DATA'AI
SUMMIT

By & databricks

Vector Data Lake

Do you need (more than) a vector
database in 20237

Databricks
2023

DATA'AI
SUMMIT

By & databricks

PhD student at Stanford University

https://github.com/marsupialtail/quokka
@marsupialtail_2 ¥

Co-author Lance format
Co-author pandas

@changhiskhan ¥

https://github.com/marsupialtail/quokka

Generative Al is missing a storage layer

GPT-4, LLaMA, PaLM, Alpaca

LangChain, LliamaIndex, AutoGPT

e Vector databases only deal with vectors

X e Pgvector and similar does not scale

L

e No effective solution at all for multi-modal
data

LLMs LangChain

LlamaIndex

VectorDB

Multi-modal data
e Images

LLM data
° Vectors

e Documents e Point-clouds
e Metadata e Video
e Audio

Flexible retrieval Gen AI data flywheel

e \ectors e Storage and compute costs
e Keywords e Training I/O performance

e SQL e ML debugging

e Model e ML analytics

State of the world for structured data <

Lakehouse for

OLAP
ETL
OLTP database Blob Store Data
Lake
) aracie € 2 A ICEBERG
Q 6- Am.A Spqr K DELTA LAKE v
Desired Properties: Desired Properties:
- Fast writes - Efficient bulk updates
- Strong consistency - Fast full scans
- “Operational” SQL: e.qg. - Decouple
selecting a row compute/storage

State of the world for unstructured data

y
[

.png v
elasticsearch
pdf O PyTorch .
>4 LanceDB
.txt @OpenAI Embeddings @
>
Milvus
.mp3
1 TensorFlow "
Kﬁq .
¢» Pinecone
.mp4

Our observations

TLDR: current cloud vector databases much resemble classic
OLTP stores, optimized for operational workloads.

Strong focus on write TPS and consistency: ElasticSearch/Milvus

both offer strong write consistency. All vector databases focus on
write throughput.

Excels at point updates, low latency for point reads.
Integrated compute-storage: requires heavy indexing that needs

to be kept live in always-on RAM/SSD, Trino-for-embeddings don’t
really exist.

But what about OLAP workloads?

What even are OLAP workloads for embeddings?

e Recommendation models: batch update embeddings, batch update
recommendations

e Data analytics: which video genre contain the most inappropriate
videos?

e ML training on embeddings.

Characteristics of these workloads

Observations:
- (Very large) batched nearest neighbor lookup / range search
- Doesn’t care too much latency
- Data is usually immutable or updated in large batches

- Readlly want to decouple storage and compute.

Not quite the optimization target of current vector databases, but should
remind you of Spark/Trino

Proposal - Do it in the data lake

Real-time
Application

Query / al Incremental
Update - ETL
P elasticsearch “ vespa

> Ky ye
® <> Pinecone

Milvus &
Low-latency Sle' K

Response

oS RAY

@ ' Quokka

Enhanced
Lakehouse for
OLAP

Blob Store Data Lake

ICEBERG
DELTA LAKE v

The Pq rquet Way A Read all Parquet files,

DELTA LAKE Forget about indices,
Let’s just do exact
nearest neighbors!

;/

Update the Delta File 1
Table as usual

New File 2 .
Embeddings —> ETL Querying
{. 4 /
File 3

Other

Delta/Iceberg

Tables
I

Quokka Distributed dataframe library that
supports vector operations

Simple DataFrame API Runs on GPUs

vectors = NN search on 100M 100-dim vectors:

gc.read parquet ("s3://microsoft-turing-ann-p
arquet/*")

- Number of probes: 100 (< $0.10)

results = vectors.nn probe (probe df,

vec_column left = "vector", vec column right J Number Of prObeS: 100k (eSTlque
= "probe vec", k = K) $10)

results results.filter(. . .)

Storage cost: $1 / month (S3)

results = results.join(. . .)

(Pinecone estimate: $320/month)

Introducing Lance format \\\g

V{4

Open source columnar format for Al

Unify AI data storage and reduce data lake TCO

~1Arrow Interface & Al data # Performance & Indices
Compatible with pandas, Optimized for 2000x faster than Vector index, fts index*,
polars, duckdb, spark unstructured data types parquet for random regular database
and more like images, audio, video access indices*

and 3d point clouds

https://github.com/lancedb/lance

' Quokka

Oppsets 0 5 1 % 232 250 vectors = gc.read lance("s3: // . ")
/ \) \ # Uses indexes automatically!
Dot results = vectors.nn probe (probe df,
A LA
hello Y G prese.n‘beoL.B "vector","probe vec", k = K)
t/._lme
Parquet Lance

!

45 ;“ He_“o 6 " World/ : J L.omce,

o |
]({
|
Y0y

5l6ﬁx5’ He_“o —, World/ J Lance ’

|

e Must read whole group to access 1 data o Offsets determine exact byte range to
point read
e Matters a lot if storing large blobs like e 2000x random access performance

images, point clouds, etc

Conclusion

There are large scale vector workloads in the data lake
- Vector databases are not a good fit for those
- Parquet works buft is still suboptimal

- Lance is a better format to support ANN in data lake

- Roadmap: Will look to benchmark vs parquet once batch ANN is in place

