Nebula: The Journey of Scaling Instacart's Ads Data Pipelines with Spark and Lakehouse

Devlina Das, Engineer @ Instacart Arthur Li, Engineer @ Instacart

June, 2023

Agenda

- Introduction
- Growth Challenges
- Motivation to build Data Lakehouse architecture
- Improvements: Lakehouse & Spark Applications
- Transition from batch only to streaming/Incremental processing

Introduction

Instacart: A leading online grocery platform

Creating a world where everyone has access to the food they love and more time to enjoy it together.

Presenter:

- Arthur Li, Software Engineer, Data Platform
- Devlina Das, Software Engineer, Ads Measurement Platform

Frequent internal data users: 1,000 +

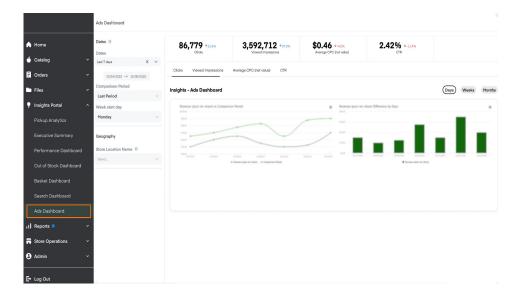
Data size: 40 PB +

Data sources: mobile clients, retailers, internal services, vendors...

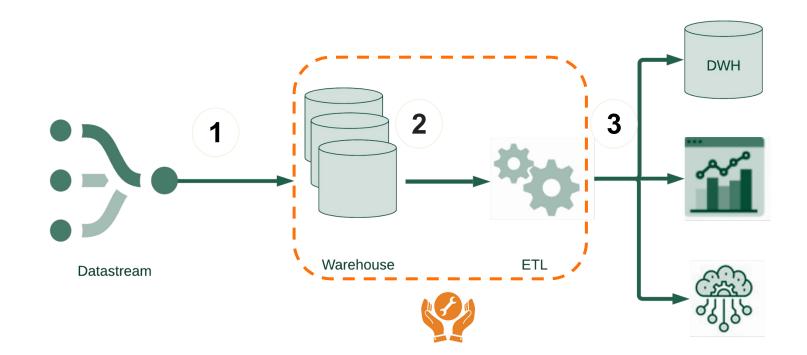
Data Teams at Instacart: Our goal is to build and reduce the friction of accessing timely and reliable data across Instacart and for our partners.

Use Case: Ads Measurement

Measurement pipelines powers business critical metrics used directly by customers for ads performance tracking and billing



Pipelines



Motivation To Change

Cost

Scale with some tools. Not always the right tool, with the right characteristics

Readability

SQL is powerful and convenient for simple tasks. Becomes hard as complexity grows

Collaboration

Challenging to manage how logic is shared and maintained

Testing

Can you test locally? Unit testing non-composable SQL is difficult

Requirements on Instacart Data system

Multi-language support

Centralize all our data on low cost object storage

Interoperability with other systems

Multi-language support

Core data infra/engineering team:

ML engineers/ Engineering team:

Data analysts/Data Engineering :

Flexibility comes with cost such as code reusability and difficulties for different teams to understand

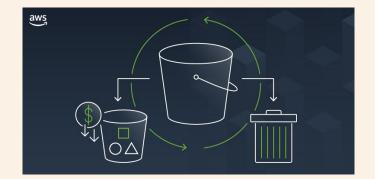
Use s3 as storage

Scale about Instacart's data:

• 40+ PetaBytes (most of the historical

data are not being frequently accessed)

- 30 + Billion new events being ingested to power ads, customers, shoppers systems
- Millions of prod/dev tables



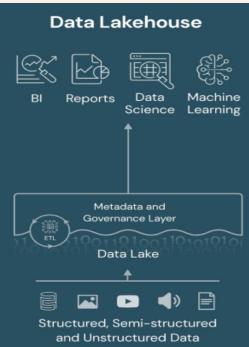
- Intelligent Tiering
- Life cycle policies

In light of the feature/cost requirements, our decision was to embrace the concept of data lakehouse.

