
SOON For Near
Real-time Data
How Coinbase built and optimized SOON
(Spark cOntinuOus iNgestion), a streaming
ingestion framework

Databricks
2023

Chen Guo
Staff Software Engineer, Data Platform & Service Team

Agenda

Problems to Solve

SOON Ecosystem

SOON Basics

Optimizations In Depth

Incremental Load to Other Systems

1_DAIS_Title_Slide
Problems to
Solve

Problems to Solve

High Data Replication Latency

● Why is it important
○ Ad hoc incident analysis, customer supports
○ Dashboards or products that require near real-time metrics
○ Production monitoring, anomaly detection, etc…

● Many tables are built/replicated in full on a daily basis
○ Incrementally built tables are faster, but may not have perfect data

quality
○ Up-to-date data in OLTP stores
○ Data in multiple places
○ Replicate different varieties of tables to a centralized place in near

real-time

Problems to Solve

Diverse architectures/designs for ingesting different sources, like
databases and Kafka

● Multiple codebases to maintain
○ Can be written in different programming languages
○ High operational overhead
○ Long learning curve for new team members

● Inconsistent user experiences
○ Different wikis and onboarding guides to read
○ Different configuration domain-specific languages (DSLs) to learn

SOON (Spark cOntinuOus iNgestion)

A unified, configuration-driven streaming ingestion
framework from Kafka to Delta Lake implemented using

Spark Structured Stream APIs

Problems to Solve
Our Solution - SOON

Unify DB replication and Kafka ingestion

● Table Replication based on Change Data Capture(CDC) events
● Normal non-CDC events

One generic framework for all scenarios

● Support append-only and merge-updates for both CDC and non-CDC

One unified onboarding experience for the users

One framework to develop and maintain for the team

1_DAIS_Title_Slide
SOON
Ecosystem

2. Onboard
Kafka

Connector
Frontend or
Backend Services

non-CDC events

Kafka Connect
Clusters

CDC events

A
ppend-only

M
erge

Table bootstrap

B
ootstrap D

ata

C
D

C
 D

ata

CDF(Change Data Feed)
based incremental load

5. Table Replication
Service

CDF Incremental Data

S
napshot D

um
p

Snapshot Dump

Kafka Connect
Orchestration
Service

Data Flow

Operation Flow

Databricks Job
Proxy Service

Kafka Security
Service

1. Onboard
Kafka Topic

4. Trigger SOON Job

Monitoring Flow

Metadata
ServiceMonitor, Alert and

Overview Portal

3. Author
SOON Table
Specs and
Deploy
changes

Auxiliary Jobs
For Optimize
and Vacuum

Metrics for Ingested data

Metadata,
Job state,
Watermark

1_DAIS_Title_SlideSOON Basics

SOON Basics
Job Specification DSL

SOON translates a job specification
file into a Spark streaming job

● HOCON format
● Support connection to multiple

Kafka clusters
● Derived columns support for

map-side transformations
● Multiple job specifications can

be triggered in the same cluster

{
 kafka: {
 cluster: cluster-name
 topic: kafka-topic-name
 …
 }
 outputTable: {
 dev: schema_dev.table_name
 prod: schema_prod.table_name
 }
 rawColumns: [
 {columnName: column1, type: Long}
 {columnName: column2, type: String, isExcluded: true}
]
 derivedColumns: [
 {
 columnName: column2_derived, type: String,
 defExpression: "udf(column2)",
 comment: "some comments here"
 }
]
 partitionColumns: [
 {columnName: "column2", generatedPartitionType:
"date_hour"}
]
 features: […]
 …
}

SOON Basics
Append-only Jobs

NO merge keys defined in the DSL

Supported Features

● Supported formats: JSON,
Protobuf, any customized binary
format

● Physical or generated columns
as partition columns

● Backfills

xxxColumns: [
 {columnName: c1, type: Long, isPrimaryKey: false}
 {columnName: c2, type: Timestamp, isPrimaryKey: false}
]

partitionColumns: [
 {columnName: timestamp, generatedPartitionType: date}
 {
 columnName: name, generatedPartitionType: substring,
 substringParams: {
 pos: 0,
 len: 6
 }
 }
]

SOON Basics
Merge Jobs

Job specification is translated into
"MERGE" queries

● Many optimizations to improve
merge performance

● CDC-events Merge
○ Standard CDC event schema
○ Only support JSON for now

● non-CDC-events Merge
○ Can be any format
○ Deletes are not supported

sourceTable: {
 dev: schema_dev.table_name
 prod: schema_prod.table_name
}

xxxColumns: [
 {columnName: id, type: Long, isPrimaryKey: true}
 {columnName: col, type: Timestamp}
]

