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Keeping your Data Lake optimized is HARD 
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Especially if you need to support data mutability 
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But it doesn’t have to be!
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Introduction
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● Data Platform Tech Lead @ Nexar
● Former co-Founder & CTO @ Kapai
● Focusing on scalability and data engineering
●

Ofir Kerker Itai Yaffe
● Senior Solutions Architect @ Databricks
● Prev. Principal Solutions Architect @ Imply
● Prev. Big Data Tech Lead @ Nielsen
● Dealing with Big Data challenges since 2012
● Itai Yaffe @ItaiYaffe

Ofir Kerker @ofirski_

https://www.linkedin.com/in/itaiy/
https://twitter.com/ItaiYaffe
https://twitter.com/ofirski_
https://www.linkedin.com/in/ofirski/
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What Will You Learn?

Efficiently process data in a streaming fashion,
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What Will You Learn?

Efficiently process data in a streaming fashion,

support data mutability and keep your Data Lake optimized,

by utilizing Delta Lake and Databricks



About Nexar

Nexar was founded with a 
moonshot mission of building the 
"air-traffic control" of the road

10

Nexar turns cars into vision sensors 
to build the first Digital Twin of the 
physical world

@ItaiYaffe, @ofirski_
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Nexar by the Numbers

130+
Employees in 
TLV, NYC, Tokyo

COMPANY NETWORK

430K+
Nexar-powered 
dash-cams on the road 

US market share 
in dash cams units

15% 

CUSTOMERS

Autonomous Vehicles  |  Public | 

Mapping providers  |  Fleets |

Automotive OEMs | Insurance

4T

+280%
YoY Growth

images collected 
up to today

DASH-CAM

Cloud sync  |  Live streaming  |

Emergency access  |  Parking mode 

alerts  |  Road & cabin-facing ADAS  |  

Parking spot detection

180M
Video miles/month
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Crowdsourced Vision

Imagery AI-Based 
Detections

AI-Based 
Change Detection

Fresh and recent images and videos

Road Signs, Traffic Lights, Road Work 
Zones, Potholes and Lane Markings

Detect changes: fallen signs, scale-up 
enforcement and prioritize road maintenance

1 2 3
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Privacy by Design

Using AI to remove all potential Personal 
Identifiable Information (PII) 

● Automatic blurring of license plates, faces around 
the car

● Automatic cropping of images to avoid PII 
exposure of driver dashboard 

● Doesn’t share routes, personal footage

● GDPR and CCPA compliant
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Nexar Platform High-Level Architecture

findDetections API

findRawFrames API

Insurance providers

Video stream +
Sensor data

Nexar Cloud

Time-lapse videos

Incident clips

Frames

Signals

Nexar Data Platform

Indexed frames

Road detections

Incident
log + clip

Incident A
PI

User dashboard

From edge devices to insights
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GIS Systems

Video, Images, Signals

V2V

15

Nexar Data Platform Architecture

AWS S3

Diving into the platform

MEC

Safety Messages, 
Candidate Detections

Verified Detections

Live APIs

Searching

Metadata Extraction

Localization

Enrichment

ML Inference

Smart Sampling

Coverage

Aggregation

Change Detection

Live Feed
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● During every ride, the Nexar app collects 
signals into compressed files

● These files are uploaded directly to AWS S3 
into a specific ride’s prefix

● The data uploaded build up a massive amount 
of small files

● Each signals file independently goes through a 
pipeline of transformations and enrichments

Ingesting a Stream of Files
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The Small Files Challenge

● Transforming data in small chunks is 
straightforward

● However, querying data when it 
spans millions of small files using 
any SQL engine isn’t practical: 

○ Queries can run extremely slowly

○ Cost of compute becomes excessively 
high

@ItaiYaffe, @ofirski_
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Stream Processing Challenges

● In order to keep our Data Lake optimized, we need to compact a stream of 
small files 

● Other challenges with stream processing include:

○ Continuously updating the imagery coverage across roads 

○ Aggregate all previous day’s events (from the Data Lake), taking into 
account late-arriving data 



