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Problems to Solve

High Data Replication Latency

● Why is it important
○ Ad hoc incident analysis, customer supports
○ Dashboards or products that require near real-time metrics
○ Production monitoring, anomaly detection, etc…

● Many tables are built/replicated in full on a daily basis
○ Incrementally built tables are faster, but may not have perfect data 

quality
○ Up-to-date data in OLTP stores
○ Data in multiple places
○ Replicate different varieties of tables to a centralized place in near 

real-time



Problems to Solve

Diverse architectures/designs for ingesting different sources, like 
databases and Kafka 

● Multiple codebases to maintain
○ Can be written in different programming languages
○ High operational overhead 
○ Long learning curve for new team members

● Inconsistent user experiences
○ Different wikis and onboarding guides to read
○ Different configuration domain-specific languages (DSLs) to learn



SOON (Spark cOntinuOus iNgestion)

A unified, configuration-driven streaming ingestion 
framework from Kafka to Delta Lake implemented using 

Spark Structured Stream APIs



Problems to Solve
Our Solution - SOON

Unify DB replication and Kafka ingestion

● Table Replication based on Change Data Capture(CDC) events
● Normal non-CDC events

One generic framework for all scenarios

● Support append-only and merge-updates for both CDC and non-CDC

One unified onboarding experience for the users

One framework to develop and maintain for the team
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SOON Basics
Job Specification DSL

SOON translates a job specification 
file into a Spark streaming job

● HOCON format
● Support connection to multiple 

Kafka clusters
● Derived columns support for 

map-side transformations
● Multiple job specifications can 

be triggered in the same cluster

{
  kafka: {
    cluster: cluster-name
    topic: kafka-topic-name
    …
  }
  outputTable: {
    dev: schema_dev.table_name
    prod: schema_prod.table_name
  }
  rawColumns: [
    {columnName: column1, type: Long}
    {columnName: column2, type: String, isExcluded: true}
  ]
  derivedColumns: [
    {
      columnName: column2_derived, type: String,
      defExpression: "udf(column2)",
      comment: "some comments here"
    }
  ]
  partitionColumns: [
      {columnName: "column2", generatedPartitionType: 
"date_hour"}
  ]
  features: [ … ]
  …
}



SOON Basics
Append-only Jobs

NO merge keys defined in the DSL

Supported Features

● Supported formats: JSON, 
Protobuf, any customized binary 
format

● Physical or generated columns 
as partition columns

● Backfills

xxxColumns: [
  {columnName: c1, type: Long, isPrimaryKey: false}
  {columnName: c2, type: Timestamp, isPrimaryKey: false}
]

partitionColumns: [
    {columnName: timestamp, generatedPartitionType: date}
    {
      columnName: name, generatedPartitionType: substring,
      substringParams: {
        pos: 0,
        len: 6
      }
    }
  ]



SOON Basics
Merge Jobs

Job specification is translated into 
"MERGE" queries

● Many optimizations to improve 
merge performance

● CDC-events Merge 
○ Standard CDC event schema
○ Only support JSON for now

● non-CDC-events Merge
○ Can be any format
○ Deletes are not supported

sourceTable: {
  dev: schema_dev.table_name
  prod: schema_prod.table_name
}

xxxColumns: [
  {columnName: id, type: Long, isPrimaryKey: true}
  {columnName: col, type: Timestamp}
]



SOON Basics
CDC Merge Jobs

SOON standard CDC event schema

● Unify all databases’ raw CDC schema
● Kafka Connect Single Message 

Transforms(SMT) to transform raw CDC 
events into the standard schema

Last Change Selection (LCS)

● Find last change for each merge key
● Window function based on CDC 

operation time and offsets

Generate and run merge queries

outputTable: {
  dev: schema_dev.table_name
  prod: schema_prod.table_name
}

xxxColumns: [
  {columnName: id, type: Long, isPrimaryKey: true}
  {columnName: col, type: Timestamp}
]

MERGE INTO schema_prod.table_name t
  USING stream_events s
  ON t.id = s.id
  WHEN MATCHED
       and s.operation = "DELETE"
    THEN DELETE
  WHEN MATCHED
       and s.operation != "DELETE"
    THEN UPDATE SET *
  WHEN NOT MATCHED
       and s.operation != "DELETE"
    THEN INSERT *;