• Unified Data Platform for processing

structured/unstructured data

- Efficient Data Processing: Batch/Incremental
- Cost-Effective Storage
- Advanced Analytics Capabilities(Beyond just sql)



Challenges:

- Permission management on s3
- Data applications development support: CI/CD, monitoring

Self-served permission management module

- Based on Terraform
- Provided abstraction for engineering team to manage the permission for their own data sets at s3 prefix

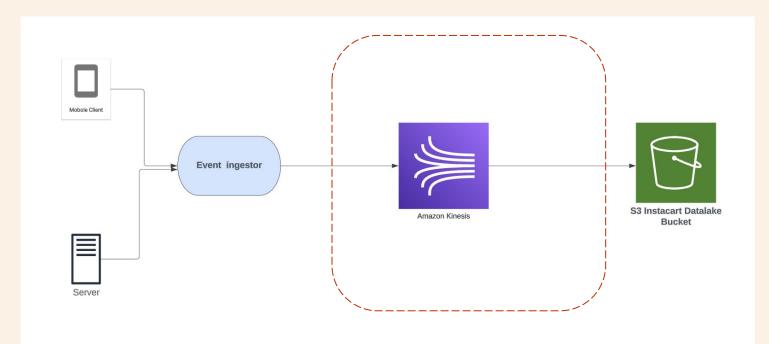
level

- Engineering Team will be responsible for make changes on permission changes and approve PR
- CI will trigger the policy change

ıle "ads-data-db" {	
ource = "./datalake-db"	
name = "ads_data"	
_description = "xxx"	
ning_team_role_ids = xxx	
<pre>pad_grants = [</pre>	
reader_team1.role_ids,	
reader_team2.role_ids	
rite_grants = [
writer_team1.role_ids	
	description = "xxx" ning_team_role_ids = xxx ad_grants = [reader_team1.role_ids, reader_team2.role_ids ite_grants = [

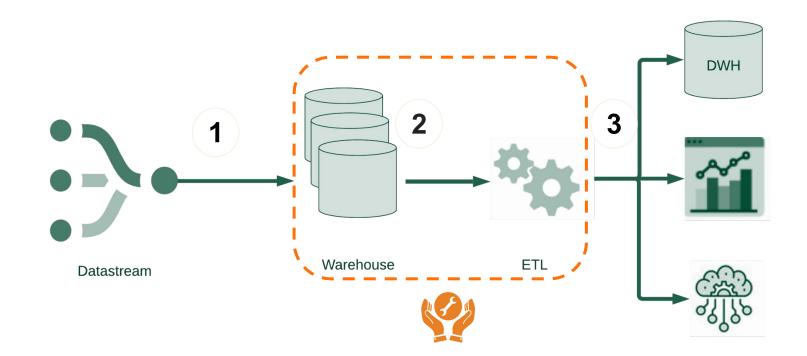
CI/CD for pipeline development

Deep dive on Events ingestion



Deep dive on Events ingestion -2

Pipelines



Incremental Pipelines (Before)

{% endif %}

```
{% if 'event time begins at' in (dag run.conf or {}) and 'event time ends at' in
(dag run.conf or {}) %}
AND EVENT DATE TIME UTC >= $LOOKBACK WINDOW START
AND EVENT DATE TIME UTC <= $LOOKBACK WINDOW END
AND EVENT ID NOT IN (
   SELECT EVENT ID FROM RAW CONVERSIONS NEBULA ROLLBACK WHERE EVENT DATE TIME UTC
>= $LOOKBACK WINDOW START and EVENT DATE TIME UTC <= $LOOKBACK WINDOW END
{% else %}
AND loaded at >= $LOOKBACK WINDOW START
AND loaded at <= $LOOKBACK WINDOW END
AND EVENT ID NOT IN (
   SELECT EVENT ID FROM RAW CONVERSIONS NEBULA ROLLBACK WHERE ETLED AT UTC >=
$DEDUPE CHECK LOOKBACK WINDOW STARTS AT and ETLED AT UTC <=
$DEDUPE CHECK LOOKBACK WINDOW ENDS AT
```