SOON Basics
CDC Merge Jobs

SOON standard CDC event schema

● Unify all databases’ raw CDC schema
● Kafka Connect Single Message

Transforms(SMT) to transform raw CDC
events into the standard schema

Last Change Selection (LCS)

● Find last change for each merge key
● Window function based on CDC

operation time and offsets

Generate and run merge queries

outputTable: {
 dev: schema_dev.table_name
 prod: schema_prod.table_name
}

xxxColumns: [
 {columnName: id, type: Long, isPrimaryKey: true}
 {columnName: col, type: Timestamp}
]

MERGE INTO schema_prod.table_name t
 USING stream_events s
 ON t.id = s.id
 WHEN MATCHED
 and s.operation = "DELETE"
 THEN DELETE
 WHEN MATCHED
 and s.operation != "DELETE"
 THEN UPDATE SET *
 WHEN NOT MATCHED
 and s.operation != "DELETE"
 THEN INSERT *;

SOON Basics
SOON Standard CDC Event Schema

oc: operation code

● “I” for “Insert” event
● “D” for “Delete” event
● “U” for “Update” event

ns: namespace

● Composed of <database or schema
name>. <table name>

● For differentiating CDC source tables
for a shared Kafka CDC topic for
multiple tables

An update event example:
{
 "oc": "U",
 "ns": "schema.table",
 "ot": 1651743495123,
 "pk": {
 "id1": "123",
 "id2": "abc"
 },
 "va": {
 "field1": "value1",
 "field2": "value2"
 }
}

A delete event example:
{
 "oc": "D",
 "ns": "schema.table",
 "ot": 1651743495123,
 "pk": {
 "id1": "123",
 "id2": "abc"
 }
}

SOON Basics
SOON Standard CDC Event Schema

ot: operation time

● The epoch timestamp when the DB
operation happens that creates the
CDC event

pk: primary key

● Columns composing the composite
primary keys or unique index for a row

● “pk” values are from a post-image after
the change. It doesn’t have to come
from an immediate post-image after
the change

An update event example:
{
 "oc": "U",
 "ns": "schema.table",
 "ot": 1651743495123,
 "pk": {
 "id1": "123",
 "id2": "abc"
 },
 "va": {
 "field1": "value1",
 "field2": "value2"
 }
}

A delete event example:
{
 "oc": "D",
 "ns": "schema.table",
 "ot": 1651743495123,
 "pk": {
 "id1": "123",
 "id2": "abc"
 }
}

SOON Basics
SOON Standard CDC Event Schema

va: value

● The rest of the columns for a row
excluding the “pk” fields

● Same as the “pk” field, where values are
from the same post-image after the
change

An update event example:
{
 "oc": "U",
 "ns": "schema.table",
 "ot": 1651743495123,
 "pk": {
 "id1": "123",
 "id2": "abc"
 },
 "va": {
 "field1": "value1",
 "field2": "value2"
 }
}

A delete event example:
{
 "oc": "D",
 "ns": "schema.table",
 "ot": 1651743495123,
 "pk": {
 "id1": "123",
 "id2": "abc"
 }
}

1_DAIS_Title_Slide
Optimizations
In Depth

Optimizations In Depth
Optimizations For Merge

Reduce amount of data to read from S3 for the target table

● Min-max range merge optimization
● KMeans range merge optimization

Reduce amount of data to rewrite the target table

● No-update merge for deduplication (merge non-CDC)

Reduce unnecessary joins with “insert-only” merge

● Merge-with-Insert optimization (merge CDC)

Optimizations In Depth
Optimizations For Merge - MinMax Range Merge Optimization

Micro-batch execution time for merge with MinMax Range
Optimization. Performance increases by ~ 20%.

MERGE INTO output_db.output_table t
 USING stream_events s
 ON t.id = s.id
 AND t.id >= <MIN_ID> AND t.id <= <MAX_ID>
 WHEN MATCHED
 and s.operation = "DELETE"
 THEN DELETE
 WHEN MATCHED
 and s.operation != "DELETE"
 THEN UPDATE SET *
 WHEN NOT MATCHED
 and s.operation != "DELETE"
 THEN INSERT *;

xxxColumns: [
 {columnName: id, type: String, isPrimaryKey: true,
enableMinMaxMergeOptimization: true}
]

Micro-batch execution time for merge with no optimizations

Optimizations In Depth
Optimizations For Merge - KMeans Range Merge Optimization

Average micro-batch execution time for merge with
MinMax Range Optimization: ~5.3 mins

A few updates in history can
make the MinMax range very
wide

Average micro-batch execution time for merge with
KMeans Range Optimization: ~4.3 mins. Additional ~15-20%
performance gain over MinMax Range Optimization

