes

 Connect to reporting and analytics applications

Data

Ś

• Establish connectivity

to ML Tools • Onboard Data Science

teams

Data Modeling

7 Basic Steps to Success

- 1. Use dimensional modeling industry principals (Star Schema, Data Vault)
- 2. Use Delta Tables & Databricks SQL (Photon) use Delta for your fact and dimension tables. Use DB SQL (Photon) for BI workloads
- 3. Optimize file size optimize your file sizes for fast file pruning
- Z-Order Facts create Z-Order on your fact tables, key fields and most likely predicates
- Z-Order Dimensions create Z-Order on your dimension, key fields and most likely predicates
- 6. Analyze Tables to gather statistics for Adaptive Query Execution Optimizer
- 7. Cache Tables cache tables when you can. DBSQL has a great cache

Data Modeling With Constraints

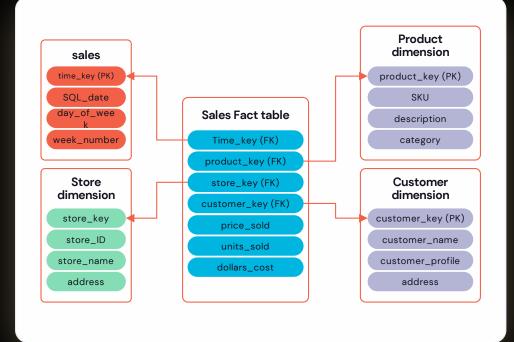
Familiar and easier schema modeling on the lakehouse

Primary + Foreign Key Declaration

to allow end users to understand relationships between tables.

IDENTITY Columns automatically generate unique integer values when new rows are added.

Enforced CHECK Constraints to never worry about data quality or data correctness issues sneaking up on you.



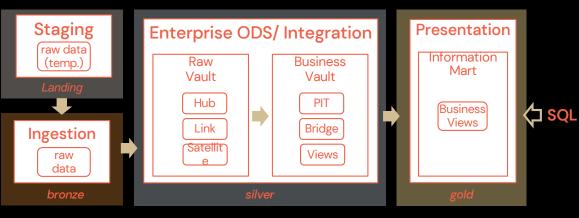
Data Modeling: Data Vault 2.0

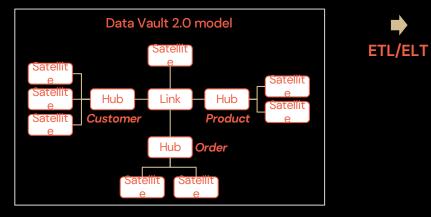
Staging: Raw data in its original format Ingestion: Raw data converted to Delta Integration - Raw Vault: Data is modeled as Hubs, Links and Satellites

Integration - Business Vault: Tables with applied

business rules, data quality rules, cleansing and conforming rules

Presentation - Information Marts: Similar to a classical Data Mart with consumer oriented models





Main artefacts to consider

- Data Types
- SQL * Loader
- Data Definition Language (DDL) expressions
- Data Manipulation Language (DML) expressions
- PL/SQL Code

Supported Data Types

Data Type Category	Oracle Data Type	Converted Data Type
Character	CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR, NVARCHAR2, CHARACTER, TEXT, CLOB, NCLOB, LONG	STRING
Numeric	NUMBER [(p [, s])] FLOAT [(p)] BINARY_FLOAT BINARY_DOUBLE	BIGINT NUMERIC[(p [, s])] FLOAT FLOAT
DateTime	DATE TIMESTAMP	DATE TIMESTAMP
Byte	BLOB (Binary Large Object)	BINARY

SQL * Loader

```
- > Oracle code
                                              - > Databricks code
                                              COPY INTO emp FROM (
LOAD DATA
  INFILE '/inputfolder/employee.csv'
                                              SELECT
  BADFILE '/outfolder/employee.rejected'
                                                employee_id,
  DISCARDFILE
                                                first_name,
  '/outfolder/employee.discarded'
                                                last_name,
INSERT INTO TABLE emp
                                                email,
  FIELDS TERMINATED BY "," OPTIONALLY
                                                phone_number,
  ENCLOSED BY '"' TRAILING NULLCOLS
                                                hire_date::date
                                              FROM '/inputfolder/employee.csv')
  (employee_id, first_name, last_name,
  email, phone_number, hire_date date
                                              FILEFORMAT = CSV
  'mm/dd/yyyy');
                                              FORMAT_OPTIONS (
                                                'badRecordsPath' =
                                                '/outfolder/employee.rejected',
                                                'delimiter' = ',',
                                                'auote' = '"',
                                                'dateFormat' = 'mm/dd/yyyy');
```

