
Activate Your Lakehouse
with Unity Catalog

Databricks
2023

Anup Segu
Co-Head of Data Engineering, YipitData

What makes a
great Lakehouse?

Photo by Lewis J Goetz

A Great Lakehouse is Active
Business operations should be routinely using the Lakehouse

Data driven decisions
are the norm

Establish source of truth
across organization

Data assets
deployed strategically

Fast Time to
Insight

Integrates with
Broader Stack

Effective Data
Governance

This is a story of how we
grew with the Lakehouse

And how Unity Catalog solves
our growing pains

1_DAIS_Title_SlideWho are we?

YipitData answers key
questions for Investors and

Corporations

Trusted source of insights using Alternative Data

• Analyzes billions of data points every
day to provide accurate, granular
insights on 1000+ companies.

• 470 investment funds and innovative
companies rely on us to help them
make better business decisions.

• Services include research reports,
dashboards, live data feeds, and
custom solutions.

Benchmarking and
Data Accuracy

Market Share and
Category Analytics

Multi-Channel
Data Sources

Breakdown of
Growth Drivers

Delivering Insights Every Day to Clients

First Party
Panels

Licensed
Datasets

Public Data

Methodology
Development

Data
Preparation

Benchmarking and
Quality Control

Research Reports

YipitData LiveMetrics Feed

Source Data Feeds

Delivering Insights Every Day to Clients

YipitData Lakehouse Overview

16 PB of Data 2K+ Daily Pipelines 210K Tables

• Bronze, Silver, Gold Medallion
Architecture

• 290+ data team
independently manage
pipelines

• Platform supported by
13 Data Engineers

Self-Service Data Platform at YipitData

Teams operate in specialized domains,
maintaining bronze, silver, gold tables in
Hive metastore

Products

First Party
Panels

Licensed
Datasets

Public Data

Each team's gold tables are input
tables for another team

Self-Service Data Platform at YipitData
Broad tooling for analyst personas to operate like data engineers

from ydbu import create_table

create_table(
 "amzn_gold",
 "na_net_sales",
 df

)

Proprietary libraries to standardize
and simplify spark code

Data delivery systems to export to
multiple clouds

Interactive notebooks and
visualizations of Lakehouse data

Manage data infrastructure and
ingestion behind the scenes

Preset cluster options and workflow
orchestration in Databricks

Decentralized platform was key
to being a trusted source of

insights for clients

What happened next?

We grew fast ..
Alt data market leader with more teams, datasets, and product types

Research
Reports

Research Reports
Data Feeds

KPI Dashboards
Custom Solutions

50+
Data Team

290+
Data Team

4 PB
Lakehouse Data

16 PB
Lakehouse Data

Data Access Became Complex

First Party
Panels

Licensed
Datasets

Public Data

50+ teams needed isolation of code, data,
and cloud resources. Hive metastore does
not provide support here.

Onboarding new teams became a
complex infrastructure deployment

Products

Data Isolation Hindered Collaboration

First Party
Panels

Licensed
Datasets

Public Data

Some tables stopped being shared,
limiting analyses

The number of teams and restrictions
led to data being forgotten or
duplicated downstream

Products

Cost Overhead of Lakehouse

First Party
Panels

Licensed
Datasets

Public Data

Hive metastore does not track table
activity, hard to know what can be
deleted to optimize cloud storage

Deploying pipeline improvements was
cumbersome without understanding
downstream analyses

Products

Product Opportunities Blocked

First Party
Panels

Licensed
Datasets

Public Data

Interactive
Analytics

Corporate
Solutions

Data
Partnerships

New client deliveries relied
on brittle integrations with
existing infrastructure

Hive metastore not
performant enough for BI
tools

Data governance constraints
turned into business challenges.

We needed a new approach
to manage data.

1_DAIS_Title_Slide

Enter Unity
Catalog

Unity Catalog Core Features

SELECT

*

FROM

prod.revenue.skus

GRANT MODIFY ON

prod.revenue.skus

TO `PG_FINANCE`

GRANT SELECT ON

prod.revenue.skus

TO `PG_PRODUCT_OPS`

• Data objects can be
searched in the UI

• Audit logs to trace
lineage and activity of
data objects

• REST API to access
objects and update
permissions

Data Organization via
3 Level Namespace

Granular permissions
through ACL Statements

Lakehouse Visibility
through Data Explorer

Setting Up Unity Catalog

• Organize groups at the
account level

• Create a Unity Catalog
Metastore

• Deploy a Metastore Role

• Configure cloud storage
access to metastore role

• Upgrade to Databricks
Runtime 11.3+

• Use single-user
or shared cluster modes

Configure Cloud
Infrastructure

Update Spark
Environment

Enable Unity Catalog
for Databricks Account

Unity Catalog Architecture
Inspects queries to verify data access and generates pre-signed URLs