Custom window manipulation for frontline and backfill

Incremental Pipelines (Before)

{% if 'etl_begins_at' in (dag_run.conf or {}) and 'etl_ends_at' in (dag_run.conf or {}) %}

-- RUNNING IN MANUAL TRIGGER MODE

SET LOOKBACK_WINDOW_START = '{{ dag_run.conf.get("etl_begins_at") }}'::TIMESTAMP_NTZ; SET LOOKBACK_WINDOW_END = '{{ dag_run.conf.get("etl_ends_at") }}'::TIMESTAMP_NTZ; SET RUN MODE = 'ETLED AT OVERRIDE';

{% elif 'event_time_begins_at' in (dag_run.conf or {}) and 'event_time_ends_at' in (dag_run.conf or {}) %}

-- RUNNING IN EVENT_DATE_TIME_UTC REPAIR MODE

SET LOOKBACK_WINDOW_START = '{{ dag_run.conf.get("event_time_begins_at") }}'::TIMESTAMP_NTZ; SET LOOKBACK_WINDOW_END = '{{ dag_run.conf.get("event_time_ends_at") }}'::TIMESTAMP_NTZ; SET RUN MODE = 'EVENT DATE TIME OVERRIDE';

{% **else** %}

-- RUNNING IN SCHEDULE MODE

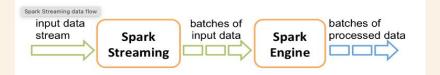
SET ETL LOOKBACK_BEGIN = '{{ next execution_date.isoformat() }}'::TIMESTAMP NTZ - INTERVAL '3 hours';

-SET MIN_ETL BEGINS = (SELECT DATEADD ('HOUR', -1, MAX (ETLED AT_UTC)) FROM RAW_CONVERSIONS NEBULA ROLLBACK);

Several modes to handle edge cases

Spark Streaming

Spark Structured Streaming

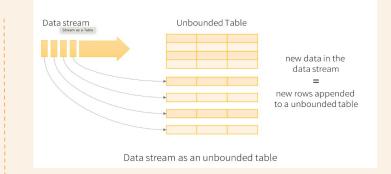


Divides the live stream into batches

Continuous stream of data is abstracted DStream(Discretized Streams)

Internally, a DStream is represented as a sequence of RDDs.

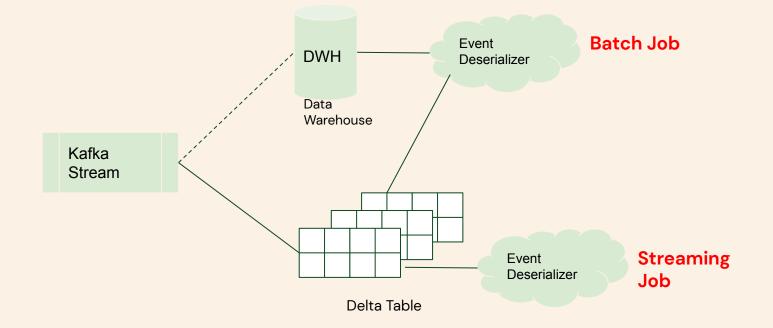
https://www.databricks.com/blog/2016/07/28/ structured-streaming-in-apache-spark.html



Treat a live data stream as a table that is being continuously appended.