DDLs

Identity Column	> Oracle code CREATE TABLE identity_demo (id NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY START WITH 10 INCREMENT BY 10,description VARCHAR2(100) not null);
	> Databricks code CREATE TABLE identity_demo (id BIGINT GENERATED BY DEFAULT IDENTITY START WITH 10 INCREMENT BY 10, description STRING not NULL);
UNIQUE	Unique Constraints are not supported on Databricks yet. Required checks to be implemented in ETL processes.
	> Oracle code CREATE TABLE table_x (a1 INTEGER UNIQUE, a2 CHARACTER(10));
	> Databricks code CREATE TABLE table_x (a1 INTEGER, a2 STRING);

DDLs

```
CHECK
        -- > Oracle code
                                                --> Databricks code
        CREATE TABLE table_x (
                                                CREATE TABLE table_x (
             column_1 INTEGER
                                                     column_1 INTEGER,
                CHECK (column_1 > \emptyset)
                                                     column_2 INTEGER
                                                );
               CHECK (column_1 < 999)
               CHECK (column_1 NOT IN
                                                ALTER TABLE table_x ADD CONSTRAINT
        (100, 200, 300)
                                                column_1_checks
                CONSTRAINT check_0
                                                CHECK (
                CHECK (column_1 IS NOT
                                                  column_1 > 0 AND
        NULL),
                                                  column_1 < 999 AND</pre>
             column_2 INTEGER
                                                  column_1 NOT IN (100,200, 300) AND
                                                  column_1 IS NOT NULL
              CONSTRAINT check_1
                                                );
                CHECK (column_2 > 0)
               CHECK (column_2 < 999)
                                                ALTER TABLE table_x ADD CONSTRAINT
                                                column_2_checks
        );
                                                CHECK ( (column_2 > 0) AND
                                                       (column_2 < 999)
                                                );
```

DMLs

```
UPSERT
        --> Oracle code
                                                    -- > Databricks code
                                                    MERGE INTO bonuses D USING (
        MERGE INTO bonuses D USING (
                                                      SELECT employee_id, salary, department_id
          SELECT Employee_id, salary,
        department_id
                                                      FROM
          FROM
                                                        employees
                                                      WHERE department_id = 80
            employees
          WHERE department_id = 80
                                                    ) S ON (D.employee_id = S.employee_id)
        ) S ON (D.employee_id = S.employee_id)
                                                    WHEN MATCHED AND (S.salary > 8000) THEN
        WHEN MATCHED THEN
                                                    DELETE
          UPDATE
                                                    WHEN MATCHED THEN UPDATE
          SET D.bonus = D.bonus + S.salary *.01
                                                      SET D.bonus = D.bonus + S.salary *.01
          DELETE WHERE (S.salary > 8000)
                                                    WHEN NOT MATCHED AND (S.salary <= 8000)
        WHEN NOT MATCHED THEN
                                                    THEN
          INSERT (D.employee_id, D.bonus)
                                                      INSERT (D.employee_id, D.bonus)
          VALUES (S.employee_id, S.salary *.01)
                                                      VALUES (S.employee_id, S.salary *.01)
          WHERE (S.salary <= 8000)
                                                    ;
```

DMLs

Conditional -- > Oracle code

INSERT ALL

```
WHEN order_total <= 100000 THEN
INTO small_orders
```

```
WHEN order_total > 100000 AND
order_total <= 200000 THEN
INTO medium_orders
```

ELSE INTO large_orders

```
SELECT order_id, order_total,
sales_rep_id, customer_id
FROM orders;
```

-- > Databricks code

```
INSERT INTO small_orders
SELECT order_id, order_total, sales_rep_id,
customer_id FROM orders
WHERE order_total <= 1000000 ;</pre>
```

```
INSERT INTO medium_orders
SELECT order_id, order_total, sales_rep_id,
customer_id FROM orders
WHERE order_total > 1000000 AND order_total
<= 2000000 ;</pre>
```

```
INSERT INTO large_orders
SELECT order_id, order_total, sales_rep_id,
customer_id FROM orders
WHERE order_total > 2000000 ;
```

