Nebula: The Journey of Scaling
Instacart’s Ads Data Pipelines with
Spark and Lakehouse

Devlina Das, Engineer @ Instacart
Arthur Li, Engineer @ Instacart

~ instacart June, 2023



Agenda

Introduction
Growth Challenges

Motivation to build Data Lakehouse
architecture

Improvements: Lakehouse & Spark
Applications

Transition from batch only to
streaming/Incremental processing




Introduction

Instacart: A leading online grocery platform
Creating a world where everyone has access to the food

they love and more time to enjoy it together.

Presenter:

e Arthur Li, Software Engineer, Data Platform

e Devlina Das, Software Engineer, Ads
Measurement Platform

Yinstacart



& € .

Frequent internal data users: Data size: 40 PB +

1,000 + Data sources: mobile clients,
retailers, internal services,
vendors...

Data Teams at Instacart: Our goal is to build and reduce the
friction of accessing timely and reliable data across Instacart
and for our partners.

Yinstacart



Use Case: Ads Measurement

Measurement pipelines powers business critical metrics used directly by customers for ads

performance tracking and billing

Average CPC [netvalue)  CTR

Insights - Ads Dashboard

86,779 - 3,592,712 $0.46 - - 2.42% s

budget
impressions :
mmmmmmm campaig,ﬁ) et attributed
cllcksC r targeting



Pipelines

Datastream

- Lo
. >
A
“ |
rT T ol o
I R
_ T
| “
_
I I N
I (|
L@
_ N |
_ 3!
_ m“
_, 2
N _7’
A
—



Motivation To Change

Scale with some tools.

Not always the right tool,

with the right
characteristics

[ |

SQL is powerful and
convenient for simple
tasks. Becomes hard as
complexity grows

Challenging to manage
how logic is shared and
maintained

Can you test locally? Unit
testing non-composable
SQL is difficult



Requirements on Instacart Data system

Multi-language support Centralize all our data on Interoperability with other
low cost object storage systems

£ Scala

e

sk




Multi-language support

Core data infra/engineering
team:

£ Scala e] @

Flexibility comes with cost such as code reusability
and difficulties for different teams to understand

ML engineers/ Engineering team: Data analysts/Data Engineering :



Use s3 as storage

Scale about Instacart’s data:
e 40+ PetaBytes (most of the historical
data are not being frequently accessed)
e 30 + Billion new events being ingested to
power ads, customers, shoppers systems

e Millions of prod/dev tables

Intelligent Tiering
Life cycle policies



In light of the feature/cost requirements,
our decision was to embrace the concept

of data lakehouse.

e Unified Data Platform for processing
structured/unstructured data

e Efficient Data Processing: Batch/Incremental

e Cost-Effective Storage

e Advanced Analytics Capabilities(Beyond just sql)

Data Lakehouse

EC 0 by €&

Reports Data Machine
Science Learning

Metadata and
¢ .- Governance Layer

i. et )/\_,/
- Data Lake

s
=

Structured, Semi-structured
and Unstructured Data




Challenges:

Permission management on s3

Data applications development support: CI/CD, monitoring

Data Lakehouse

Reports Machine
Science Learning

Metadata and
Governance Layer
o~~~ —~

Data Lake
- s+
a ©@ € S

Structured, Semi-structured
and Unstructured Data




Self-served permission management

module

e Based on Terraform

e Provided abstraction for engineering team to manage
the permission for their own data sets at s3 prefix
level

e Engineering Team will be responsible for make
changes on permission changes and approve PR

e Cl will trigger the policy change

module "ads-data-db" {
source = "./datalake-db"
db_name = "ads_data"

db_description = "xxx"

owning team role ids = xxx

read grants = [

reader_teaml.role_ids,

reader_ team2.role_ids

write grants = [
writer_ teaml.role_ids

1




CI/CD for pipeline development

o-O-m-




Deep dive on Events ingestion

—_—————_ - ——— ——— — — — —

Mobole Client

Event ingestor |

Server \

~_—_—— e

>E

S3 Instacart Datalake
Bucket




eep dive on Events ingestion -2

DATADOG

. Tz - <7
, . SBkafka. Sparks

avg:spark.structured_streaming.processing_rate{*}

20k

S3 instacart Datalake
Bucket

Server
Streaming latency Input rate kafka_customer_mongoose_sync.total_record_count_la...
1 25m
n
e
: ., ™
osm
om om
) ) o0 oxo0 oro0 ozo0 0300 o500 ) oz o300 )

orioo ozoo 0300 0400



Pipelines

Datastream

- Lo
. >
A
“ |
rT T ol o
I R
_ T
| “
_
I I N
I (|
L@
_ N |
_ 3!
_ m“
_, 2
N _7’
A
—

