
Databricks
2023

Learnings From the Field:
“Migration From Oracle DW
and IBM DataStage to
Databricks on AWS”
Amine Benhamza, Lead Specialist Solutions Architect at Databricks
Himanshu Arora, Resident Solutions Architect at Databricks

Agenda

• Migration Pillars

• Data Models’ Migration

• Code Migration

• SNCF - EDW Migration Project

• Target Lakehouse Architecture

• Data pipelines’ implementation details

• Outcomes

• Best Practices & recommendations

• Q/A

Migration Pillars

Architecture &
Infrastructure
● Establish

deployment
Architecture

● Implement
Security and
Governance
framework

Data
Migration
● Map Data

Structures
and Layout

● Complete
One time load

● Implement
incremental
load
approach

ETL and
Pipelines
● Migrate Data

transformation
and pipeline
code,
orchestration
and jobs

● Validate:
Compare your
results with On
Prem data and
expected
results

BI and
Analytics
● Re-write

reports and
analytics for
Business
Analysts and
Business
Outcomes

● Connect to
reporting and
analytics
applications

Data
Science/ML
● Establish

connectivity
to ML Tools

● Onboard
Data Science
teams

Data Modeling
7 Basic Steps to Success

1. Use dimensional modeling industry principals (Star Schema, Data Vault)

2. Use Delta Tables & Databricks SQL (Photon) - use Delta for your fact and

dimension tables. Use DB SQL (Photon) for BI workloads

3. Optimize file size - optimize your file sizes for fast file pruning

4. Z-Order Facts - create Z-Order on your fact tables, key fields and most likely

predicates

5. Z-Order Dimensions - create Z-Order on your dimension, key fields and most

likely predicates

6. Analyze Tables - to gather statistics for Adaptive Query Execution Optimizer

7. Cache Tables - cache tables when you can. DBSQL has a great cache

Data Modeling With Constraints
Familiar and easier schema modeling on the lakehouse

Primary + Foreign Key Declaration
to allow end users to understand
relationships between tables.

IDENTITY Columns automatically
generate unique integer values when
new rows are added.

Enforced CHECK Constraints to
never worry about data quality or
data correctness issues sneaking up
on you.

sales

time_key (PK)

SQL_date

day_of_wee
k

week_number

Store
dimension

store_key

store_ID

store_name

address

Sales Fact table

Time_key (FK)

product_key (FK)

store_key (FK)

customer_key (FK)

price_sold

units_sold

dollars_cost

Product
dimension

product_key (PK)

SKU

description

category

Customer
dimension

customer_key (PK)

customer_name

customer_profile

address

goldsilver

Data Modeling: Data Vault 2.0

Staging: Raw data in its original format

Ingestion: Raw data converted to Delta

Integration - Raw Vault: Data is modeled as

Hubs, Links and Satellites

Integration - Business Vault: Tables with applied

business rules, data quality rules, cleansing and

conforming rules

Presentation - Information Marts: Similar to a

classical Data Mart with consumer oriented

models

PresentationEnterprise ODS/ Integration

Raw
Vault

Business
Vault

Information
Mart

Hub

Satellit
e

Link

PIT

Bridge

Views

Hub

Satellit
e

Satellit
e

Satellit
e

Hub

Satellit
e

Satellit
e

Hub

Satellit
e

Satellit
e

Link

Satellit
e

Customer Product

Order

SQL

Data Vault 2.0 model

ETL/ELT

Business
Views

bronze

Ingestion
raw
data

Landing

Staging
raw data
(temp.)

Code Migration
Main artefacts to consider

• Data Types

• SQL * Loader

• Data Definition Language (DDL) expressions

• Data Manipulation Language (DML) expressions

• PL/SQL Code

Code Migration
Supported Data Types

Data Type
Category

Oracle Data Type Converted Data Type

Character CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR,
NVARCHAR2, CHARACTER, TEXT, CLOB, NCLOB,
LONG

STRING

Numeric NUMBER [(p [, s])]
FLOAT [(p)]
BINARY_FLOAT
BINARY_DOUBLE

BIGINT
NUMERIC[(p [, s])]
FLOAT
FLOAT

DateTime DATE
TIMESTAMP

DATE
TIMESTAMP

Byte BLOB (Binary Large Object) BINARY

Code Migration
SQL * Loader
- > Oracle code

LOAD DATA
INFILE '/inputfolder/employee.csv'
BADFILE '/outfolder/employee.rejected'
DISCARDFILE
'/outfolder/employee.discarded'