Code Migration PL/SQL Code

Sql statements	> Oracle Code DECLARE l_average_credit l_credit_limit%TYPE; l_max_credit l_credit_limit%TYPE; l_min_credit l_credit_limit%TYPE;	> Databricks code %python l_average_credit=None l_max_credit=None l_min_credit=None
	<pre>BEGIN SELECT MIN(credit_limit), MAX(credit_limit), AVG(credit_limit) INTO l_min_credit, l_max_credit, l_average_credit FROM customers; END;</pre>	<pre>l_min_credit, l_max_credit, l_average_credit, = spark.sql(f""" SELECT MIN(credit_limit), MAX(credit_limit), AVG(credit_limit) MIN_COL FROM customers; """).first().asDict().values()</pre>

PL/SQL Code

CASE

--> Oracle Code DECLARE statements c_grade CHAR(1); c_rank VARCHAR2(20); BEGIN c_grade := 'B'; CASE c_grade WHEN 'A' THEN c_rank := 'Excellent' ; WHEN 'B' THEN c_rank := 'Very Good' ; WHEN 'C' THEN c_rank := 'Good' ; WHEN 'D' THEN c_rank := 'Fair' ; ELSE c_rank := 'No such grade' ; END CASE; END;

```
-- > Databricks code
%python
```

```
c_grade=None
c_rank=None
c_grade = 'B'
```

```
If c_grade == 'A':
  c_rank = 'Excellent'
elif c_grade == 'B':
  c_rank = 'Very Good'
elif c_grade == 'C':
  c_rank = 'Good'
elif c_grade == 'D':
  c_rank = 'Fair'
else:
  c_rank = 'No such grade'
```

PL/SQL Code

```
FUNCTIONS
            --> Oracle Code
            CREATE OR REPLACE FUNCTION
            get_total_sales(
                in_year_PLS_INTEGER
            RETURN NUMBER
            IS
                l_total_sales NUMBER := 0;
            BEGIN
                SELECT SUM(unit_price * quantity)
                INTO l_total_sales
                FROM order_items
                INNER JOIN orders USING (order_id)
                WHERE status = 'Shipped'
                GROUP BY EXTRACT (YEAR FROM
            order_date)
                HAVING EXTRACT (YEAR FROM
            order_date) = in_year;
                RETURN l_total_sales;
            END;
```

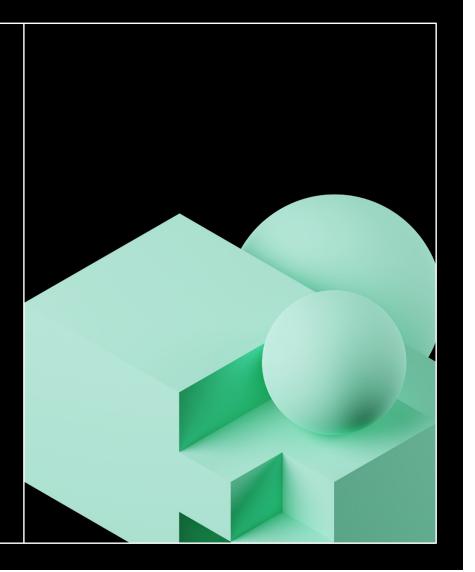
```
-- > Databricks code
def get_total_sales(in_year):
    l_total_sales = 0
```

```
l_total_sales, = spark.sql(f"""
SELECT SUM(unit_price * quantity)
SUM_COL
FROM order_items
INNER JOIN orders USING (order_id)
WHERE status = 'Shipped'
GROUP BY EXTRACT(YEAR FROM order_date)
HAVING EXTRACT(YEAR FROM order_date) =
{in_year};
""").first().asDict().values()
```

```
spark.conf.set("var.l_total_sales",
l_total_sales)
```

```
return l_total_sales;
```

