QUACK, QUACK,

QUACK, QUACK

If a Duck Quacks
In the Forest,
Should You Care?!?

#DuckTalk
#DuckPost
#DuckPoint

Ryan Boyd
Co-founder @ MotherDuck
@ryguyrg

THIS PRESENTATION IS NOT

A complete tutorial on DuckDB

THIS PRESENTATION DUCKING IS

An explanation of the industry context in which DuckDB came to life

A discussion on OSS DuckDB and why it's awesome
A spotlight on the internals of DuckDB and why
A demonstration of DuckDB’s capabillities

A preview of MotherDuck and its architecture

0o
00
00
00
a0

ing

Introduced
Comput

The Good The Bad

Powerful Bulky
Centralized Compute Expensive
Shared Access Not Personalized

_

Popularized
Computing

Dedicated
Personalized

i

N

5 66% CPU LOAD

10.56%

83.77% Z\Lmv

O puckos

& duckdb.org

DuckDB Is an in-process
SQL OLAP database management system

Simple Feature-rich

e In-process, serverless e [ransactions, persistence

e C++11, no dependencies, single file build e Extensive SQL support

e APIs for Python/R/Java/... e Direct Parquet & CSV querying
Fast Free

e \Vectorized engine e Free & Open Source
e Optimized for analytics e Permissive MIT License
e Parallel query processing

@* DuckDB

created at:

created by:

maintained by:

«@ DuckDB Labs

@ DuckDB

mmmmmm

O puckos

& duckdb.org

DuckDB Is an in-process
SQL OLAP database management system

Simple Feature-rich

e In-process, serverless e [ransactions, persistence

e C++11, no dependencies, single file build e Extensive SQL support

e APIs for Python/R/Java/... e Direct Parquet & CSV querying
Fast Free

e \Vectorized engine e Free & Open Source
e Optimized for analytics e Permissive MIT License
e Parallel query processing

| et’s Break that Down

In-Process
Runs inside Python, R, C++.

No external dependencies.

| et’s Break that Down

In-Process
Runs inside Python, R, C++.

No external dependencies.

OLAP

Full SQL support - things like window functions

High-performance aggregations

@ DuckDB

SQLite for Analytics

@= DuckDB

created at:

«@ DuckDB Labs

(@ intawed by:
@*» DuckDB

@= DuckDB

*

High Performance Architecture

*

Simplified Data Access

*

0SS Community Flocks Together

*

Fast-paced innovation

High Performance
Architecture

Comparing Database Engines

Vector-based

Row-based (tuples) Columnar

B

SQLite, PostgreSQL, etc Pandas, NumPy, etc. DuckDB

Comparing Database Engines

Row-based (tuples)

B

SQLite, PostgreSQL, etc

Optimized for:

* low memory footprint

* transactional workloads

Comparing Database Engines

Columnar

Optimized for:

*

analytic workloads

*

aggregations

* data compression on like data

Pandas, NumPy, etc.

Comparing Database Engines

Vector-based

Optimized for:

*

analytic workloads

*

aggregations
* CPU - can do SIMD
* CPU - cache locality

DuckDB

Why Vectorized?

L3 Cache

CPU

L1 Cache

Core

2.9 MB

28 MB 48 MB

Not just In-memory

* DuckDB has a native storage format

* Supports larger-than-memory queries
(spillover to disk)

Native storage format

* Columnar, partitioned
* Efficient ACID-compliant updates

* Stores an entire database, not just tables

Compression algos: dictionary

a Uncompressed
“Duok [Duck Joose buok [duck

Dictionary

oonon =3
Goose.

