
A 10X Faster Cloud-Native
Spark History Server

1

Lantao Jin
Head of Spark Engine Team, ByteDance

UIMeta:

2

About Me

I am Head of Spark Engine Team at ByteDance, focusing on SQL engine kernel and efficient
platform building. I am a contributor of Apache Spark and Apache Hadoop and I am familiar with a
variety of distributed systems. Prior to ByteDance, I worked for eBay Inc., Meituan Group, and
Alibaba Group, where I worked on data platform and data warehouse infrastructure efforts.

Past sessions：

Summit Europe 2020: Using Delta Lake to Transform a Legacy Apache Spark to Support Complex
Update/Delete SQL Operation

Summit 2019: Managing Apache Spark Workload and Automatic Optimizing

Linkedin：

https://www.linkedin.com/in/lantaojin/

3

Agenda

1. Background

2. Design

3. Implementation

4. Results

UIMeta: A 10X Faster Cloud-Native Spark History Server

Background

4

5

Spark History Server

The Spark history server (SHS) which is used to provide a web UI to display
the historic Spark information.

Problems
of Spark History Server

The Spark event log
records almost
everything. For UI display,
most events are useless.

And the event log is
stored in JSON plaintext,
which takes up a lot of
space.

The 7-days event log
within ByteDance
occupies about 3.2 PB in
HDFS.

Mass Storage

6

History Server is not a
pure cloud-native
service. In public cloud
scenario, it requires
multi-tenancy and
variety of workload.

We need a cloud-native
history server for public
cloud environment.

No Cloud-Native

History Server traverses
all event logs and load
meta information for all
files into memory, which
makes it a stateful
service. Therefore, every
time the service is
restarted, the entire path
needs to be reloaded
before it can be served.

This makes it hard to
scale-out.

Scale-up

History Server builds the
Spark UI by replaying and
parsing the event log.
Replaying a large task will
cause a significant
lantency.

After the job ends, users
may have to wait 10
minutes or even half an
hour to see the job in
History Server, which
greatly affects the user
experience.

High Lantency

7

UIMeta & Volengine & LAS

UIMeta: a new Could-Native Spark history server

Data Engine team is responsible for LakeHouse Analytics Service (LAS).

LAS is one of products in Volengine, which is a Chinese public cloud
platform.

You can try LAS via https://www.volcengine.com/product/las.

Spark is one of the engines in LAS. The UIMeta is the default Spark history
service in LAS.

Design

8

9

High Level Design

UIMeta abandons the event-log, attempts to loading SNAPSHOT file as an
alternative.

On one hand, a running Spark application dumps a snapshot file in batch.
On the other hand, the UIMeta server deserialized the snapshot file and
build the page on demand.

10

UIMeta
Architecture

11

Key Points

1. History Server only needs to care about the final state of app, not the
events that cause the state change. Therefore, we can only persist KVStore
without storing a lot of redundant event information.

2. KVStore stores all information required for UI display, and supports Kryo
serialization, which its storage is significantly smaller than JSON.

3. Storing the KVStore async as a snapshot in a new listener.

4. For each access, the new UIMeta can find the corresponding snapshot
HDFS path with the appId in URI according to a rule, and load it directly.

of design

Implementation

12

KVStore vs UIMetaStore
A UIMetaStore is a collection of all UI information.

AppStatusStore

SQLAppStatusStore

KVStore

13

 Array(
 classOf[JobDataWrapper],
 classOf[ExecutorStageSummaryWrapper],
 classOf[ApplicationInfoWrapper],
 classOf[PoolData],
 classOf[ExecutorSummaryWrapper],
 classOf[StageDataWrapper],
 classOf[AppSummary],
 classOf[RDDOperationGraphWrapper],
 classOf[TaskDataWrapper],
 classOf[ApplicationEnvironmentInfoWrapper],
 Utils.classForName(SparkPlanGraphWrapper),
 Utils.classForName(SQLExecutionUIData)
)

