

X-FIPE

eXtended Feature Impact for Prediction Explanation

Xingde Jiang Machine Learning Engineer, Humana

Steve Brunner Director of AI, Humana

About Humana

Bringing you the human side of healthcare.

At Humana, we're dedicated to improving the health outcomes of every person we serve. We believe everyone should have equitable access to the tools and support they need to be as healthy as possible -- support that's personalized and easy to use.

Humana

Delivering human care relies on aligning our actions and behaviors to build trust with our members

MLP – Leveraging multi-sided platform ecosystem to accelerate value creation

The Network Effect: The more consumers and producers on the platform, the more interactions and data that can be collected and leveraged to improve health outcomes through advanced analytics and modern digital experience DATA+AI SUMMIT 2022

4

Ethical AI Governance

Industry practice that **peaks interest of key investors, and regulators**

Al Principles set forward a high level collection of philosophies that should be guiding the development of advanced analytic systems

Designed to be released to the general public to increase the awareness of how carefully customer's data is used

Principles are the result of a **extensive collaboration** across Enterprise Data and Analytics, Enterprise Risk Management, Legal, HR, Clinical, and Marketing **DATA+AI** SUMMIT 2022

Agenda

- Why does explainability matter?
- What are top drivers?
- What is the current landscape of model explainability?
- X-FIPE: computationally efficient and theoretically sound.

Why explainablity matters

Explainable AI Google Trends

Explainable AI starts to trend in the last 5 years

Interpretability is vital for business stakeholders to adopt ML to serve consumers in compliance with rules

Data scientists & Al researchers Debug, improve, and compare models Check for biases

Consumers

Trust the business Ensure explanations are in its simplest form

Business teams Trust the model Adopt the model

Policymakers

Provide guidelines to organizations Protect rights of consumers

What are top drivers

Utilization driven

Score: 0.99

Number of ER visit: HIGH Number of ER (nonemergency) visit: HIGH ER visit claim cost: HIGH Physician exam/consultation medical claim count: HIGH ER visit claim in past 3 months: YES

Respiratory condition driven

Score: 0.85

Physician exam/consultation medical claim count: HIGH **Chronic pulmonary disease** med claim count: HIGH Patient/provider/equipment transportation claim percent: HIGH Electrocardiogram medical claim count: HIGH **Respiratory disease** (uncategorized) – medical claim count: HIGH

Behavioral condition driven

Score: 0.40

Physician exam/consultation medical claim count: HIGH Rx claim count: HIGH **Mental condition** (uncategorized) medical claim count: HIGH Total med claim cost: HIGH **Anxiety** medical claim count: HIGH

Model explainability algorithms

LIME and SHAP

Local Interpretable Model-Agnostic Explanations

 $\xi(x) = \underset{g \in G}{\operatorname{argmin}} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$

LIME: Ribeiro, et al. "Why should I trust you?: Explaining the predictions of any classifier" 2016.

SHapley Additive exPlanations

Definition 1 Additive feature attribution methods have an explanation model that is a linear function of binary variables:

$$g(z') = \phi_0 + \sum_{i=1}^{M} \phi_i z'_i,$$
 (1)

where $z' \in \{0,1\}^M$, M is the number of simplified input features, and $\phi_i \in \mathbb{R}$.

SHAP: Lundberg, et al. "A Unified Approach to Interpreting Model Predictions", 2017.

Comparison of interpretability methods

#	Comparison Feature	LIME	SHAP	FIPE*	X-FIPE
1	Computational efficiency (run time)	No (Medium/High)	No (High)	Yes (Medium)	Yes ⁺ (Low)
2	Avoid heuristics/user settings	No	Yes	Yes	Yes
3	Handle correlated features	Yes	Yes	Yes	Yes
4	Avoid additional model training	No	Yes	Yes	Yes
5	Full features representation	No	Yes	Yes	Yes
6	Python and Spark model agnostic	Yes	No*	Yes	Yes
	Total positive "yes" features	2	4	6	6+

* FIPE: https://www.researchgate.net/publication/335189270_Feature_Impact_for_Prediction_Explanation_

* Open Issue: A Spark version in plan? https://github.com/slundberg/shap/issues/38

X-FIPE

What is novel with X-FIPE (1)

Computationally efficient

• Time complexity: O(n) -> O(log n)

Running time in minutes

O(log n) algorithm for combining dataframes

What is novel with X-FIPE (2)

Theoretically sound

SUMMIT 2022

- First order approximation of Shapley value
- The coefficients are the largest when |S| = 0 or F–1
- As F increases, coefficients decrease much faster for the other sizes of subsets

X-FIPE is a first order approximation of Shapley

X-FIPE take two most important layers: First Layer and Last Layer

X-FIPE walk-through

1. Model Scores and statistics are obtained as the follow:

Sample	Sample of three IDs with their inputs values along with their model predictions				
ID	Age	ED Visits	Utilization count	Model Prediction (S _o)	
1	62	4	7	0.95	
2	67	1	2	0.3	
3	68	0	3	0.43	

The median values for the model three inputs and the resulting predictionAgeED VisitsUtilization countModel Prediction (S_m)66120.2

2. For ID-1, X-FIPE produces the following new observations, which correspond to different settings and lead to new scores.