SOON Basics
SOON Standard CDC Event Schema

oc: operation code

● “I” for “Insert” event
● “D” for “Delete” event
● “U” for “Update” event

ns: namespace

● Composed of <database or schema 
name>. <table name>

● For differentiating CDC source tables 
for a shared Kafka CDC topic for 
multiple tables

An update event example: 
{
   "oc": "U",
   "ns": "schema.table",
   "ot": 1651743495123,
   "pk": {
      "id1": "123",
  "id2": "abc"
    },
   "va": {
      "field1": "value1",
      "field2": "value2"
    }
}

A delete event example:
{
   "oc": "D",
   "ns": "schema.table",
   "ot": 1651743495123,
   "pk": {
      "id1": "123",
  "id2": "abc"
    }
}



SOON Basics
SOON Standard CDC Event Schema

ot: operation time

● The epoch timestamp when the DB 
operation happens that creates the 
CDC event

pk: primary key

● Columns composing the composite 
primary keys or unique index for a row

● “pk” values are from a post-image after 
the change. It doesn’t have to come 
from an immediate post-image after 
the change

An update event example: 
{
   "oc": "U",
   "ns": "schema.table",
   "ot": 1651743495123,
   "pk": {
      "id1": "123",
  "id2": "abc"
    },
   "va": {
      "field1": "value1",
      "field2": "value2"
    }
}

A delete event example:
{
   "oc": "D",
   "ns": "schema.table",
   "ot": 1651743495123,
   "pk": {
      "id1": "123",
  "id2": "abc"
    }
}



SOON Basics
SOON Standard CDC Event Schema

va: value

● The rest of the columns for a row 
excluding the “pk” fields

● Same as the “pk” field, where values are 
from the same post-image after the 
change

An update event example: 
{
   "oc": "U",
   "ns": "schema.table",
   "ot": 1651743495123,
   "pk": {
      "id1": "123",
  "id2": "abc"
    },
   "va": {
      "field1": "value1",
      "field2": "value2"
    }
}

A delete event example:
{
   "oc": "D",
   "ns": "schema.table",
   "ot": 1651743495123,
   "pk": {
      "id1": "123",
  "id2": "abc"
    }
}
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Optimizations In Depth
Optimizations For Merge

Reduce amount of data to read from S3 for the target table

● Min-max range merge optimization
● KMeans range merge optimization

Reduce amount of data to rewrite the target table

● No-update merge for deduplication (merge non-CDC)

Reduce unnecessary joins with “insert-only” merge

● Merge-with-Insert optimization (merge CDC)



Optimizations In Depth
Optimizations For Merge - MinMax Range Merge Optimization

Micro-batch execution time for merge with MinMax Range 
Optimization. Performance increases by ~ 20%.

MERGE INTO output_db.output_table t
  USING stream_events s
  ON t.id = s.id
    AND t.id >= <MIN_ID> AND t.id <= <MAX_ID>
  WHEN MATCHED
       and s.operation = "DELETE"
    THEN DELETE
  WHEN MATCHED
       and s.operation != "DELETE"
    THEN UPDATE SET *
  WHEN NOT MATCHED
       and s.operation != "DELETE"
    THEN INSERT *;

xxxColumns: [
  {columnName: id, type: String, isPrimaryKey: true, 
enableMinMaxMergeOptimization: true}
]

Micro-batch execution time for merge with no optimizations



Optimizations In Depth
Optimizations For Merge - KMeans Range Merge Optimization

Average micro-batch execution time for merge with 
MinMax Range Optimization: ~5.3 mins

A few updates in history can 
make the MinMax range very 
wide

Average micro-batch execution time for merge with 
KMeans Range Optimization: ~4.3 mins. Additional ~15-20% 
performance gain over MinMax Range Optimization