INSERT INTO TABLE emp
FIELDS TERMINATED BY "," OPTIONALLY
ENCLOSED BY '"' TRAILING NULLCOLS
(employee_id, first_name, last_name,
email, phone_number, hire_date date
'mm/dd/yyyy');

- > Databricks code

COPY INTO emp FROM (
SELECT
employee_id,
first_name,
last_name,
email,
phone_number,
hire_date::date

FROM '/inputfolder/employee.csv')
FILEFORMAT = CSV
FORMAT_OPTIONS (
'badRecordsPath' =
'/outfolder/employee.rejected',
'delimiter' = ',',
'quote' = '"',
'dateFormat' = 'mm/dd/yyyy');

Code Migration
DDLs
Identity
Column

-- > Oracle code
CREATE TABLE identity_demo (

id NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY START WITH 10 INCREMENT
BY 10,description VARCHAR2(100) not null);

-- > Databricks code
CREATE TABLE identity_demo (

id BIGINT GENERATED BY DEFAULT IDENTITY START WITH 10 INCREMENT BY 10,
description STRING not NULL);

UNIQUE Unique Constraints are not supported on Databricks yet. Required checks to be implemented in ETL
processes.

-- > Oracle code
CREATE TABLE table_x (a1 INTEGER UNIQUE, a2 CHARACTER(10));

-- > Databricks code
CREATE TABLE table_x (a1 INTEGER, a2 STRING);

Code Migration
DDLs

CHECK -- > Oracle code

CREATE TABLE table_x (
column_1 INTEGER
CHECK (column_1 > 0)
CHECK (column_1 < 999)
CHECK (column_1 NOT IN

(100,200,300))
CONSTRAINT check_0
CHECK (column_1 IS NOT

NULL),
column_2 INTEGER
CONSTRAINT check_1
CHECK (column_2 > 0)
CHECK (column_2 < 999)

);

-- > Databricks code

CREATE TABLE table_x (
column_1 INTEGER,
column_2 INTEGER

);
ALTER TABLE table_x ADD CONSTRAINT
column_1_checks
CHECK (
column_1 > 0 AND
column_1 < 999 AND
column_1 NOT IN (100,200,300) AND
column_1 IS NOT NULL

);
ALTER TABLE tab1e_x ADD CONSTRAINT
column_2_checks
CHECK ((column_2 > 0) AND

(column_2 < 999)
);

Code Migration
DMLs

UPSERT -- > Oracle code

MERGE INTO bonuses D USING (
SELECT Employee_id, salary,

department_id
FROM
employees

WHERE department_id = 80
) S ON (D.employee_id = S.employee_id)
WHEN MATCHED THEN
UPDATE
SET D.bonus = D.bonus + S.salary *.01
DELETE WHERE (S.salary > 8000)

WHEN NOT MATCHED THEN
INSERT (D.employee_id, D.bonus)
VALUES (S.employee_id, S.salary *.01)
WHERE (S.salary <= 8000)

;

-- > Databricks code

MERGE INTO bonuses D USING (
SELECT employee_id, salary, department_id
FROM
employees

WHERE department_id = 80
) S ON (D.employee_id = S.employee_id)
WHEN MATCHED AND (S.salary > 8000) THEN
DELETE
WHEN MATCHED THEN UPDATE
SET D.bonus = D.bonus + S.salary *.01

WHEN NOT MATCHED AND (S.salary <= 8000)
THEN
INSERT (D.employee_id, D.bonus)
VALUES (S.employee_id, S.salary *.01)

;

Code Migration
DMLs

Conditional
INSERT

-- > Oracle code

INSERT ALL

WHEN order_total <= 100000 THEN
INTO small_orders

WHEN order_total > 100000 AND
order_total <= 200000 THEN

INTO medium_orders

ELSE
INTO large_orders

SELECT order_id, order_total,
sales_rep_id, customer_id

FROM orders;