Compression algos: FSST

Uncompressed

www.google.com www.github.com

=

2
=
-
0
Q
3
7y

Compression algos: FSST

Version

Taxi

OnTime

Lineitem

Notes

Date

DuckDB v0.2.8
DuckDB v0.2.9
DuckDB v0.3.2
DuckDB v0.3.3
DuckDB v0.5.0

DuckDB dev

CSV
Parguet (Uncompressed)

Parquet (Snappy)
Parquet (ZSTD)

15.3GB
11.2GB
10.8GB
6.9GB
6.6GB

4.8GB

17.0GB
4.5GB
3.2GB
2.6GB

1.73GB
1.25GB
0.98GB
0.23GB
0.21GB

0.21GB

1.11GB
0.12GB
0.11GB
0.08GB

0.85GB
0.79GB
0.56GB
0.32GB
0.29GB

0.17GB

0.72GB
0.31GB
0.18GB
0.15GB

Uncompressed
RLE + Constant
Bitpacking
Dictionary

FOR

FSST + Chimp

July 2021
September 2021
February 2022
April 2022
September 2022

NOW ()

Compression algos: History

Version Taxi OnTime Lineitem Notes Date

DuckDBv0.2.8 15.3GB 1.73GB 0.85GB Uncompressed July 2021

DuckDB dev 4.8GB 0.21GB 0.17GB FSST + Chimp NOW()

Compression algos

SELECT ~*
FROM pragma storage info(‘persons')
USING SAMPLE 100 rows

Compression algos

row group 1d column name column 1d segment type count compression
1into4 varchar 1into4 varchar 1into4 varchar
10 emall 3 VALIDITY 122880 Constant
79 phone D VALIDITY 122880 Constant
341 company 4 VARCHAR 31250 FSST
1007 emall 3 VARCHAR 25355 FSST
1032 phone 5 VARCHAR 295206 FSST
1212 company 4 VARCHAR 30740 FSST
1252 company 4 VARCHAR 30570 FSST
1575 1d 0 BIGINT 28672 BitPacking
1595 last name 2 VARCHAR 122880 Dictlionary
1733 1d 0 VALIDITY 122880 Constant
2335 emall 3 VARCHAR 25033 FSST

Simplified
Data Access

create a sample pandas data frame
import pandas as pd

test_df = pd.DataFrame.from_dict({"i":[1, 2, 3, 4], "|":['one", "two", "three",
Ilfourll]})

make this data frame available as a view in duckdb
conn.register("test_df", test_df)

print(conn.execute("SELECT j FROM test_df WHERE i > 1").fetchdf())

install and load httpfs
$ duckdb

D INSTALL httpfs:
D LOAD httpfs:

query as normal

SELECT * FROM 'https://rb-tmp-public.s3.amazonaws.com//
persons_1.csv.gz' LIMIT 10

and do magic like

COPY(SELECT * FROM ‘nhttps://rb-tmp-public.s3.amazonaws.com//

persons_1.csv.gz') TO ‘persons_from_csv.parquet’ (FORMAT
PARQUET)

=
)
O
)
al
—
—
L

install and load httpfs
$ duckdb

D INSTALL httpfs;

D LOAD httpfs;

set S3 creds

SET s3_region='us-east-1';

SET s3_access_key_id='AKIA42DX...BV';

SET s3_secret_access_key='w700Q60hyGAh...VGuQ6";

query as normal
SELECT * FROM read_parquet('s3://<bucket>/<file>");

or copy data over
CREATE TABLE trivia AS SELECT * FROM read_parquet('s3://
<bucket>/<file>');

install and load postgresql
$ duckdb

INSTALL postgres;

LOAD postgres;

attach postgresql tables as read-only views
CALL postgres_attach('dbname=postgres’);

query as normal
SELECT AVG(id)
FROM persons

or query both DuckDB data and postgresql

or use the awesomeness of parquet creation

COPY(SELECT * FROM postgres_scan(‘dbname=postgres’, 'public’,
'versons')) TO ‘persons.parquet' (FORMAT PARQUET);

—
@,
N
L L]
an
O
—
)
O
al

Simplified
Data Access

Parquet, CSV, SQL.ite, PostgreSQL, Arrow
Local, Remote on S3

In-process, Command-line, In-browser, ODBC/JDBC

Simplified
Data Access

Parquet, CSV, SQL.ite, PostgreSQL, Arrow
Local, Remote on S3

In-process, Command-line, In-browser, ODBC/JDBC

For ‘“normal
size” data

‘a. David is at data-folks.masto.host \ 4
=¥ @DSJayatillake

The vast majority of orgs in the world do not have > billion row datasets,
but many need the benefits of data.