Unity
Catalog

Users Spark
Cluster

Verify ACLs
+ Log Results

External Locations

Catalogs

Tables

Databases

Cloud
Storage

3. Queries are processed on
clusters that fetch data using
pre-signed URLs served from
Unity Catalog

1. Queries are checked if the requestor
has sufficient ACLs on the catalog,
database, and table/location/view

2. Cloud storage access is
managed through Unity Catalog
via an assigned metastore role

Unity Catalog
Impact

Data access is simple and
universal

Unity Catalog Centralized Access Controls

First Party
Panels

Licensed
Datasets

Public Data

Interactive
Analytics

Corporate
Solutions

Data
Partnerships

Unity
Catalog

CatalogCatalog

Catalog

Catalog Catalog• Source data is registered as External
Locations and ingested as bronze
tables

• Catalogs segment 210K+ tables by
business units

CREATE CATALOG yd_prod;

CREATE CATALOG yd_ereceipt;

CREATE CATALOG yd_corporate;

Unity Catalog Centralized Access Controls

First Party
Panels

Licensed
Datasets

Public Data

Interactive
Analytics

Corporate
Solutions

Data
Partnerships

Unity
Catalog

CatalogCatalog

Catalog

Catalog Catalog
• Organize teams around the data rather

than the other way around.

• Use ACLs to grant groups precise
access to data.

GRANT USE SCHEMA, SELECT ON
SCHEMA yd_prod.ereceipts_gold
TO `PG_PRODUCT`;

• Corporate Solutions and Partnerships
teams rely on isolated catalogs to
conduct daily business

Cloud Infrastructure Simplified
Deprecated 70% of cloud resources that managed permissions before

• Unity Catalog connects to clouds using
a single "metastore role"

• Data access to teams is granted by Unity Catalog
ACLs, regardless of cluster used

• Temporary credentials API can access native cloud
storage APIs

Bucket

Cluster

Delta
Tables

Unity
Catalog Metastore

Role

Driving collaboration
between teams

Drive data adoption with documentation
Data Explorer displays comments for catalogs, databases, and tables

• Teams add comments to
data objects in the Data
Explorer or via Spark

• Documented tables are
self-explanatory, more
likely to be used

• Use markdown to link to
internal documentation

• History tab summarizes
table updates (delta only)

Reduce time to release data changes
Lineage highlights unused tables and columns to de-risk deployments

• Lineage data is used to prevent bad
releases of data pipelines

• Tables are analyzed to see which fields
are used and how often

• Databricks workflows are integrated with
lineage to map pipelines to table creation

• Lineage data can be fetched via the REST
API for automation and integration

Optimizing Lakehouse
operating costs

Pruning Tables Using Lineage
Lineage data revealed 27% of data in storage was inactive

• Analyzing lineage data at scale surfaced many unused tables:

• Tables without getTable events in audit logs

• Storage costs estimated by joining to inventory reports
from cloud provider

• Column-level lineage examined on large tables:

• Unused columns are removed from pipelines

• Used columns are reordered for better query performance

Reducing SQL Warehouse Bill by 45%
Permissions model allows for fewer, multi-team SQL warehouses

Unity
Catalog

Shared warehouse for
multiple teams

• Unity Catalog separates data
permissions from compute layer,
allowing for shared compute

• Consolidation had a secondary
benefit of better autoscaling, further
optimizing spend

Enabling new product
opportunities

Opening Up Interactive Analytics
Ms-level latency is critical for rich data experiences

• BI tools require fast metadata
operations (ex: SHOW TABLES)

• Hive metastore could not scan
metadata for 210K tables. Unity
Catalog had no issues.

• The performance boost was key to
opening up new client experiences

YipitData on the Databricks Marketplace
Now connecting to clients via Unity Catalog and Delta Sharing

• Gold tables are packaged as Delta Shares,
appear as read-only "catalogs" for clients

• Listed on Databricks marketplace for
fast discovery and integration by clients

• Tables shared with no extra infrastructure
or compute via Delta Sharing protocol

More listings coming soon!