-- > Databricks code

INSERT INTO small_orders
SELECT order_id, order_total, sales_rep_id,
customer_id FROM orders
WHERE order_total <= 100000 ;

INSERT INTO medium_orders
SELECT order_id, order_total, sales_rep_id,
customer_id FROM orders
WHERE order_total > 100000 AND order_total
<= 200000 ;

INSERT INTO large_orders
SELECT order_id, order_total, sales_rep_id,
customer_id FROM orders
WHERE order_total > 200000 ;

Code Migration
PL/SQL Code

Sql
statements

-- > Oracle Code

DECLARE
l_average_credit l_credit_limit%TYPE;
l_max_credit l_credit_limit%TYPE;
l_min_credit l_credit_limit%TYPE;

BEGIN
SELECT

MIN(credit_limit),
MAX(credit_limit),

AVG(credit_limit)
INTO

l_min_credit, l_max_credit,
l_average_credit

FROM customers;
END;

-- > Databricks code
%python

l_average_credit=None
l_max_credit=None
l_min_credit=None

l_min_credit, l_max_credit,
l_average_credit, = spark.sql(f"""
SELECT MIN(credit_limit),
MAX(credit_limit),
AVG(credit_limit) MIN_COL
FROM customers;
""").first().asDict().values()

Code Migration
PL/SQL Code

CASE
statements

-- > Oracle Code
DECLARE
c_grade CHAR(1);
c_rank VARCHAR2(20);

BEGIN
c_grade := 'B';
CASE c_grade
WHEN 'A' THEN
c_rank := 'Excellent' ;

WHEN 'B' THEN
c_rank := 'Very Good' ;

WHEN 'C' THEN
c_rank := 'Good' ;

WHEN 'D' THEN
c_rank := 'Fair' ;

ELSE
c_rank := 'No such grade' ;

END CASE;
END;

-- > Databricks code
%python

c_grade=None
c_rank=None
c_grade = 'B'

If c_grade == 'A':
c_rank = 'Excellent'

elif c_grade == 'B':
c_rank = 'Very Good'

elif c_grade == 'C':
c_rank = 'Good'

elif c_grade == 'D':
c_rank = 'Fair'

else:
c_rank = 'No such grade'

Code Migration
PL/SQL Code

FUNCTIONS -- > Oracle Code
CREATE OR REPLACE FUNCTION
get_total_sales(

in_year PLS_INTEGER
)
RETURN NUMBER
IS

l_total_sales NUMBER := 0;
BEGIN

SELECT SUM(unit_price * quantity)
INTO l_total_sales
FROM order_items
INNER JOIN orders USING (order_id)
WHERE status = 'Shipped'
GROUP BY EXTRACT(YEAR FROM

order_date)
HAVING EXTRACT(YEAR FROM

order_date) = in_year;
RETURN l_total_sales;

END;

-- > Databricks code
def get_total_sales(in_year):
l_total_sales = 0

l_total_sales, = spark.sql(f"""
SELECT SUM(unit_price * quantity)
SUM_COL
FROM order_items
INNER JOIN orders USING (order_id)
WHERE status = 'Shipped'
GROUP BY EXTRACT(YEAR FROM order_date)
HAVING EXTRACT(YEAR FROM order_date) =
{in_year};
""").first().asDict().values()

spark.conf.set("var.l_total_sales",
l_total_sales)

return l_total_sales;

SNCF - EDW Migration
Project - Architecture
& Best Practices

Context of Project
• SNCF - French national railway & transportation company

• Project was for the Real Estate entity

• Migrate from on-prem Oracle EDW and IBM DataStage to
Databricks on AWS due to
• High 💰of Oracle EDW & IBM DataStage
• Rigid & non-scalable solution
• No support for streaming, ML & AI

Context of Project

Databricks professional services team partnered with SNCF
to:
• Migrate 1st data application (approx 30 DW tables) to Lakehouse
• Lead the data lake architecture design
• Lead and oversee the data pipelines implementation
• Provide best practices of pyspark, delta, databricks & software

development

Target
Architecture

Lakehouse & EDW - High Level Mapping

SNCF - Target DataLake Architecture
Landing Zone

Daily ingestion - Full
load

Autoloader

Bronze Layer

One Generic
Delta Table

Silver/ODS
Layer

One Delta Table Per
Source

Bad Records

Schema
Validation

Gold/DW
Layer

Dimension Tables
(SCD type2)

