
Vector Data Lake
Do you need (more than) a vector
database in 2023?

Databricks
2023

PhD student at Stanford University

https://github.com/marsupialtail/quokka
@marsupialtail_2

Co-author Lance format
Co-author pandas

@changhiskhan

https://github.com/marsupialtail/quokka

Generative AI is missing a storage layer

GPT-4, LLaMA, PaLM, Alpaca

LangChain, LlamaIndex, AutoGPT

● Vector databases only deal with vectors

● Pgvector and similar does not scale

● No effective solution at all for multi-modal
data

LLMs

VectorDB

LangChain

LlamaIndex

Multi-modal data
● Images
● Point-clouds
● Video
● Audio

Gen AI data flywheel
● Storage and compute costs
● Training I/O performance
● ML debugging
● ML analytics

Flexible retrieval
● Vectors
● Keywords
● SQL
● Model

LLM data
● Vectors
● Documents
● Metadata

State of the world for structured data

OLTP database

ETL

Blob Store Data
Lake

Lakehouse for
OLAP

Desired Properties:
- Fast writes
- Strong consistency
- “Operational” SQL: e.g.

selecting a row

Desired Properties:
- Efficient bulk updates
- Fast full scans
- Decouple

compute/storage

State of the world for unstructured data

.png

.pdf

.txt

.mp3

.mp4

Embeddings

Our observations

TLDR: current cloud vector databases much resemble classic
OLTP stores, optimized for operational workloads.

Strong focus on write TPS and consistency: ElasticSearch/Milvus
both offer strong write consistency. All vector databases focus on
write throughput.

Excels at point updates, low latency for point reads.

Integrated compute-storage: requires heavy indexing that needs
to be kept live in always-on RAM/SSD, Trino-for-embeddings don’t
really exist.

But what about OLAP workloads?

What even are OLAP workloads for embeddings?

● Recommendation models: batch update embeddings, batch update
recommendations

● Data analytics: which video genre contain the most inappropriate
videos?

● ML training on embeddings.

Characteristics of these workloads

Observations:

- (Very large) batched nearest neighbor lookup / range search

- Doesn’t care too much latency

- Data is usually immutable or updated in large batches

- Really want to decouple storage and compute.

Not quite the optimization target of current vector databases, but should
remind you of Spark/Trino

Proposal - Do it in the data lake

Incremental
ETL

Blob Store Data Lake

Enhanced
Lakehouse for

OLAPReal-time
Application

Query /
Update

Low-latency
Response

The Parquet Way

New
Embeddings

File 1

File 2

File 3

Other
Delta/Iceberg
Tables

ETL Querying

Read all Parquet files,
Forget about indices,
Let’s just do exact
nearest neighbors!

Update the Delta
Table as usual

Simple DataFrame API

vectors =

qc.read_parquet("s3://microsoft-turing-ann-p

arquet/*")

results = vectors.nn_probe(probe_df,

vec_column_left = "vector", vec_column_right

= "probe_vec", k = K)

results = results.filter(. . .)

results = results.join(. . .)

Runs on GPUs

NN search on 100M 100-dim vectors:

- Number of probes: 100 (< $0.10)

- Number of probes: 100k (estimate
$10)

Storage cost: $1 / month (S3)

(Pinecone estimate: $320/month)

Distributed dataframe library that
supports vector operations

Introducing Lance format

Open source columnar format for AI

Unify AI data storage and reduce data lake TCO

🦀Indices

Vector index, fts index*,
regular database

indices*

🏹Arrow Interface

Compatible with pandas,
polars, duckdb, spark

and more

🔥AI data

Optimized for
unstructured data types
like images, audio, video

and 3d point clouds

🚀Performance

2000x faster than
parquet for random

access

https://github.com/lancedb/lance

Parquet Lance

● Must read whole group to access 1 data
point

● Matters a lot if storing large blobs like
images, point clouds, etc

● Offsets determine exact byte range to
read

● 2000x random access performance

vectors = qc.read_lance("s3://...")

Uses indexes automatically!

results = vectors.nn_probe(probe_df,

"vector","probe_vec", k = K)

Conclusion

- There are large scale vector workloads in the data lake

- Vector databases are not a good fit for those

- Parquet works but is still suboptimal

- Lance is a better format to support ANN in data lake

- Roadmap: Will look to benchmark vs parquet once batch ANN is in place