SNCF – EDW Migration Project – Architecture & Best Practices



Context of Project

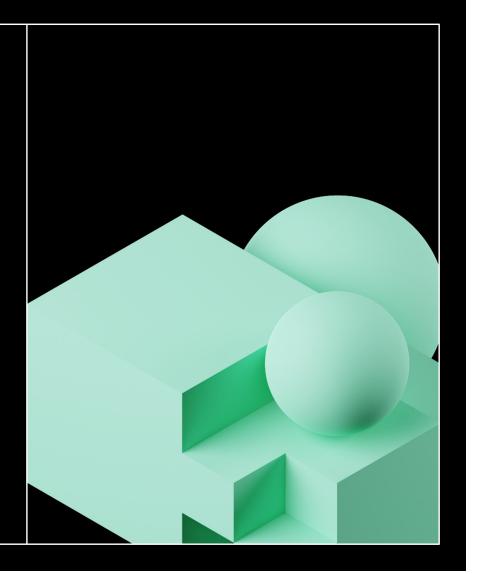
- SNCF French national railway & transportation company
 - Project was for the Real Estate entity
- Migrate from on-prem Oracle EDW and IBM DataStage to Databricks on AWS due to
 - High of Oracle EDW & IBM DataStage
 - Rigid & non-scalable solution
 - No support for streaming, ML & AI

Context of Project

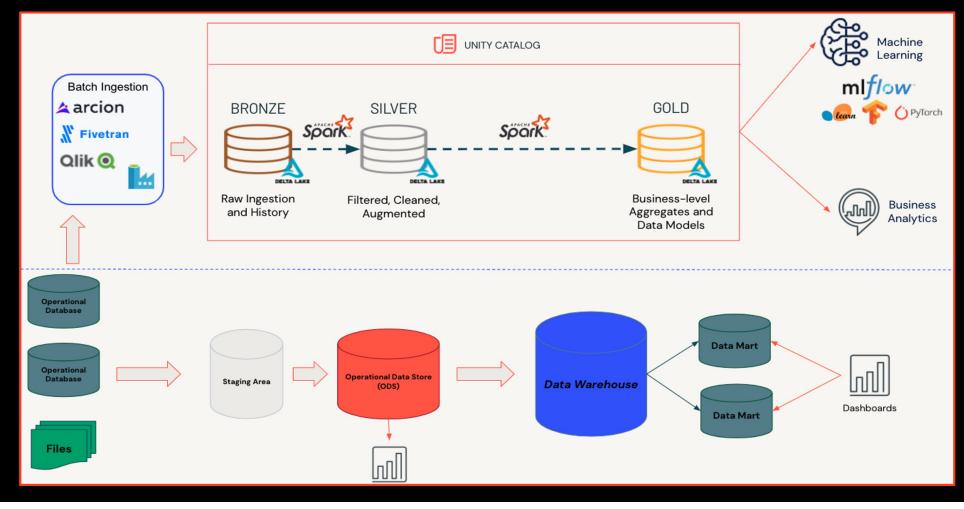
Databricks professional services team partnered with SNCF to:

- Migrate 1st data application (approx 30 DW tables) to Lakehouse
- Lead the data lake architecture design
- Lead and oversee the data pipelines implementation
- Provide best practices of pyspark, delta, databricks & software development