Let’s Go Down 
Memory Lane…

19@ItaiYaffe, @ofirski_
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Stream Processing in Traditional Data Lakes
A look back to 2019

● At Spark+AI Summit 2019 Europe, I shared the journey of building 
Nielsen Marketing Cloud’s proprietary data infrastructure to mitigate 
some of the aforementioned challenges (see tinyurl.com/4s79mdpm)

https://tinyurl.com/4s79mdpm
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Stream Processing in Traditional Data Lakes
A look back to 2019

● At Spark+AI Summit 2019 Europe, I shared the journey of building 
Nielsen Marketing Cloud’s proprietary data infrastructure to mitigate 
some of the aforementioned challenges (see tinyurl.com/4s79mdpm)

● Nielsen is a data and measurement company

○ Nielsen Marketing Cloud - a unit within Nielsen

■ Anonymous device-level data is collected from various sources

■ The data (>5PB in total) is used for measurement and targeting

https://tinyurl.com/4s79mdpm
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3 Methods of Data Processing

● Stream processing into a Data Lake

A look back to 2019
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3 Methods of Data Processing

● Stream processing into a Data Lake
● Batch processing from a Data Lake
● Stream processing over a Data Lake

A look back to 2019
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Stream Processing Into a Data Lake
What does it mean?

Data Lake on Cloud Storage

Structured Streaming

Messages Files
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Stream Processing Into a Data Lake
What does it mean?

Data Lake on Cloud Storage

Structured Streaming 
(Stateless apps)

Messages Files (Raw Data)
raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27
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Stream Processing Into a Data Lake
What does it mean?

Data Lake on Cloud Storage

Structured Streaming 
(Stateless apps)

Messages
raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

Structured Streaming 
(Stateful apps)

Messages Files (Aggregated Data)
aggregated/date=2022-06-25

aggregated/date=2022-06-26

aggregated/date=2022-06-27

Files (Raw Data)
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Stream Processing Into a Data Lake

● Allows you to serve fresher data and enables more informed business 
decisions
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Stream Processing Into a Data Lake

● Allows you to serve fresher data and enables more informed business 
decisions

● The additional (stateful) consumers increase operational costs
○ By consuming write-optimized data (e.g Avro messages) from message buses
○ By putting additional burden on the source system (e.g Kafka brokers)
○ By using 24/7 Streaming job clusters
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Batch Processing From a Data Lake
What does it mean?

Data Lake on Cloud Storage

Files

…



@ItaiYaffe, @ofirski_ 31

Batch Processing From a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27
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Batch Processing From a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

Write aggregated data for 
that day

Read the previous 
day’s folder

Batch

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

aggregated/date=2022-06-25

aggregated/date=2022-06-26

aggregated/date=2022-06-27
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Batch Processing From a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud 

storage
○ By periodically launching transient Batch job clusters
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Batch Processing From a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud 

storage
○ By periodically launching transient Batch job clusters

● Hard to tell when all the raw data has arrived to the destination (=date) 
folder
○ How much time should we wait for the data to arrive? 2 hours? 6 hours? More?

■ If we don’t wait long enough - we’ll miss late-arriving data
■ If we re-process the same date folder to handle late-arriving data - we’ll need to add support 

for data mutability
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Stream Processing Over a Data Lake
What does it mean?

Data Lake on Cloud Storage

Files

…
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Stream Processing Over a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27
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Stream Processing Over a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

Write aggregated data for 
the current execution

Read all new files added 
since last execution

Streaming/Batch

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

aggregated/date=2022-06-25

aggregated/date=2022-06-26

aggregated/date=2022-06-27



@ItaiYaffe, @ofirski_ 38

Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud 

storage
○ By periodically launching transient Batch job clusters
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Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud 

storage
○ By periodically launching transient Batch job clusters

● Enables handling late-arriving data
○ By reading all new files since last execution (rather than reading a specific date 

folder)
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Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud 

storage
○ By periodically launching transient Batch job clusters

● Enables handling late-arriving data
○ By reading all new files since last execution (rather than reading a specific date 

folder)