17



Incremental Pipelines (Before)

{% if 'event time begins at' in (dag_run.conf or {}) and 'event time ends at' in
(dag_run.conf or {}) %}

AND EVENT DATE TIME UTC >= $LOOKBACK WINDOW_START

AND EVENT DATE TIME UTC <= $LOOKBACK WINDOW_END

AND EVENT ID NOT IN (

SELECT EVENT ID FROM RAW_CONVERSIONS NEBULA ROLLBACK WHERE EVENT DATE TIME UTC

>= $LOOKBACK_WINDOW_START and EVENT DATE TIME UTC <= $LOOKBACK_WINDOW_END CUStom W|ndOW
) manipulation for
(% else %) frontline and backfill

AND loaded at >= $LOOKBACK WINDOW_START
AND loaded at <= $LOOKBACK WINDOW_END
AND EVENT_ID NOT IN (

SELECT EVENT_ ID FROM RAW CONVERSIONS NEBULA ROLLBACK WHERE ETLED AT UTC >=

$DEDUPE_CHECK_LOOKBACK_WINDOW_STARTS AT and ETLED AT UTC <=

$DEDUPE_CHECK_LOOKBACK_WINDOW_ENDS_AT
)

{% endif %}




Incremental Pipelines (Before)

—-- RUNNING IN MANUAL TRIGGER MODE

Several
modes to
handle edge
cases

-- RUNNING IN EVENT DATE TIME UTC REPAIR MODE

-- RUNNING IN SCHEDULE MODE




20

Spark Streaming

Spark Streaming data flow
input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

Divides the live stream into batches

Continuous stream of data is abstracted
DStream(Discretized Streams)

Internally, a DStream is represented as a
sequence of RDDs.

https://www.databricks.com/blog/2016/07/28/
structured-streaming-in-apache-spark.html

Spark Structured Streaming

Data stream Unbounded Table

new datain the
data stream

new rows appended
to a unbounded table

Data stream as an unbounded table

Treat a live data stream as a table that is
being continuously appended.

Express streaming computation as
standard batch-like query as on a static
table



21

Event Processing Improvements

Event
- DWH Deserializer
Data
Warehouse
Kafka
Stream
Event
Deserializer

Delta Table

Batch Job

Streaming
Job



22

Event Processing with Structured Streaming

if (cliArgs. 0)
ExtractBackfill.apply(cliArgs, pipelineName)

else
Extract.apply(cliArgs, pipelineName)

Stream Batch
Read Read

sparkSession.[readStream sparkSession.[read
.format ("delta") .format ("delta")
.option("startingTimestamp", .option("startingTimestamp",
startingTimestamp) startingTimestamp)

.load (deltaPath) .option ("endingTimestamp",
endingTimestamp)
.table (deltaTable)




23

Event Processing with Structured Streaming

Stream Batch
write Write

streamingDf .writeStream df jwrite
.foreachBatch { (batchDf: : .tormat ("delta")

.partitionBy (partitionByColumn)
batchDf.persist () .mode ("overwrite")
totalRowCount += batchDf.count () .option ("replaceWhere",
batchDf.unpersist () deltaReplaceSql)

() .save (path)

.outputMode ( )

.queryName (table)

.trigger (Trigger.Once)

.option ( checkpointPath)
.start ()

.awaitTermination ()



24

Raw SQL was getting convoluted

Wins so far
- Quick and easy to set up

- Logic mostly fits in a single query
- Code runs as is in test mode

Cons

Repeated logic copy/pasted
No Modularity

Poor composability

Not unit test friendly



Modular Code in Spark

- Generalized ETL entrypoints

- Each stage is pluggable

val runPipeline =
for {
inputDfMap <- |Extract. apply(cliArgs)
outputDf <- |Transform.|apply (inputDfMap, cliArgs)

result <-|Load. apply(outputDf, cliArgs)
} yield result

25




26

Modular Code in Spark

Structured in logical blocks

val stgOrderItems: DataFrame = getStgOrderItems (inputDataDfMap)

val attributableEventOrders: DataFrame =getAttributableEventOrders (inputDataDfMap,
stgOrderItems, cliArgs)

val attributableEventOrdersWithPartitionCol: DataFrame = attributableEventOrders

~

.withColumn (AEOSchema.getPartitio
to date(attributableEventOrders (AEOSchema ORDER ITEM