This is partly why I'm so excited about @duckdb; it affords the power of
an expensive cloud dwh without the complexity, for smaller data for ALL.

8:10 AM - 17 Apr, 2022
2 replies 12 likes

And larger than
normal size data

e Mim
w ; '

A\ A

the irony of life, | never done a Query on a Billion row Table, but when |
did it , it was on my laptop using an in-process Database

count by Columni count

1,079,748,936

.\.\-. >
ot

$ duckdb

D load parquet;
D SELECT AVG(trip_distance) FROM
'vellow_tripdata_20[12]*.parquet’;

avg (trip distance)

06.1801595481684

2.95s querying 1.45 billion rows

No indexes

$ duckdb taxis.ddb

D SELECT AVG(trip_distance) FROM vyellow_tripdata;

avg (trip distance)

0.180159548106c4

1.47s querying 1.45 billion rows
No Indexes

mo6i.4xlarge 16 cores, 64GB RAM 1.020s

mo6i.8xlarge 32 cores, 128GB RAM 0.509s

mo6i.16xlarge 64 cores, 256GB RAM 0.268s

m6i.32xlarge 128 cores, 512GB RAM 0.145s

0SS Community
Flocks Together

0.0k 1] ® duckdb/duckdb

8.0k

g~
o
x

GitHub Stars

4.0k

2.0K

2019

2020

O Star History

202
Date

2022

20235
X$ star—history.com

Score (logarithmic scale)

DB-Engines Ranking of DuckDB

0.8

0.6 — DuckDB

0.4

0.2

0.1

© June 2023, DB-Engines.com
0.08

Jan 2021 May 2021 Sep 2021 Jan 2022 May 2022 Sep 2022 Jan 2023 May 2023

Contributors 216

+ 205 contributors

€& Community Server

302 Online

® 3,087 Membe

DuckDB Ecosystem Monthly

Happy new year, friend

Hi, I'm Marcos! I'm a data engineer by day at X-Team, working for Riot Games. By

night, | create newsletters for a few topics I'm passionate about: helping folks find
data digs and AWS graviton. After getting involved in the DuckDB community, | saw
a great opportunity to partner with the MotherDuck team to share all the amazing

things happening in the DuckDB ecosystem.

In this first issue of the year 2023, we wanted to share some of the incredible stuff

coming out of the global DuckDB community.
-Marcos

Feedback: duckdbnews@motherduck.com

Featured Community Members

Jacob Matson

Jacob is the writer of the Modern Data Stack in a Box

with DuckDB. A fast, free, and open-source_Modern

Data Stack (MDS) can now be fully deployed on your

laptop or to a single machine using the combination of
DuckDB, Meltano, dbt, and Apache Superset.

He is working today as the VP of Finance &
Operations at Simetric, bringing loT connectivity data
into a single pane-of-glass. He also does SMB
analytics consulting via his agency, Elliot Point LLC.

You can find him on Twitter @matsonj

Fast-paced
Innovation

Optimistic writing to disk [assuming successful COMMIT]
Parallel data loading [91.4s -> 17.2s for 150 million rows!]
Three new compression algos: FSST, Chimp, Patas
Parallel

* CSV reading

* Index creation

* COUNT(DISTINCT)

SELECT clause now optional

<
-
LL|
N
<
LL|
—
LL|
(0

List comprehension support [x + 1 forxin |1, 2, 3]]

JSON ingestion via read_json
Partitioned export of CSV and Parquet
Parallel CSV and Parquet writing
Multi-database ATTACH support
SQLite backend support

Positional JOIN support

™
O
L]
N
<
1]
—
L]
0

Upsert support

Better Python APIs

User-defined scalar functions for Python
Support for ADBC

Swift API

Parallel JSON writing

PIVOT and UNPIVOT

Lazy-loading table metadata

<
-
LL|
N
<C
LL|
—
LL|
(0

@* DuckDB

created at:

created by:

maintained by:

«@ DuckDB Labs

@ DuckDB

mmmmmm

But who the Duck
Is MotherDuck?