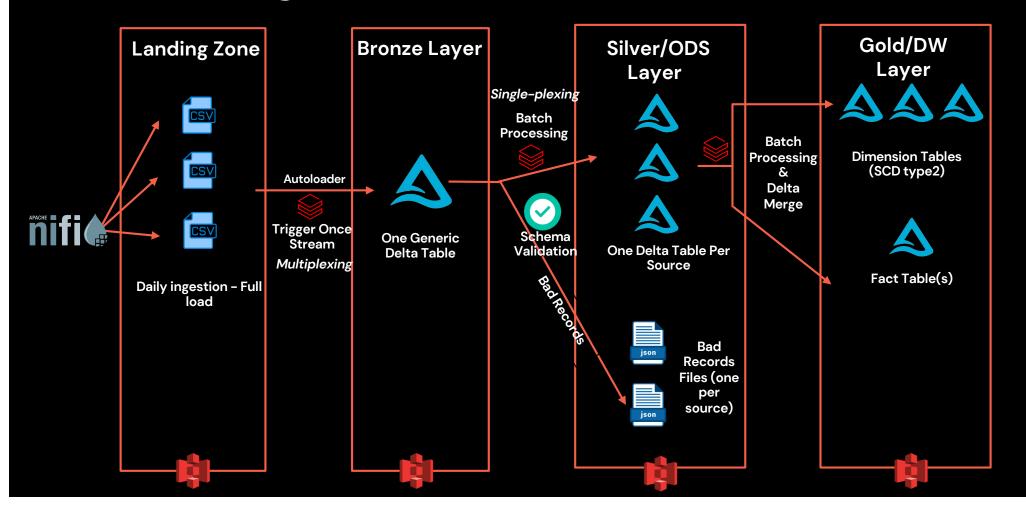
Target Architecture



Lakehouse & EDW – High Level Mapping



SNCF – Target DataLake Architecture



Landing Zone

- Daily ingestion in full load in landing zone by Apache Nifi
 - Constraint from source apps can't provide incremental load
 - Not an issue as daily volume < 100GB
- Input file format is CSV (non-standard CSV)
 - Encoding ISO-8859-1, 2 header rows, double quotes and semicolons in each data row & "|" used as column separator

HEADER	ACTIVITES 09022022 348
BIEN_CODE_COMPI	PLET BIEN_ACTIVITE_DATE BIEN_ACTIVITE_ECHEANCE BIEN_ACTIVITE_DESCRIPTION BIEN_ACTIVITE_PRIORITE BIEN_ACTIVITE_TYPE BIEN_ACTIVITE_ETAT BIEN_ACTIVITE_L0
"1084405_B 001	L_ET -1_L 330.0 L 330.0 POL Placard";
"108440S_B 001	L_ET -1_L 340.0 L 340.0 Armoire electrique";
"108440S_B 001	L_ET -1_L 350.0 L 350.0 Armoire electrique";
"108440S_B 001	L_ET -1_L 360.0 L 360.0 POL- Bureau Police";
"108440S_B 001	L_ET -1_L 370.0 L 370.0 POL- Cellule";
"108440S_B 001	L_ET -1_L 380.0 L 380.0 POL- Accueil Police";
"108440S_B 001	L_ET -1_L 390.0 J90.0 COM- concession";
"108440S_B 001	L_ET -1_L 400.0 L 400.0 Reserve Bar";
"108440S_B 001	L_ET -1_L 410.0 L 410.0 Issue de secours";

Landing to Bronze

Autoloader with text file format

Spark only supports UTF-8 for text format (<u>LineRecordReader.java</u>)

Autoloader with CSV file format

- Encoding set to ISO-8859-1
- Header option set to false
- First header deleted as source name extracted from *input_file_name()*
- Second header row ingested, needed in silver layer to add column structure
- Delimiter set to "@|@"
- All data ended up in _c0 column of generic delta table as string
- source type and execution date columns added in bronze delta table
- Trigger once mode once per day

Bronze Layer

- One generic notebook ingesting all source files
- Single generic bronze table (one per real-estate app)
 - Partitioned by execution date and source type columns for downstream partition pruning
- Write mode set to append
 - Re-run the ingestion job to process the late arriving data
- Manually <u>delete</u> partitions for more than 7 days
- Run <u>vacuum</u> command right after delete

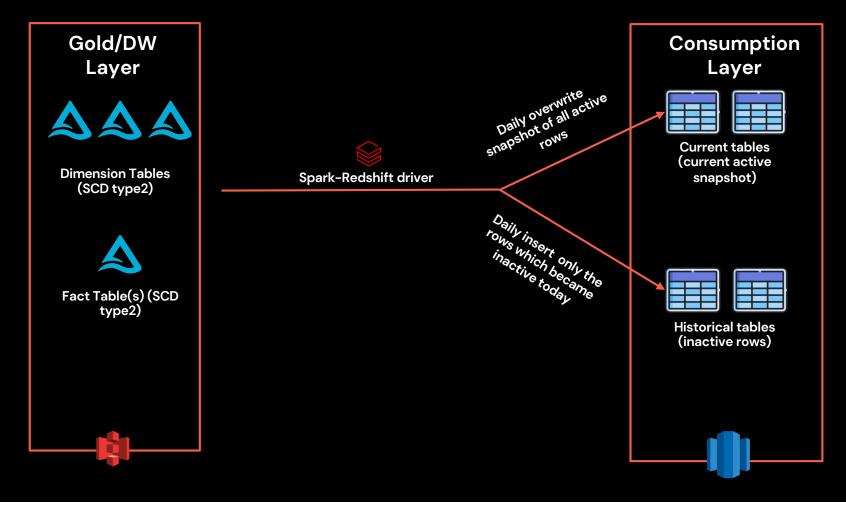
Silver/ODS Layer

- Adds structure to the raw data
 - As many delta tables in silver layer as number of different sources/tables in app
- One generic notebooks looping for all table/source names
- execution date and source type partition filter pushed to bronze table
- Validation the schema
 - Target schemas stored in Json format in S3 bucket (metadata files)
 - Corrupted rows ended up in bad record files
- Write mode set to overwrite
 - Bronze table daily execution date partition contains full data, so can re-run