Fact Table(s)

Bad
Records

Files (one
per

source)

Batch
Processing

&
Delta
Merge

Trigger Once
Stream

Batch
Processing

Multiplexing

Single-plexing

Landing Zone

• Daily ingestion in full load in landing zone by Apache Nifi
• Constraint from source apps - can’t provide incremental load

• Not an issue as daily volume < 100GB

• Input file format is CSV (non-standard CSV)

• Encoding ISO-8859-1, 2 header rows, double quotes and
semicolons in each data row & “|” used as column separator

Landing to Bronze
Autoloader with text file format

• Spark only supports UTF-8 for text format (LineRecordReader.java)

Autoloader with CSV file format

• Encoding set to ISO-8859-1

• Header option set to false

• First header deleted as source name extracted from input_file_name()

• Second header row ingested,needed in silver layer to add column structure

• Delimiter set to "@|@"

• All data ended up in _c0 column of generic delta table as string

• source type and execution date columns added in bronze delta table

• Trigger once mode - once per day

https://github.com/apache/hadoop/blob/trunk/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/lib/input/LineRecordReader.java
https://docs.databricks.com/ingestion/auto-loader/index.html

Bronze Layer

• One generic notebook ingesting all source files

• Single generic bronze table (one per real-estate app)

• Partitioned by execution date and source type columns for
downstream partition pruning

• Write mode set to append
• Re-run the ingestion job to process the late arriving data

• Manually delete partitions for more than 7 days

• Run vacuum command right after delete

https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-delete-from.html
https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-vacuum.html

Silver/ODS Layer

• Adds structure to the raw data
• As many delta tables in silver layer as number of different sources/tables in app

• One generic notebooks looping for all table/source names

• execution date and source type partition filter pushed to bronze
table

• Validation the schema
• Target schemas stored in Json format in S3 bucket (metadata files)
• Corrupted rows ended up in bad record files

• Write mode set to overwrite

• Bronze table daily execution date partition contains full data, so can re-run

Gold/DW Layer
• DW Star Schema implemented

• Dimension tables keep the historical data (SCD type 2)
• Delta merge to implement SCD type 2 tables (example)

• Dimension tables needed surrogate keys
• MD5 of business cols to uniquely identify each row

• Delta identity column was not available back then, it’s a better choice
• Auto-increment integer better for data-skipping (w/ Zorder) than MD5 hex

string

• Full load merge from silver to gold can be slow
• Historical records are immutable, only active records are updated/deleted

• Gold tables partitioned on a boolean flag column RecordActive

• RecordActive = True used as filter in merge clause for partition pruning

https://www.datawarehouse4u.info/SCD-Slowly-Changing-Dimensions.html
https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-merge-into.html
https://docs.databricks.com/delta/merge.html
https://www.databricks.com/blog/2022/08/08/identity-columns-to-generate-surrogate-keys-are-now-available-in-a-lakehouse-near-you.html
https://www.databricks.com/blog/2022/08/08/identity-columns-to-generate-surrogate-keys-are-now-available-in-a-lakehouse-near-you.html

Consumption via Redshift
Gold/DW

Layer

Dimension Tables
(SCD type2)

Fact Table(s) (SCD
type2)

Spark-Redshift driver

Current tables
(current active

snapshot)

Historical tables
(inactive rows)

Daily overwrite

snapshot of all active

rows

Daily insert only the

rows which became

inactive today

Consumption
Layer

Consumption via Redshift

• Redshift imposed by central IT team - to consume data via Rest API
• Databricks SQL Statement Execution API was under development back then, in

public preview now.