● Lack of support for reading files in a streaming fashion
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Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud 

storage
○ By periodically launching transient Batch job clusters

● Enables handling late-arriving data
○ By reading all new files since last execution (rather than reading a specific date 

folder)

● Lack of support for reading files in a streaming fashion
● No built-in support for data mutability
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Stream processing into a 
Data Lake (for stateful apps)

Operational costs

Burden on source systems 
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a 
streaming fashion N/A

A look back to 2019
3 Methods of Data Processing
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Stream processing into a 
Data Lake (for stateful apps)

Batch processing from a 
Data Lake

Operational costs

Burden on source systems 
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a 
streaming fashion N/A N/A

A look back to 2019
3 Methods of Data Processing
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Stream processing into a 
Data Lake (for stateful apps)

Batch processing from a 
Data Lake

Stream processing over a 
Data Lake

Operational costs

Burden on source systems 
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a 
streaming fashion N/A N/A
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Stream processing into a 
Data Lake (for stateful apps)

Batch processing from a 
Data Lake

Stream processing over a 
Data Lake

Operational costs

Burden on source systems 
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a 
streaming fashion N/A N/A

A look back to 2019
3 Methods of Data Processing
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Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

+ +
Data Lake on 

Cloud Storage
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Stream Processing Over a Data Lake
DIY solution - producer side

Data Lake on Cloud Storage

Streaming 
(Stateless app)

Messages Files (Raw Data)
raw-<TOPIC>/date=2022-06-25

raw-<TOPIC>/date=2022-06-26

raw-<TOPIC>/date=2022-06-27



@ItaiYaffe, @ofirski_ 49

Stream Processing Over a Data Lake
DIY solution - producer side

Data Lake on Cloud Storage

Streaming 
(Stateless app)

Messages Files (Raw Data)
raw-<TOPIC>/date=2022-06-25

raw-<TOPIC>/date=2022-06-26

raw-<TOPIC>/date=2022-06-27

Files’ paths

Topics with files’ paths 
as messages
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Stream Processing Over a Data Lake
DIY solution - consumer side

Files’ paths
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Stream Processing Over a Data Lake
DIY solution - consumer side

Data Lake on Cloud Storage

Files’ paths

raw-<TOPIC>/date=2022-06-25

raw-<TOPIC>/date=2022-06-26

raw-<TOPIC>/date=2022-06-27

Files (Raw Data)
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Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● %80 cost reduction
○ By Moving from 24/7 Spark Streaming clusters to transient Spark Batch clusters

80% REDUCTION

Source: tinyurl.com/4s79mdpm (slide 33)

https://tinyurl.com/4s79mdpm
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Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● %80 cost reduction
○ By Moving from 24/7 Spark Streaming clusters to transient Spark Batch clusters

● No more extreme load on Kafka brokers
○ Only one consumer per Kafka topic (a stateless Spark Streaming application)
○ All other consumers read from S3 (i.e our Data Lake)
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Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● %80 cost reduction
○ By Moving from 24/7 Spark Streaming clusters to transient Spark Batch clusters

● No more extreme load on Kafka brokers
○ Only one consumer per Kafka topic (a stateless Spark Streaming application)
○ All other consumers read from S3 (i.e our Data Lake)

● Built-in handling of late-arriving events
○ Instead of reading entire folders by date (e.g date=2022-06-27), we read by file 

names, which means we don’t miss files that were written to a folder after that 
date has passed
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Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● But… It took a small team and a few months of development to build 
this proprietary solution
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Fast Forward to 2022…
What has changed?