Gold/DW Layer

- DW Star Schema implemented
- Dimension tables keep the historical data (SCD type 2)
 - <u>Delta merge</u> to implement SCD type 2 tables (<u>example</u>)
- Dimension tables needed surrogate keys
 - MD5 of business cols to uniquely identify each row
 - Delta identity column was not available back then, it's a better choice
 - Auto-increment integer better for data-skipping (w/ Zorder) than MD5 hex string
- Full load merge from silver to gold can be slow
 - Historical records are immutable, only active records are updated/deleted
 - Gold tables partitioned on a boolean flag column *RecordActive*
 - **RecordActive = True** used as filter in merge clause for partition pruning

Consumption via Redshift



Consumption via Redshift

- Redshift imposed by central IT team to consume data via Rest API
 - <u>Databricks SQL Statement Execution API</u> was under development back then, in public preview now.
- Spark-redshift driver can only perform insert and overwrite
 - Current tables: containing all the current active rows
 - Historical tables: containing only the historical inactive rows
- A daily batch job
 - Overwrites active rows snapshot from gold delta tables to current data tables in Redshift
 - Inserts only the rows that transitioned to inactive today to historical data tables in Redshift

Outcomes



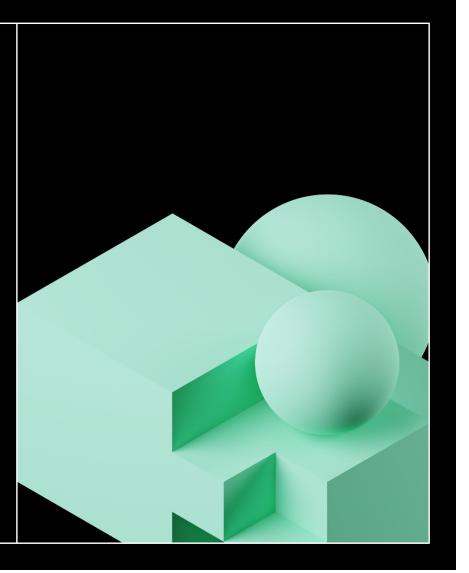
Outcomes

Cost Reduction

1 year's
worth of Acceleration with only
13 days
of consulting with Databricks

Professional Services

Best Practices & Recommendations



Best Practices & Recommendations

- <u>Code modularisation & unit testing</u>
- <u>Code documentation & indentation</u>
- Monitor rejected bad records
- Spark Optimizations Broadcast Join
- <u>Spark Optimizations Shuffle Partitions</u>
- <u>Delta Optimizations Slow Merges</u>
- <u>Miscellaneous Recommendations</u>

Code modularisation & unit testing

- Pyspark code in modular manner
 - Small single responsibility deterministic functions for business transformations
 - Take dataframe or configuration in and return dataframe out
 - Easier to unit test