Optimizations In Depth
Optimizations For Merge - KMeans Range Merge Optimization

MERGE INTO output_db.output_table t
 USING stream_events s
 ON t.id = s.id
 AND (t.`created_at` >= <MIN in Bucket-1> AND t.`created_at` <= <MAX in Bucket-1>
 OR t.`created_at` >= <MIN in Bucket-2> AND t.`created_at` <= <MAX in Bucket-2>
 OR t.`created_at` >= <MIN in Bucket-3> AND t.`created_at` <= <MAX in Bucket-3>)
 WHEN MATCHED
 and s.operation = "DELETE"
 THEN DELETE
 WHEN MATCHED
 and s.operation != "DELETE"
 THEN UPDATE SET *
 WHEN NOT MATCHED
 and s.operation != "DELETE"
 THEN INSERT *;

xxxColumns: [
 {columnName: id, type: String, isPrimaryKey: true}
 {columnName: created_at, type: Timestamp, kMeansMergeOptimizationType: Timestamp}
]

Optimizations In Depth
Optimizations For Merge - No-update Merge For Deduplication

A feature that can be turned
on for de-duplication use
cases in merge non-CDC
scenario

MERGE INTO output_db.output_table t
 USING stream_events s
 ON t.id = s.id

AND (t.event_time >= <min_event_time> AND t.event_time <=
<max_event_time>)
 WHEN NOT MATCHED
 THEN INSERT *;

xxxColumns: [
 {columnName: id, type: String, isPrimaryKey: true}
 {columnName: event_time, type: Timestamp,
enableMinMaxMergeOptimization: true}
]
partitionColumns: [
 {columnName: event_time, generatedPartitionType: date_hour}
]
features: [
 {
 name: no_update_merge
 }
]

Optimizations In Depth
Optimizations For Merge - Merge-with-Insert optimization

Use INSERT query instead of MERGE when micro-batch only contains
“INSERT” events

● Fall back to normal merge-CDC query otherwise

Applicable use case: when majority of the CDC changes are “insert”s

● Partitioned Postgres tables where "active" and "historic" data are in different tables
● Mostly "insert" events for the "historic" table (records are immutable)

○ “Historic” table can be huge
○ Deletes due to GDPR

Optimizations In Depth
Optimizations For Better Read and Less Storage

Automatically onboarded to scheduled optimize and vacuum pipelines

● Partitioned SOON tables
○ Incremental z-order optimize with partition predicates and z-ordered by

merge keys or configured columns
○ High watermarks for optimize runs saved in an external state store

● Non-partitioned SOON tables
○ Full table z-order optimize based on merge keys or configured columns

SOON jobs and optimize jobs coordination

● External state store to track job state: ZORDER, MERGE, or IDLE

1_DAIS_Title_Slide

Incremental
Load to Other
Systems

Incremental Load to Other Systems
Incremental Load to Snowflake

Change Data Feed (CDF) based incremental load to Snowflake for
merge-updated tables

● Support hard deletes
● Airflow dags to export changes of different types to S3, and load incrementally using

delete + merge queries in Snowflake

CDF changes with _change_type, _commit_version, _commit_timestamp columns

Incremental Load to Other Systems
Incremental upserts to Snowflake
CREATE TABLE cdc_schema._tmp_src_upsert_<epoch> USING
PARQUET LOCATION 's3://<path>' AS
SELECT

*,
<src_max_commit_version>

FROM
cdc_schema.src@<src_max_commit_version>

WHERE
timestamp_watermark_column >=

<dest_timestamp_high_watermark>-<small_lookback_window>

CREATE TABLE cdc_schema._tmp_src_delete_<epoch>
USING PARQUET LOCATION 's3a://<path>' AS
SELECT

pk
FROM

TABLE_CHANGES('cdc_schema.src',
<commit_version_dest_high_watermark>,
<src_max_commit_version>)
WHERE
 _change_type = 'delete'

Incremental deletes to Snowflake

Load S3 path as Snowflake table
output_db._UPSERT_ROWS

Load S3 path as Snowflake table
output_db._DELETED_ROWS

DELETE FROM output_db.dest t
USING output_db._DELETED_ROWS_dest s

WHERE
t.pk = s.pk

MERGE INTO output_db.dest t
USING output_db._UPSERT_ROWS_dest s

ON t.pk = s.pk
WHEN MATCHED

THEN UPDATE SET t.col1 = s.col1, t.col2=s.col2
WHEN NOT MATCHED

THEN INSERT (co1, col2) values (col1, col2);

3
0

Thank you!
Q&A

Chen Guo
Staff Software Engineer, Data Platform & Service Team

Coinbase Engineering Blogs

● SOON (Spark cOntinuOus iNgestion) for near real-time data at Coinbase - Part 1
● Optimizations in SOON (Spark cOntinuOus iNgestion) - Part 2