Express streaming computation as standard batch-like query as on a static table

Event Processing Improvements



Event Processing with Structured Streaming

if (cliArgs.backfill())
 ExtractBackfill.apply(cliArgs, pipelineName)
else

Extract.apply(cliArgs, pipelineName)

.table(deltaTable)

Event Processing with Structured Streaming

Stream write

Batch Write

df.write

.format("delta")
.partitionBy(partitionByColumn)
.mode("overwrite")
.option("replaceWhere",
deltaReplaceSql)
.save(path)

Raw SQL was getting convoluted

Wins so far

- Quick and easy to set up
- Logic mostly fits in a single query
- Code runs as is in test mode

Cons

- Repeated logic copy/pasted
- No Modularity
- Poor composability
- Not unit test friendly

Modular Code in Spark

- Generalized ETL entrypoints
- Each stage is pluggable

val runPipelin	e =		
for {			
inputDfMap	<-	Extract. <i>a</i>	ply(cliArgs)
outputDf	<-	Transform.	<pre>apply(inputDfMap, cliArgs)</pre>
result	<-	Load. apply	(outputDf, cliArgs)
} yield resul	t		

Modular Code in Spark

Structured in logical blocks

val stgOrderItems: DataFrame = getStgOrderItems(inputDataDfMap)

val attributableEventOrders: DataFrame =getAttributableEventOrders(inputDataDfMap,
stgOrderItems, cliArgs)

val attributableEventOrdersWithPartitionCol: DataFrame = attributableEventOrders
 .withColumn(AEOSchema.getPartitionColumn(),
 to_date(attributableEventOrders(AEOSchemaORDER_ITEM_CREATED_DATE_TIME_PT),
 "yyyy-MM-dd"))

attributableEventOrdersWithPartitionCol.cache()
val attributableEventOrdersCount = attributableEventOrdersWithPartitionCol.count()

Dev + Productivity Improvements

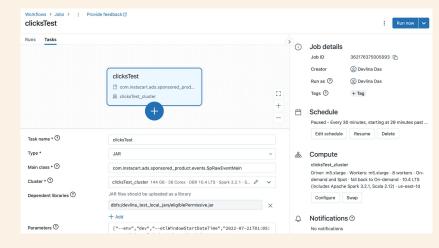
- DRY: Shared modules and libraries
- Faster code iteration with in-memory local testing
 - sbt test
 - quick dev feedback loop
- Delta schema management
 - Schema evolution with Schema on write paradigm
 - <u>https://delta.io/blog/2023-02-08-delta-lake-s</u> <u>chema-evolution/</u>
 - <u>https://www.databricks.com/blog/2019/09/24/</u> <u>diving-into-delta-lake-schema-enforcement-e</u> <u>volution.html</u>



Operational Improvements

Shadow Testing with on-demand job clusters

Cluster resource control for speed and cost



"driver_node_type_id": "i3.4xlarge",
"enable_elastic_disk": "true",
"node_type_id": "r4.2xlarge",
"num_workers": "20",
"policy_id": "9C60384B6B001F8C",
"spark_conf": {

"spark.databricks.adaptive.autoOptimizeShuffle. enabled": "true", "spark.databricks.io.cache.enabled": "true",

•••

Observability Improvements



Missed Lines 🔶	Total Lines \$	Cov. 🗢
	96	90%
	65	87%
Test Co	vorago	0%
Test Co	Coverage	
	18	100%
	5	100%
1	1	100%
17 of 185	185	90%

Great Possibilities Ahead!

- Unit Test framework
- Advanced monitoring
- Generalized Pipeline Framework
- Unified Schema Management

instacart b databricks

Ana Lemus, Arthur Li, Brandon Williams, Bruno Caminada, Craig Flockhart, Devlina Das, Ji Wu, Kieran Taylor, Luke Snyder, Mark Lee, Mohit Gupta, Nate Kupp, Navin Sridhar, Peter Lambe, Prateek Jaipuria, Rohith Macherla, Roy Moranz, Sai Karthik Varanasi, Sanchit Gupta, Shelby Ferson, Shihuan Liu, Srikanth Reddy, Trey Zhong, Yingshi Zhang

Questions

*x*instacart