1_DAIS_Title_Slide

Migrating from
Hive to Unity
Catalog

Needed an in-place switch to
Unity Catalog with no downtime

Migration Strategy
Populate Unity Catalog in the background through standard libraries

• Teams used spark to create external tables in Hive metastore

• Executed via a standard library function, create_table

Hive
Metastore

def create_table(database: str, table: str, df: DataFrame):

(

df.write.format("delta")

.mode("overwrite")

.saveAsTable(f"{database}.{table}")

)

Standard
Library

Migration Strategy – Phase 1
Replicate Hive tables in Unity Catalog using the SYNC operation

Hive
Metastore

Standard
Library

Unity
Catalog

def create_table(database: str, table: str, df: DataFrame):

(

df.write.format("delta")

.mode("overwrite")

.saveAsTable(f"hive_metastore.{database}.{table}")

)

sql(f"""

SYNC TABLE prod.{database}.{table}

FROM hive_metastore.{database}.{table}

SET OWNER TO `{TEAM}`

""")

Migration Strategy – Phase 2
Write directly to Unity Catalog and replicate in Hive as a backup

def create_table(database: str, table: str, df: DataFrame):

(

df.write.format("delta").mode("overwrite")

.saveAsTable(f"prod.{database}.{table}")

)

location = sql(f"DESCRIBE DETAIL prod.{database}.{table}").first().location

sql(f"""

CREATE OR REPLACE TABLE hive_metastore.{database}.{table}

LOCATION '{location}'

""")

Hive
Metastore

Standard
Library

Unity
Catalog

Teams switched to Unity Catalog with
minimal code changes

Pipelines could "fall back" to hive
metastore in case of failures

1_DAIS_Title_SlideConclusion

Lakehouse Growing Pains Resolved

• Data access is complex to maintain with thousands of tables
• 3 level namespace to organize data and grant precise access to groups

• Data isolation hinders collaboration across teams
• Browsable data explorer allows for data assets to be found and documented

• Cost overhead of growing, petabyte-scale Lakehouse
• Lineage is analyzed to eliminate unused data and compute is consolidated

• Externalizing data for new products is difficult
• Marketplace and interactive analytics are new channels to engage clients

Unity Catalog is more than a
governance tool.

Use it to activate your
Lakehouse and create value.

Photo by Lewis J Goetz

Our Lakehouse is starting
to look like this.

Thanks to Unity Catalog

Lakehouse Growing Pains Resolved

• Data access is complex to maintain with thousands of tables
• 3 level namespace to organize data and grant precise access to groups

• Data isolation hinders collaboration across teams
• Browsable data explorer allows for data assets to be found and documented

• Cost overhead of growing, petabyte-scale Lakehouse
• Lineage is analyzed to eliminate unused data and compute is consolidated

• Externalizing data for new products is difficult
• Marketplace and interactive analytics are new channels to engage clients

APPENDIX

1_DAIS_Title_Slide

Unity Catalog
Tactics

Leverage 3-Level Namespace
Lean on catalogs and databases to categorize data

• Have consistent in table conventions across teams
• Catalogs serve as the broadest umbrella to organize data

• Permission at catalog or database level to streamline administration
• Permissions inherited to child tables and views

• Bronze tables should have the most restrictive permissions

• Grant ACLs and ownership to groups instead of users
• Simplifies collaboration and team changes

Unity Catalog Centralized Access Controls

First Party
Panels

Licensed
Datasets

Public Data

Interactive
Analytics

Corporate
Solutions

Data
Partnerships

Unity
Catalog

CatalogCatalog

Catalog

Catalog Catalog• Separate catalogs to support
restrictive delivery requirements

• Our Corporate Solutions and
Partnerships divisions rely on this
data security to conduct daily
business

Grant Permissions to Groups
Well defined user groups in Databricks streamline access management

• Groups in Databricks should resemble
business units

• Define groups at the Databricks
account level, not the workspace

• Grant ownership and ACLs to groups.
This simplifies collaboration and team
changes

-- DON'T DO THIS

GRANT SELECT ON SCHEMA prod.sales
TO `user@acme.com`

-- DO THIS

GRANT SELECT ON SCHEMA prod.sales
TO `FINANCE`

ALTER SCHEMA prod.sales OWNER TO
`REVENUE`

Utilize REST API for Automation
REST API endpoints available for all Unity Catalog resources

• REST API can fetch and modify metadata
of data objects without spark compute

• Performing bulk updates of ACLs is faster
with the REST API

• Temporary credentials endpoint can
access native cloud storage APIs

https://docs.databricks.com/api/workspace/tables

Cloud Provider Recommendations
Unity Catalog should do the heavy lifting for data access

• Minimize the number of storage credentials deployed. Define granular
data access via ACLs.