Code modularisation & unit testing

1	import unittest
2	from chispa import assert_df_equality
3	<pre>from pyspark.sql.types import StructType,StructField, StringType, IntegerType, DateType</pre>
4	
5	# Ingestion Modules' unit tests suite
6	<pre>class IngestionModulesTests(unittest.TestCase):</pre>
7	
8	# Test name should start with 'test_' to be considered as part of test suite
9	<pre>def test_raw_processing(self):</pre>
10	
11	# Create input file
12	df = spark.createDataFrame(["header1\";", \
13	"Col1 Col2 Col3 Col4 Col5\";", \
14	"Zoning Modifications données Gares Clôturé L 010.0 Hall d'acces par parvis Ste Devote\";"], StringType())
15	<pre>df.repartition(1).write.format("csv").mode("overwrite").save("/tmp/raw_processing_test/input/")</pre>
16	
17	# Read inout dataframe
18	<pre>input_df = spark.read.csv("/tmp/raw_processing_test/input/")</pre>
19	
20	# Generate output dataframe output df = raw processing(input df)
21	output_df = raw_processing(input_df)
22	
23	# Create expected dataframe
24	expected_df = spark.createDataFrame([("Col1 Col2 Col3 Col4 Col5", 2), \
25	("Zoning Modifications données Gares Clôturé L 010.0 Hall d'acces par parvis Ste Devote", 3)\
26], \
27	StructType([\
28	StructField("Valeur", StringType(), True), \
29	StructField("ID_Source", IntegerType(),False) \
30	
31	
32	expected_df = expected_df.withColumn("DATE_CHARGEMENT", current_date())
33	# Assertions Comparing with Expected Dataframe
34	
35	assert_df_equality(output_df.select("Valeur", "ID_Source", "DATE_CHARGEMENT"), expected_df) # not checking "Source" column as it comes from
	this unit test
36	<pre>self.assertEqual(output_df.count(), 2)</pre>
Com	mand took 0.04 seconds by ext.himanshu.aroragsncf.fr at 04/04/2022, 16:33:19 on dbkscluster-dev-01
nd 4	
1	<pre>suite = unittest.TestLoader().loadTestsFromTestCase(IngestionModulesTests)</pre>
2	runner = unittest.TextTestRunner(verbosity=2) Running test with python UnitTest
3	runner.run(suite)

Code documentation & indentation

- Python documentation <u>conventions</u>
- Comments in between of code blocks for complex transformation
- Online <u>python code formatter</u> to properly indent the code
 - Now available in the product itself, feature called – *new notebook editor*

Monitor rejected bad records

- Bad records rejected in silver layer end up in json files stored at badrecordpath (a spark option)
- A daily batch job triggers after silver layer jobs to
 - Append all the bad record from json files a target delta table
 - With additional columns execution date and source type
- Compute some technical KPIs & display them on dashboarding tools like DBSQL, PowerBI
 - Number of total rejected rows today
 - Number of total rejected rows today per source type
 - Timeseries graph of number of total rejected rows per day and source type

Spark Optimizations – Broadcast Join

- Joins/merges in Gold layer induce data shuffling
 - Avoid some of the shuffle for smaller tables/dataframes by broadcasting them to worker nodes
- Driver with 32 GB+ RAM, safe to broadcast any table or dataframe of size <= 200MB

spark.conf.set("spark.sql.autoBroadcastJoinThreshold",
"209715200")

- Driver can collect up to 1GB by default, change it to 8GB
 - Set before the cluster starts hence put this in advance cluster options

spark.driver.maxResultSize 8g

Spark Optimizations – Shuffle Partitions

- Join/aggregations induce shuffle in spark
 - By default number of shuffle partitions = 200 (which is almost never the right value)
- Recommendation for tuning the # shuffle partitions
 - Either fine tune it based on shuffle stage size (refer <u>spark summit talk</u> from Daniel Tomes)
 - Or as a rule of thumb, set it to 2x or 3x of number of total worker cores, to fully leverage all cpu cores during shuffle stages

spark.conf.set("spark.sql.shuffle.partitions",3*sc.defaultParallelism)

Delta Optimizations – Slow Merges

- Leverage LowShuffleMerge
 - Enable by default in DBR 10.4+
- For optimized file sizes, use <u>AutoOptimize</u> features of Delta lake by using <u>delta.autoOptimize.optimizeWrite</u> & <u>delta.autoOptimize.autoCompact</u> options
 - Target file size 128MB
 - Smaller file size implies less data rewrite during merges
 - Further reduce file size using *delta.targetFileSize* option
- Broadcast the source dataframe being merged
- Refer <u>DAIS talk</u> from Justin Breese to learn more

Other Recommendations

- Leverage the databricks jobs workflow feature to schedule and orchestrate the notebooks' execution.
- Use Databricks <u>Repos</u> feature for seamless integration with Git repository
 - Comes with Rest API to integrate into CI/CD setup
- <u>BladeBridge</u> is technology partner of Databricks which can generate Pyspark code from IBM DataStage pipelines
- <u>Delta live tables</u> (managed ELT feature) of Databricks can also be a great choice to speed up the migration project
 - Takes care of pipeline operational tasks and allows developers to focus on business code
 - Enforces and monitors data quality rules

