
Nebula: The Journey of Scaling 
Instacart’s Ads Data Pipelines with 
Spark and Lakehouse

Devlina Das, Engineer @ Instacart
Arthur Li, Engineer @ Instacart

June, 2023



Agenda

 
2

● Introduction 

● Growth Challenges 

● Motivation to build Data Lakehouse 
architecture

● Improvements: Lakehouse & Spark 
Applications

● Transition from batch only to 
streaming/Incremental processing



Introduction

Instacart: A leading online grocery platform
Creating a world where everyone has access to the food 
they love and more time to enjoy it together.  

Presenter:

● Arthur Li, Software Engineer, Data Platform

● Devlina Das, Software Engineer, Ads 
Measurement Platform



Frequent internal data users: 
1,000 + 

Data size: 40 PB + 
Data sources: mobile clients, 
retailers, internal services, 
vendors…

Data Teams at Instacart: Our goal is to build and reduce the 
friction of accessing timely and reliable data across Instacart 
and for our partners.  



 
5

Use Case: Ads Measurement
Measurement pipelines powers business critical metrics used directly by customers for ads 
performance tracking and billing



Pipelines

 
6

1 2 3



 
7

Testing
Can you test locally? Unit 
testing non-composable 

SQL is difficult

Collaboration
Challenging to manage 
how logic is shared and 

maintained 

Readability
SQL is powerful and 

convenient for simple 
tasks. Becomes hard as 

complexity grows

Cost
Scale with some tools.  

Not always the right tool, 
with the right 

characteristics

Motivation To Change



 
8

Requirements on Instacart Data system

Centralize all our data on 
low cost object storage 

Multi-language support Interoperability with other 
systems



 
9

Multi-language support 

Core data infra/engineering 
team: 

ML engineers/ Engineering team: Data analysts/Data Engineering : 

Flexibility comes with cost such as code reusability 
and difficulties for different teams to understand 



 
10

Use s3 as storage

Scale about Instacart’s data:

● 40+ PetaBytes  (most of the historical 

data are not being frequently accessed)

● 30 + Billion new events being ingested to 

power ads, customers, shoppers systems  

● Millions of prod/dev tables

● Intelligent Tiering 
● Life cycle policies



 
11

In light of the feature/cost requirements, 
our decision was to embrace the concept 
of data lakehouse.

● Unified Data Platform for processing 

structured/unstructured data

● Efficient Data Processing: Batch/Incremental 

● Cost-Effective Storage

● Advanced Analytics Capabilities(Beyond just sql) 



 
12

Challenges:

● Permission management on s3 

● Data applications development support: CI/CD, monitoring 



 
13

Self-served permission management 
module

module "ads-data-db" {

  source = "./datalake-db"

  db_name        = "ads_data"

  db_description = "xxx"

  owning_team_role_ids = xxx

  read_grants = [

    reader_team1.role_ids,

    reader_team2.role_ids

  ]

  write_grants = [

    writer_team1.role_ids

  ]

}

● Based on Terraform

● Provided abstraction for engineering team to manage 

the permission for their own data sets at s3 prefix 

level 

● Engineering Team will be responsible for make 

changes on permission changes and approve PR

● CI will trigger the policy change 



 
14

CI/CD for pipeline development

CD Service



 
15

Deep dive on Events ingestion



 
16

Deep dive on Events ingestion -2 



Pipelines

 
17

1 2 3



 
18

{% if 'event_time_begins_at' in (dag_run.conf or {}) and 'event_time_ends_at' in 

(dag_run.conf or {}) %}

 AND EVENT_DATE_TIME_UTC >= $LOOKBACK_WINDOW_START

 AND EVENT_DATE_TIME_UTC <= $LOOKBACK_WINDOW_END

 AND EVENT_ID NOT IN (

   SELECT EVENT_ID FROM RAW_CONVERSIONS_NEBULA_ROLLBACK WHERE EVENT_DATE_TIME_UTC 

>= $LOOKBACK_WINDOW_START and EVENT_DATE_TIME_UTC <= $LOOKBACK_WINDOW_END

 )

{% else %}

 AND loaded_at >= $LOOKBACK_WINDOW_START

 AND loaded_at <= $LOOKBACK_WINDOW_END

 AND EVENT_ID NOT IN (

   SELECT EVENT_ID FROM RAW_CONVERSIONS_NEBULA_ROLLBACK WHERE ETLED_AT_UTC >= 

$DEDUPE_CHECK_LOOKBACK_WINDOW_STARTS_AT and ETLED_AT_UTC <= 

$DEDUPE_CHECK_LOOKBACK_WINDOW_ENDS_AT

 )

{% endif %}

Custom window 
manipulation for 
frontline and backfill

Incremental Pipelines (Before)



Incremental Pipelines (Before)

 
19

{% if 'etl_begins_at' in (dag_run.conf or {}) and 'etl_ends_at' in (dag_run.conf or {}) %}

-- RUNNING IN MANUAL TRIGGER MODE

SET LOOKBACK_WINDOW_START = '{{ dag_run.conf.get("etl_begins_at") }}'::TIMESTAMP_NTZ;

SET LOOKBACK_WINDOW_END = '{{ dag_run.conf.get("etl_ends_at") }}'::TIMESTAMP_NTZ;

SET RUN_MODE = 'ETLED_AT_OVERRIDE';

{% elif 'event_time_begins_at' in (dag_run.conf or {}) and 'event_time_ends_at' in (dag_run.conf or {}) %}

-- RUNNING IN EVENT_DATE_TIME_UTC REPAIR MODE

SET LOOKBACK_WINDOW_START = '{{ dag_run.conf.get("event_time_begins_at") }}'::TIMESTAMP_NTZ;

SET LOOKBACK_WINDOW_END = '{{ dag_run.conf.get("event_time_ends_at") }}'::TIMESTAMP_NTZ;

SET RUN_MODE = 'EVENT_DATE_TIME_OVERRIDE';

{% else %}

-- RUNNING IN SCHEDULE MODE

SET ETL_LOOKBACK_BEGIN = '{{ next_execution_date.isoformat() }}'::TIMESTAMP_NTZ  - INTERVAL '3 hours';

-SET MIN_ETL_BEGINS = (SELECT DATEADD('HOUR', -1, MAX(ETLED_AT_UTC)) FROM RAW_CONVERSIONS_NEBULA_ROLLBACK);

Several
modes to 
handle edge 
cases



 
20

Spark Streaming 

Treat a live data stream as a table that is 
being continuously appended. 