• Because Unity Catalog centralizes data access, it is easier to support
multi-account cloud deployments

• Avoid setting data permissions at cluster-level, opportunity to reduce
compute footprint

Be Strategic with the Migration
Spend the time upfront to re-organize the lakehouse

• Design catalog and group structure to satisfy business requirements

• First replicate cloud access with external locations and storage credentials

• Move new teams to Unity Catalog, then tackle existing teams

• Use the hive_metastore catalog for backwards compatibility and
SYNC table definitions to Unity Catalog
• Use spark.databricks.sql.initial.catalog.name to set default catalog

1_DAIS_Title_Slide

Lineage
Analysis

Reducing Storage Costs through Lineage
Lineage data revealed 27% of data in storage was inactive

• Table fetches logged in audit
logs as getTable events

• Aggregate request
parameters in logged events
to see activity over time by
table

Reducing Storage Costs through Lineage
Lineage data revealed 27% of data in storage was inactive

• System information tables
contain details of the entire
metastore of Unity Catalog

• Use as a current view of all
tables available in the
Lakehouse

Reducing Storage Costs through Lineage
Lineage data revealed 27% of data in storage was inactive

• Join current catalog against
audit log activity to see
unused tables

• Refresh analysis over time
to continue to clean up
Lakehouse and reduce
storage overhead

1_DAIS_Title_Slide

HMS
Architecture

Data Access Was Complex

First Party
Panels

Licensed
Datasets

Public Data

Interactive
Analytics

Corporate
Solutions

Data
Partnerships

Lakehouse Growing Pains
Challenges as data volume and organizational complexity creeps in

Fast Time to
Insight

Integrates with
Broader Stack

Effective Data
Governance

Data driven decisions
are the norm

Establish source of truth
across organization

Data assets
deployed strategically

Difficulty
discovering data

Siloed
data teams

Permission gaps
or bottlenecks

Cloud Infrastructure Simplified
Unity Catalog removes complexity in securing data in the cloud

• Data isolation was implemented by attaching
dedicated team instance profiles to clusters

• Each team had their own bucket, instance profile,
and cluster to process data

• "Role bloat" was a compounding problem

• Onboarding new teams was complex and slow

Bucket

Cluster +
Role

Delta
Tables

x 50 Teams

Before Unity Catalog

Reducing SQL Warehouse Bill by 45%
Permissions model allows for fewer, multi-team SQL warehouses

Dedicated Instance
Profile

Dedicated Instance
Profile

Before Unity Catalog
• Each team needed their own

warehouse with a dedicated instance
profile to support data access

• Warehouses not fully utilized, excess
costs for always-on compute

1_DAIS_Title_Slide

Migration
Details

Migration Strategy
In-place switch of Unity Catalog from Hive with zero downtime for teams

Teams used spark to create
external tables through Hive
metastore

Executed via a standard library
function, create_table

Hive
Metastore

Users Spark
Cluster

def create_table(database: str, table: str, df: DataFrame):

(

df.write.format("delta")

.mode("overwrite")

.saveAsTable(f"{database}.{table}")

)

Migration Strategy
In-place switch of Unity Catalog from Hive with zero downtime for teams

Unity
Catalog

Hive
Metastore

Users Spark
Cluster

Phase 1 - Table creations processed in Hive and
replicated in Unity Catalog, using the SYNC
command

External tables point to the same cloud storage
files (i.e. no data duplication)

def create_table(database: str, table: str, df: DataFrame):

(

df.write.format("delta")

.mode("overwrite")

.saveAsTable(f"hive_metastore.{database}.{table}")

)

spark.sql(f"""

SYNC TABLE prod.{database}.{table}

FROM hive_metastore.{database}.{table}

SET OWNER TO `{TEAM}`

""")

Migration Strategy
In-place switch of Unity Catalog from Hive with zero downtime for teams

Unity
Catalog

Hive
Metastore

Users Spark
Cluster

Phase 2 - Table creations fulfilled in Unity Catalog,
and table definitions copied to Hive to stay
consistent

In case of errors, automatically falls back to Phase 1
implementation to avoid downtime

def create_table(database: str, table: str, df: DataFrame):

(

df.write.format("delta").mode("overwrite")

.saveAsTable(f"prod.{database}.{table}")

)

location = spark.sql(

f"DESCRIBE DETAIL prod.{database}.{table}"

).first().location

spark.sql(f"""

CREATE OR REPLACE TABLE hive_metastore.{database}.{table}

LOCATION '{location}'

""")

Migration Strategy
In-place switch of Unity Catalog from Hive with zero downtime for teams

Unity
Catalog

Users Spark
Cluster

After Phase 2, removed the interaction with Hive metastore and
migration was complete.

Platform users had to make minimal code changes on their end, as
we migrated almost entirely behind the scenes

72