4¥ MotherDuck

S: venture-backed startup

data geeks from Google BigQuery,
made up of: Databricks, Snowflake, Meta, Elastic,
SingleStore, ++

LET’S MAKE

doing: ANALYTICS
DUCKING AWESOME

TEACH YOUR DUCKDB TO FLY

Marc Lamberti
marciambertimi

Just an honest question, wasn't the
purpose of DuckDB to run fast
analytical queries in LOCAL? What's
the need for a cloud version?

Our Beliefs @ MotherDuck

What if query plans could decide whether to bring the
compute to the data, or the data to the compute?

LET'S GET REAL

r Client APIs
O N
verview DUCkDB < D
" | SemverExt
R DuckDB Server Ext Storage
Java ~
Julia Client Ext

» C
C++

» Node.|s
WASM Web Ul

» ODBC
CLI

Control

Client Ext

SELECT

t.passenger_count,

AVG(t.total amount
FROM

sample_data.nyc.yellow_cab_nyc 2022 11 t

SELECT
cr.currency_code,
t.passenger_count,
AVG(t.total_amount * cr.exchange_rate) as average_converted_amount

FROM
sample_data.nyc.yellow_cab_nyc 2022 11 t

CROSS JOIN
(SELECT * FROM './popular_currency_rate_dollar_20230620.csv') cr

SELECT

cr.currency_code,

t.passenger_count,

AVG(t.total_amount * cr.exchange_rate) as average_converted_amount
FROM

sample_data.nyc.yellow_cab_nyc 2022 11 t

CROSS JOIN
(SELECT * FROM './popular_currency_rate_dollar_20230620.csv') cr

WHERE cr.currency_code = 'EUR'
GROUP BY
cr.currency_code, t.passenger_count

ORDER by t.passenger_count ASC;

DOWNLOAD_SOURCE (L)

bridge_id: 1

BATCH_DOWNLOAD_SINK (R)

bridge_id: 1

ORDER_BY (R)

ORDERS:
t.passenger_count ASC

HASH_GROUP_BY (R)

#0
#1
avg(#2)

PROJECTION (R)

currency_code

passenger_count
(total amount
exchange_rate)

CROSS_PRODUCT (R)

DOWNLOAD_SOURCE (L)

bridge_id:

BATCH_DOWNLOA

bridge_:

ORDER_BY (R)

ORDERS:
t.passenger_count ASC

HASH_GROUP_BY (R)

#0
#1
avg (#2)

PROJECTION (R)

currency_code

passenger_count
(total amount
exchange_rate)

CROSS_PRODUCT (R)

SEQ_SCAN (R)

yellow_cab_nyc_2022_11

passenger_count
total _amount

EC: 3252717

UPLOAD_SOURCE (R)

bridge_id: 2

UPLOAD_SINK (L)

bridge_id: 2

FILTE

(currency_co.

READ_CSV_AUTO (L)

LOCAL

currency_code
exchange_rate

EC: ©

| currency_code | passenger_count | average_converted_amount |

| varchar | double | double |

]

EUR	0.0	18.546608022179736
EUR	1.0	19.4198124783772
EUR	2.0	22.04667298565129
EUR	3.0	21.236435271048638
EUR	4.0	22.20329272449214
EUR	5.0	19.238401343401563
EUR	6.0	19.688502601081026
EUR	7.0	69.78117721000001
EUR	8.0	56.326965400000006
EUR	9.0	69.24747212666666
EUR		26.81066096388576

I._—_L—__I——.|

| 11 rows 3 columns |
-]

q" MotherDuck Beta

Q HELP ‘
-

-+ ADD FILES

& My Databases

foo

localmemdb
sample_data

@ hn

> B8 hacker_news

v
‘wow

[main

v (@ nyc
> B3 fhvhv_tripdata_nyc_2022_11
> B3 service_requests_311_fro..
> B3 yellow_cab_nyc_2022_11

v @ who
> BB ambient_air_quality

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

MONTH () AS month,
ROW NUMBER()