Express streaming computation as 
standard batch-like query as on a static 
table

Divides the live stream into batches

Continuous stream of data is abstracted 
DStream(Discretized Streams)

Internally, a DStream is represented as a 
sequence of RDDs.

Spark Structured Streaming

https://www.databricks.com/blog/2016/07/28/
structured-streaming-in-apache-spark.html



 
21

Event Processing Improvements

Kafka 
Stream

DWH
Event 
Deserializer

Batch Job

Event 
Deserializer

Streaming 
Job

Delta Table

Data 
Warehouse



Event Processing with Structured Streaming

 
22

sparkSession.readStream
.format("delta")
.option("startingTimestamp",
startingTimestamp)
.load(deltaPath)

sparkSession.read
      .format("delta")
      .option("startingTimestamp",
            startingTimestamp)
      .option("endingTimestamp",
            endingTimestamp)
      .table(deltaTable)
  

if (cliArgs.backfill()) 
    ExtractBackfill.apply(cliArgs, pipelineName) 
else

Extract.apply(cliArgs, pipelineName)

Stream 
Read

Batch 
Read



 
23

streamingDf.writeStream
 .foreachBatch { (batchDf: DataFrame, batchId: Long) 
=>
   batchDf.persist()
   totalRowCount += batchDf.count()
   batchDf.unpersist()
   ()
 }
 .outputMode("append")
 .queryName(table)
 .trigger(Trigger.Once)
 .option("checkpointLocation", checkpointPath)
 .start()
 .awaitTermination()

df.write
   .format("delta")
   .partitionBy(partitionByColumn)
   .mode("overwrite")
   .option("replaceWhere", 
deltaReplaceSql)
   .save(path)

Batch 
Write

Stream 
write

Event Processing with Structured Streaming



Raw SQL was getting convoluted

 
24

Wins so far

-  Quick and easy to set up 
-  Logic mostly fits in a single query
-  Code runs as is in test mode

Cons

-  Repeated logic copy/pasted 
-  No Modularity
-  Poor composability
-  Not unit test friendly



Modular Code in Spark

 
25

val runPipeline =
 for {
   inputDfMap <- Extract. apply(cliArgs)
   outputDf   <- Transform. apply(inputDfMap, cliArgs)
   result     <- Load. apply(outputDf, cliArgs)
 } yield result

-  Generalized ETL entrypoints

-  Each stage is pluggable



 
26

Structured in  logical blocks

val stgOrderItems: DataFrame = getStgOrderItems(inputDataDfMap)

val attributableEventOrders: DataFrame = getAttributableEventOrders(inputDataDfMap, 
stgOrderItems, cliArgs)

val attributableEventOrdersWithPartitionCol: DataFrame = attributableEventOrders
 .withColumn(AEOSchema.getPartitionColumn(), 
to_date(attributableEventOrders(AEOSchema.ORDER_ITEM_CREATED_DATE_TIME_PT), 
"yyyy-MM-dd"))

attributableEventOrdersWithPartitionCol.cache()
val attributableEventOrdersCount = attributableEventOrdersWithPartitionCol.count()

Modular Code in Spark



Dev + Productivity Improvements

 
27

● DRY: Shared modules and libraries 

● Faster code iteration with in-memory local testing
- sbt test
- quick dev feedback loop

● Delta schema management
- Schema evolution with Schema on write 

paradigm
- https://delta.io/blog/2023-02-08-delta-lake-s

chema-evolution/
- https://www.databricks.com/blog/2019/09/24/

diving-into-delta-lake-schema-enforcement-e
volution.html

https://delta.io/blog/2023-02-08-delta-lake-schema-evolution/
https://delta.io/blog/2023-02-08-delta-lake-schema-evolution/
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html


Operational Improvements

 
28

Shadow Testing with on-demand job 
clusters

"driver_node_type_id": "i3.4xlarge",
"enable_elastic_disk": "true",
"node_type_id": "r4.2xlarge",
"num_workers": "20",
"policy_id": "9C60384B6B001F8C",
"spark_conf": {
            
"spark.databricks.adaptive.autoOptimizeShuffle.
enabled": "true",
"spark.databricks.io.cache.enabled": "true",

...

}

Cluster resource control for speed and 
cost



 
29

Observability Improvements

System Stats

Application 
Stats

Test Coverage



Great Possibilities Ahead!

 
30

● Unit Test framework

● Advanced monitoring 

● Generalized Pipeline Framework

● Unified Schema Management



 
31

Ana Lemus, Arthur Li, Brandon Williams, Bruno Caminada, Craig 
Flockhart, Devlina Das, Ji Wu, Kieran Taylor, Luke Snyder, Mark Lee, 
Mohit Gupta, Nate Kupp, Navin Sridhar, Peter Lambe, Prateek Jaipuria, 
Rohith Macherla, Roy Moranz, Sai Karthik Varanasi, Sanchit Gupta, 
Shelby Ferson, Shihuan Liu, Srikanth Reddy, Trey Zhong, Yingshi Zhang



Questions