• Spark-redshift driver can only perform insert and overwrite
• Current tables: containing all the current active rows
• Historical tables: containing only the historical inactive rows

• A daily batch job
• Overwrites active rows snapshot from gold delta tables to current data tables in

Redshift
• Inserts only the rows that transitioned to inactive today to historical data tables in

Redshift

https://www.databricks.com/blog/2023/03/07/databricks-sql-statement-execution-api-announcing-public-preview.html

Outcomes

Outcomes

70%
Cost Reduction

≈ 1 year’s
worth of Acceleration with only

13 days
of consulting with Databricks

Professional Services

Best Practices &
Recommendations

Best Practices & Recommendations

• Code modularisation & unit testing

• Code documentation & indentation

• Monitor rejected bad records

• Spark Optimizations - Broadcast Join

• Spark Optimizations - Shuffle Partitions

• Delta Optimizations - Slow Merges

• Miscellaneous Recommendations

Code modularisation & unit testing

• Pyspark code in modular manner
• Small single responsibility deterministic functions for business

transformations

• Take dataframe or configuration in and return dataframe out

• Easier to unit test

Code modularisation & unit testing

Code documentation & indentation

• Python documentation
conventions

• Comments in between of code
blocks for complex
transformation

• Online python code formatter to
properly indent the code
• Now available in the product itself,

feature called - new notebook
editor

https://realpython.com/documenting-python-code/
https://extendsclass.com/python-formatter.html

Monitor rejected bad records

• Bad records rejected in silver layer end up in json files stored at
badrecordpath (a spark option)

• A daily batch job triggers after silver layer jobs to

• Append all the bad record from json files a target delta table

• With additional columns execution date and source type

• Compute some technical KPIs & display them on dashboarding tools
like DBSQL, PowerBI

• Number of total rejected rows today

• Number of total rejected rows today per source type

• Timeseries graph of number of total rejected rows per day and source type

Spark Optimizations - Broadcast Join

• Joins/merges in Gold layer induce data shuffling

• Avoid some of the shuffle for smaller tables/dataframes by broadcasting them to
worker nodes

• Driver with 32 GB+ RAM, safe to broadcast any table or dataframe of
size <= 200MB

spark.conf.set(“spark.sql.autoBroadcastJoinThreshold”,
“209715200”)

• Driver can collect up to 1GB by default, change it to 8GB

• Set before the cluster starts hence put this in advance cluster options

spark.driver.maxResultSize 8g

https://spark.apache.org/docs/2.4.0/sql-performance-tuning.html

Spark Optimizations - Shuffle Partitions

• Join/aggregations induce shuffle in spark

• By default number of shuffle partitions = 200 (which is almost never the right value)

• Recommendation for tuning the # shuffle partitions

• Either fine tune it based on shuffle stage size (refer spark summit talk from Daniel
Tomes)

• Or as a rule of thumb, set it to 2x or 3x of number of total worker cores, to fully
leverage all cpu cores during shuffle stages

spark.conf.set(“spark.sql.shuffle.partitions”,3*sc.defaultParallelism)

https://www.youtube.com/watch?v=daXEp4HmS-E

Delta Optimizations - Slow Merges

• Leverage LowShuffleMerge

• Enable by default in DBR 10.4+

• For optimized file sizes, use AutoOptimize features of Delta lake by
using delta.autoOptimize.optimizeWrite &
delta.autoOptimize.autoCompact options

• Target file size 128MB

• Smaller file size implies less data rewrite during merges

• Further reduce file size using delta.targetFileSize option

• Broadcast the source dataframe being merged

• Refer DAIS talk from Justin Breese to learn more

https://docs.databricks.com/optimizations/low-shuffle-merge.html
https://docs.databricks.com/optimizations/auto-optimize.html
https://databricks.com/session_eu20/delta-lake-optimizing-merge
https://www.databricks.com/speaker/justin-breese

Other Recommendations
• Leverage the databricks jobs workflow feature to schedule and

orchestrate the notebooks’ execution.

• Use Databricks Repos feature for seamless integration with Git
repository
• Comes with Rest API to integrate into CI/CD setup

• BladeBridge is technology partner of Databricks which can generate
Pyspark code from IBM DataStage pipelines

• Delta live tables (managed ELT feature) of Databricks can also be a
great choice to speed up the migration project
• Takes care of pipeline operational tasks and allows developers to focus on business

code

• Enforces and monitors data quality rules

https://docs.databricks.com/data-engineering/jobs/index.html
https://docs.databricks.com/repos/index.html
https://bladebridge.com/configurations/IBM-DataStage-to-PySpark/
https://docs.databricks.com/data-engineering/delta-live-tables/index.html

Q/A