OVER (PARTITION BY YEAR() , MONTH (
AS rn

FROM sample data.hn.hacker news

WHERE type = 'story'

SELECT
year,
month,
title,
hn url,
score
FROM ranked stories
WHERE rn = 1
ORDER BY year, month;

B Query executed in 640 ms. Row count: 11

I

year month

2.0
0 12

2,022
2,022
2,022
2,022
2,022
2,022
2,022

L N N e

N OO O BN

title

My First Impressions of Web3
Google Search Is Dying

US Senate votes unanimously to make daylig...

Elon Musk makes $43B unsolicited bid to tak...

Mechanical Watch

Supreme Court Overturns Roe vs. Wade

Ask HN: What are some cool but obscure dat...

— . s = - — ”

) ORDER BY score DESC)

hn_url

https://news.ycombinator.com/item?id=2984...
https://news.ycombinator.com/item?id=3034...
https://news.ycombinator.com/item?id=3068...
https://news.ycombinator.com/item?id=3102...
https://news.ycombinator.com/item?id=3126...
https://news.ycombinator.com/item?id=3186...

https://news.ycombinator.com/item?id=3218...

N 'y P T T .

score

2.0 I
111

1,500

I
4,

MotherDuck Features

» Git-like collaboration: sharing snapshots

e |f it can Duck, it can MotherDuck

$ duckdb my.ddb $ duckdb md:mydb

HEX X dbt

ASTRONOMER OO0 Superset

omnli &7 ASCEND.IO =) Census MPONDER % L LangChain

@ dagster () CloudQuery dp Ril O expanso colab /2 preset

LET'S GET REAL

$ duckdb my-db md:mydb
-- OAuth Loop for credentials

-- Create remote database and table
D CREATE DATABASE dbt
D CREATE TABLE t1 as select 'abc' as x

-- Open local database and join to remote
D ATTACH local.db as L
D SELECT * from db1.t1

JOIN L.t1 on (id)

D

DuckDB turns your laptop
Into a personal analytics
engine

MotherDuck scales your
laptop into the cloud with
Hybrid Execution

DuckDB is simple for dev
o and prototyping with local
and remote data

D

MotherDuck lets you
move into production

@

DuckDB is an embedded
database

MotherDuck is a
collaborative serverless
analytics platform powere

by DuckDB

v

motherduck.com

DUCKCON on THURSDAY

pit.ly/duckcon-sf

-

STOP QUACKING
& GET QUERYING!

N

/

T et

Ryan Boyd
Co-founder @ MotherDuck
@ryguyrg

Our Beliefs @ MotherDuck

1.
2. How much data do people have?

What is Big Data really?

3. How much data do they query?

DEFINITION OF BIG DATA

More than can fit in Excel

More than can fit on your laptop
More than can fit in memory
More than can fit on disk

DEFINITION OF BIG DATA

In 2012, when | worked on BigQuery:
Largest EC2 instance was 60.5GB of RAM

Today:
Largest EC2 instance is 25TB of RAM

Z10]0)¢

DEFINITION OF BIG DATA

In 2012, when | worked on BigQuery:
Largest MacBook Pro was 8GB of RAM

Today:
Largest MacBook Pro is 96GB of RAM

12X

DATA SIZES

BigQuery: ~95% of customers with < 1TB
SingleStore: ~80% of customers want S-00
Gartner: Most EDWs < 100GB

A16Z: B2B portfolio cos allhad data< 1T
A16Z: B2C portfolio cos had data < 10T

DATA RECENCY

Most data queried is from today

Today’s data is a small fraction of the whole
Access history gets quiet very quickly

Most data stored is very infrequently used

—

QUERY SIZES

BQ: 90% of queries < 100 MB

Just because you have a large data doesn't
mean you query it

Effective partitioning, compression, pushdowns,
etc reduce query sizes