Optimizations In Depth
Optimizations For Merge - KMeans Range Merge Optimization

MERGE INTO output_db.output_table t
  USING stream_events s
  ON t.id = s.id
   AND (t.`created_at` >= <MIN in Bucket-1> AND t.`created_at` <= <MAX in Bucket-1>
          OR t.`created_at` >= <MIN in Bucket-2> AND t.`created_at` <= <MAX in Bucket-2>
          OR t.`created_at` >= <MIN in Bucket-3> AND t.`created_at` <= <MAX in Bucket-3>)
  WHEN MATCHED
       and s.operation = "DELETE"
    THEN DELETE
  WHEN MATCHED
       and s.operation != "DELETE"
    THEN UPDATE SET *
  WHEN NOT MATCHED
       and s.operation != "DELETE"
    THEN INSERT *;

xxxColumns: [
  {columnName: id, type: String, isPrimaryKey: true}
  {columnName: created_at, type: Timestamp, kMeansMergeOptimizationType: Timestamp}
]



Optimizations In Depth
Optimizations For Merge - No-update Merge For Deduplication 

A feature that can be turned 
on for de-duplication use 
cases in merge non-CDC 
scenario

MERGE INTO output_db.output_table t
  USING stream_events s
  ON t.id = s.id

AND (t.event_time >= <min_event_time> AND t.event_time <= 
<max_event_time>)
  WHEN NOT MATCHED
    THEN INSERT *;

xxxColumns: [
  {columnName: id, type: String, isPrimaryKey: true}
  {columnName: event_time, type: Timestamp, 
enableMinMaxMergeOptimization: true}
]
partitionColumns: [
    {columnName: event_time, generatedPartitionType: date_hour}
]
features: [
  {
    name: no_update_merge
  }
]



Optimizations In Depth
Optimizations For Merge - Merge-with-Insert optimization

Use INSERT query instead of MERGE when micro-batch only contains 
“INSERT” events

● Fall back to normal merge-CDC query otherwise

Applicable use case: when majority of the CDC changes are “insert”s

● Partitioned Postgres tables where "active" and "historic" data are in different tables
● Mostly "insert" events for the "historic" table (records are immutable)

○ “Historic” table can be huge
○ Deletes due to GDPR



Optimizations In Depth
Optimizations For Better Read and Less Storage

Automatically onboarded to scheduled optimize and vacuum pipelines

● Partitioned SOON tables
○ Incremental z-order optimize with partition predicates and z-ordered by 

merge keys or configured columns
○ High watermarks for optimize runs saved in an external state store

● Non-partitioned SOON tables
○ Full table z-order optimize based on merge keys or configured columns

SOON jobs and optimize jobs coordination

● External state store to track job state: ZORDER, MERGE, or IDLE
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Incremental Load to Other Systems
Incremental Load to Snowflake

Change Data Feed (CDF) based incremental load to Snowflake for 
merge-updated tables

● Support hard deletes
● Airflow dags to export changes of different types to S3, and load incrementally using 

delete + merge queries in Snowflake

CDF changes with _change_type, _commit_version, _commit_timestamp columns



Incremental Load to Other Systems
Incremental upserts to Snowflake 
CREATE TABLE cdc_schema._tmp_src_upsert_<epoch> USING 
PARQUET LOCATION 's3://<path>' AS
SELECT

*,
<src_max_commit_version>

FROM
cdc_schema.src@<src_max_commit_version>

WHERE
timestamp_watermark_column >= 

<dest_timestamp_high_watermark>-<small_lookback_window>

CREATE TABLE cdc_schema._tmp_src_delete_<epoch> 
USING PARQUET LOCATION 's3a://<path>' AS
SELECT

pk
FROM

TABLE_CHANGES('cdc_schema.src', 
<commit_version_dest_high_watermark>, 
<src_max_commit_version>)
WHERE
    _change_type = 'delete'

Incremental deletes to Snowflake 

Load S3 path as Snowflake table 
output_db._UPSERT_ROWS

Load S3 path as Snowflake table 
output_db._DELETED_ROWS

DELETE FROM output_db.dest t 
USING output_db._DELETED_ROWS_dest s

WHERE
t.pk = s.pk

MERGE INTO output_db.dest t
USING output_db._UPSERT_ROWS_dest s

ON t.pk = s.pk
WHEN MATCHED

THEN UPDATE SET t.col1 = s.col1, t.col2=s.col2
WHEN NOT MATCHED

THEN INSERT (co1, col2) values (col1, col2);
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Coinbase Engineering Blogs

● SOON (Spark cOntinuOus iNgestion) for near real-time data at Coinbase - Part 1
● Optimizations in SOON (Spark cOntinuOus iNgestion) - Part 2