ID	Age	ED Visits	Utilization count	Model Prediction	Feature Name	Score Tag
1	66	4	7	0.91	Age	Sx
1	62	1	2	0.12	Age	Sc
1	62	1	7	0.27	ED Visits	Sx
1	66	4	2	0.73	ED Visits	Sc
1	62	4	2	0.55	Utilization count	Sx
1	66	1	7	0.61	Utilization count	Sc

DATA+AI SUMMIT 2022

3. The impact is calculated for each feature

Shaply value for X-fipe :
$$S_c - S_m + S_0 - S_x$$

 $Y_x(Age) = 0.12 - 0.2 + 0.95 - 0.91 = -0.04$
 $Y_x(ED_{Visits}) = 0.73 - 0.2 + 0.95 - 0.27 = 1.21$
 $Y_x(Util) = 0.61 - 0.2 + 0.95 - 0.55 = 0.81$

4. Rank the impact of each feature.

ID	Feature Name	Impact (Yx)	Rank
1	ED Visits	1.21	1
1	Utilization Count	0.81	2
1	Age	-0.04	3

X-FIPE in code

```
1 # pip install xfipe
```

```
2 from xfipe import xfipe # import xfipe
```

```
_____x_fipe_obj = xfipe(predict_proba, model_type, fipe_feature_list, score_col_name) # xfipe object
```

```
new_obs_nox_median = xfipe_obj.fipe_score_s_c(median_mode_list, test_data, id_col_name) # Sc
```

```
_____new_obs_x_median = xfipe_obj.fipe_score_s_x(median_mode_list, test_data, id_col_name) # Sx
```

```
score_original = xfipe_obj.fipe_score_s_o(test_data, id_col_name) # So
```

```
median_score = xfipe_obj.fipe_score_s_m(median_mode_list, id_col_name) # Sm
```

```
fipe_data_all = xfipe.fipe_calc_feature_impacts(new_obs_nox_median, new_obs_x_median, score_orig
inal, median_score, id_col_name) # xfipe values
```

DATA+AI SUMMIT 2022

10

To learn more

- Interpretable Machine Learning, Molnar 2022 <u>https://christophm.github.io/interpretable-ml-book/</u>
- A Survey of Methods for Explaining Black Box Models, GUIDOTTI, 2018 <u>https://dl.acm.org/doi/10.1145/3236009</u>
- Explainable Artificial Intelligence, Arrieta 2019 <u>https://doi.org/10.1016/j.inffus.2019.12.012</u>
- awesome-machine-learning-interpretability <u>https://github.com/jphall663/awesome-machine-learning-interpretability</u>
- Pitfalls of extracting causal insights from ML models, Lundberg 2021 <u>https://tinyurl.com/notcausal</u>

Meet the team

Xingyu Liu (Max) Lead ML Engineer

- O(log(n)) DataFrame union algorithm
- X-FIPE algorithm design and implementation

Xingde Jiang (Jason) Senior ML Engineer

- X-FIPE algorithm design and implementation
- Business evaluation

Steve Brunner Director of Al

- Business evaluation
- O(log(n)) DataFrame union algorithm

Humana

Appendix

X-FIPE: Feature Impact Calculation

Shaply value for X-fipe : $S_c - S_m + S_0 - S_x$

Where:

 S_o : Predicted score without any change for all features from their original value

 S_x : Predicted score when only feature x is set to its median/mode value while all other input features are kept at their original values

 S_m : Predicted score when all features are set their median/mode value

Sc: Predicted score when all input features except x are set to their median/mode values. Feature x is kept at its original value

Compare with SHAP

sdr_	_persor -	fipe_top_5	<mark>-</mark> shap_top_5	x-fipe_top_5	-
		[{"fea":"betos_eval_pmpm_ct","sv":"-1.0"}, <	[{"fea":"betos_eval_pmpm_ct","sv":"-0.602"},	[{"fea":"betos_eval_pmpm_ct","sv":"-1.0"},	
		{"fea":"cnt_cp_webstatement_0","sv":"-0.32"},	"fea":"total_bh_mbr_resp_pmpm_cost","sv":"0.3	3455"},	
100	5369424	{"fea":"total_bh_mbr_resp_pmpm_cost","sv":"0.325"	<pre>{"fea":"cnt_cp_print_0","sv":"0.1206"},</pre>	<pre>{"fea":"rwjf_uninsured_pct","sv":"-0.22"},</pre>	
		{"fea":"rwjf_uninsured_pct","sv":"-0.22"},	{"fea":"cmsd1_men_ind","sv":"0.0953"},	{"fea":"cnt_cp_print_0","sv":"0.192"},	
		{"fea":"cnt_cp_print_0","sv":"0.192"}]	{"fea":"rwjf_uninsured_pct","sv":"-0.094"}]	{"fea":"cmsd1_men_ind","sv":"0.187"}]	

number of common feature 🛛 🔺	fipe & shap 🔺	x_fipe & shap 🛛 🔺
5	12752	16099
4	121287	132261
3	407644	417489
2	431752	421911
1	195501	185386
0	32446	28236