UIMetaStore

UIMetaFile Persistence
 of UIMetaStore

14

4-Byte Magic Number: "UI_S"

----------- Body ---------------

4_byte_length_of_class_name | class_name_str1 | 4_byte_length | serialized_of_class1_instance1

4_byte_length_of_class_name | class_name_str1 | 4_byte_length | serialized_of_class1_instance2

4_byte_length_of_class_name | class_name_str2 | 4_byte_length | serialized_of_class2_instance1

4_byte_length_of_class_name | class_name_str2 | 4_byte_length | serialized_of_class2_instance2

1

2

3

4

5

6

EventLoggingListener
vs UIMetaLoggingListener

EventLoggingListener triggers a serialized
writing every time it accepts an event.

EventLoggingListener is streamed.

EventLoggingListener

15

UIMetaLoggingListener is only triggered by
some specific events such as “StageEnd”
and “JobEnd”, and each write operation is
batched Write, the information of the
UIMetaStore in the previous stage is
completely persisted.

UIMetaLoggingListener is batched, and
periodically snapshots the UI state.

UIMetaLoggingListener

FsHistoryProvider vs UIMetaProvider

Read event log files and replay them to
generate KVStore.

List all application paths to build the app
list. All meta information should be loaded
to memory.

FsHistoryProvider

16

Read UIMetaFiles and deserialize them to
build UIMetaStore.

According to the appId from access link,
directly parses an UIMetaFile. Easy to
scale-out.

UIMetaProvider

17

Other Optimizations

• Each Stage Completion event will trigger a writing of the UIMeta file. To
eliminate the write redundancy, UIMeta maintains a map inside
UIMetaLoggingListener to record instances that have been serialized.

• TaskDataWrapper data is largest, so only the TaskDataWrapper data
whose status is Completed at the end of a stage will be persisted.

Write redundancy

18

Other Optimizations

• Supports falling back to read the event log file when UIMeta file does not
exist or an error is thrown in parsing UIMeta file.

• Supports converting event log files into UIMeta files offline.

Fallback Eventlog

19

Results

Storage Usage

20

Storage was reduced by an average of
85%。

Total volume was reduced by 92.4%.

At present, the 7-day event log in
ByteDance used 3.2 PB.

After switching to UIMeta, the space is
only 350TB.

Before & After for a certain IDC Comparing of event log/UIMeta HDFS

21

Access Latency

35% reduction on average.

84.6%/90.8%/93.7% reduction in PCT90/95/99 respectively

pct90 pct95 pct99 AVG

event log 15589ms 37022ms 104259ms 7217ms

UIMeta 2401ms 3410ms 6595ms 1108ms

Decline % 84.6% 90.8% 93.7% 84.6%

22

Access Latency

As shown in the figure below, the overall UI access latency of UIMeta is
shifted to the left compared to the event log, and the long-tail tasks are
significantly reduced.

Access Latency Distribution Graph

23

End to End Profermance

The UIMeta eliminetes traversing app paths and preloading, the duration
between application comletion and accessing in the new History Server
has been reduced from 10 minutes to several seconds.

24

Stateless and Resilient

UIMeta does not need to pre-load the event-log files directory, the loading
of snapshot file is totally on demand. It is stateless and can be scale-out.
On public Cloud, UIMeta servers are resilient according to the access traffic
via load balance.

25

Isolation on Cloud env

Finally, it’s easy to address the requirement of multi-tenant isolation by
adding corresponding tokens to the access requests in public Cloud under
current framework.

26

Conclusions

The new Spark history server UIMeta aims at displaying the Spark historic
information in a scaleable, economical, cloud-native way. The results above
show the UIMeta can highly save storage, increase the access speed and
improve the user experience.

At present, UIMeta has been the default history service of LAS. And you can
try it in https://www.volcengine.com/product/las

27

Lantao Jin
Head of Spark Engine Team, ByteDance

Thank you