3 CREATED DATE TIME PT),
vvyyyy_m_ddn ) )

attributableEventOrdersWithPartitionCol.cache
val attributableEventOrdersCount

()
attributableEventOrdersWithPartitionCol.count ()




Dev + Productivity Improvements

e DRY: Shared modules and libraries

e Faster code iteration with in-memory local testing
- sbt test
- quick dev feedback loop

e Delta schema management
- Schema evolution with Schema on write

paradigm

- https://delta.io/blog/2023-02-08-delta-lake-s
chema-evolution/

- https://www.databricks.com/blog/2019/09/24/
diving-into-delta-lake-schema-enforcement-e

volution.html D

1

27


https://delta.io/blog/2023-02-08-delta-lake-schema-evolution/
https://delta.io/blog/2023-02-08-delta-lake-schema-evolution/
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html

28

Operational Improvements

Shadow Testing with on-demand job Cluster resource control for speed and
clusters cost

Workflows > Jobs > I Provide feedback (3
clicksTest - N "driver node type id": "i3.4xlarge",
s Tk >'©  Jobdetalls "enable elastic disk": "true",

Job 1D 362176375005093 7 "node type id": "r4. 2x1arge" ’

Creator (© Devlina Das " - — 11 1] 1]
num_workers": "20",

G| o om "policy id": "9C60384BEBO0O1FSC",

clicksTest
Runas @ (® Devlina Das

[ com.instacart.ads.sponsored_prod.

+ " ",
. Schdule spark conf": {
- Paused - Every 30 minutes, starting at 29 minutes past ...
Edit schedule Resume Delete . . . .
"
Toskname + © clckaTest spark.databricks.adaptive.autoOptimizeShuffle.
. » ", 1] 1]

Ty e & Compute enabled": "true",
Main class * @ tacart.ad d_product.event clicksTest,_cluster " a a w.e n "

Oriver: m large - Workers: m6 xiarge - 8 workers - On- spark.databricks.io.cache.enabled": "true",
Cluster * ® clicksTest_cluster 144 GB - 36 Cores - DBR 10.4 LTS - Spark 3.2.1-S.. Z v damand ahd Spot.-fall back o OfFdemand - 10.41LTS

(includes Apache Spark 3.2.1, Scala 2.12) - us-east-1d
Dependent libraries ® JAR files should be uploaded as a library | ey

_test_local_j X
+ Add £ Notifications ®

parameters @ ["--env", "dev","~-et1WindowStartDateTime" ,"2022-07-21T01:05: No notifications




Observability Improvements

CPU utilization (System) Spark Job execution times
18
4

14 2%

: " System Stats

5 a8
- 3

a

et 05

o - Y r T - Azgi_ E— —

Jan 8 jan 15 Amniz2 Jan2s Fet 0w wem  mw  wn uw fewy  nw me  ow  m3 uw s nw fes

Tables Freshness In Minutes Duplicate Event Counts(Filtered) M. . T Li co
issed Lines  + Total Lines V.

9% 90%
65 87%
0%
0%
18 100%

5 100%
, 1 100%
17 of 185 185  90%

500

i Application |

400

300

Test Coverage

200




Great Possibilities Ahead!

e Unit Test framework
e Advanced monitoring
e Generalized Pipeline Framework

e Unified Schema Management

30




Yinstacart & = < databricks

Ana (emus, Arthur (i, Brandon Williams, Bruno Caminada, Craig
Flockhart, Devlina Das, Ji Wu, Kieran Taylor, (uke Snyder, Mark Lee,
Mohit Gupta, Nate Kupp, Navin Sridhar, Peter {ambe, Prateek Jaiporia,
Rohith Macherla, Roy Moranz, Sai Karthik Varanaci, Sanchit Gopta,
Shelby Fercon, Shikuan Liu, Srikanth Reddy, Trey Zhong, Yingshi Zhang