● With the rise of tools like Delta Lake and features such as Auto Loader, 
this becomes SOOOO much easier

https://delta.io/
https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html
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Auto Loader

● Incrementally and efficiently processes new data files as they arrive in 
cloud storage like AWS S3

● Supports multiple file formats

● Provides a Structured Streaming source called cloudFiles which 
automatically processes new files as they arrive

● Enables the developer to incrementally write the data to any supported 
sink

By Databricks
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Auto Loader

● Directory listing 

○ Auto Loader identifies new files by listing the input directory in an optimized 
manner

Modes for detecting new files
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Auto Loader

● Directory listing 

○ Auto Loader identifies new files by listing the input directory in an optimized 
manner

● File notification

○ Auto Loader can automatically set up a notification service (e.g AWS SNS) and 
queue service (e.g AWS SQS) that subscribe to file events from the input directory

○ This mode is more performant and scalable for large input directories or a high 
volume of files

Modes for detecting new files
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Delta Lake

● Brings reliability to data lakes

○ ACID transactions 

○ Support for data mutability 

○ Ability to “time travel”

○ Scalable metadata handling

○ Unifies streaming and batch data processing

An open-source storage framework
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Delta Lake

● An open-source format

○ Uses versioned Parquet files to store the data

○ Also stores a transaction log to keep track of all the commits made to the table or 
blob store directory to provide ACID transactions

An open-source storage framework
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Delta Lake

● Has a large ecosystem

○ Can be integrated with Compute engines including Spark, PrestoDB, Flink, Trino, 
and Hive 

○ Provides APIs for Scala, Java, Rust, Ruby, and Python

An open-source storage framework
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Fast Forward to 2022…
What has changed?

● With the rise of tools like Delta Lake and features such as Auto Loader, 
this becomes SOOOO much easier
○ Delta Lake brings support for data mutability on top of your Data Lake
○ Auto Loader allows you to read files in a streaming fashion in a few lines of 

code
■ Behind the scenes, it actually uses a similar mechanism to what we implemented at Nielsen

https://delta.io/
https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html


Now Let’s 
“Time-Travel” 
Forward to 2022

64@ItaiYaffe, @ofirski_
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The Small Files Challenge

● In order to keep our Data Lake optimized, we need to compact a stream of 
small files 

Recap
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Introducing Nexar’s Delta Compactor

Structured Streaming

+

Auto Loader

.orc files 

s3:ObjectCreated 
Events

s3:ObjectCreated 
Messages files

Delta Compactor



Delta Compactor Code Highlights
Setup Source

67

def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

@ItaiYaffe, @ofirski_
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def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Structured Streaming Source

@ItaiYaffe, @ofirski_
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def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Uses s3:ObjectCreated Events

@ItaiYaffe, @ofirski_
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70

def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Don’t include existing files

@ItaiYaffe, @ofirski_
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def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Set source files format (ORC)

@ItaiYaffe, @ofirski_
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def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Set limits per trigger

@ItaiYaffe, @ofirski_
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def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Set SQS queue url

@ItaiYaffe, @ofirski_
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74

def setup_stream_source(self) -> DataFrame:

   return self.ctx.spark.readStream.format("cloudFiles") \

       .option("cloudFiles.useNotifications", "true") \

       .option("cloudFiles.includeExistingFiles", "false") \

       .option("cloudFiles.format", self.job_config.source_files_format) \

       .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

       .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

       .option("cloudFiles.queueUrl", self.job_config.queue_url) \

       .schema(self.get_schema()) \

       .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Specify source files schema

@ItaiYaffe, @ofirski_
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Setup Sink
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def setup_stream_sink(self, stream: DataFrame):

   write_stream = stream.writeStream.format("delta") \

       .outputMode("append") \

       .option("checkpointLocation", self.job_config.delta_table_checkpoint_path)

   return write_stream.table(self.job_config.table_name)
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@ItaiYaffe, @ofirski_
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Delta Compactor

Combining Delta Lake’s auto compaction with Databricks’ Auto 
Loader, creates a reliable, simple and cost-effective solution.

Summary



77@ItaiYaffe, @ofirski_
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Constant Coverage Index
Data Mutability at Scale

Providing a constant, 
predictable and 
consistent view of the 
roads

@ItaiYaffe, @ofirski_
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Constant Coverage
Data Mutability at Scale

● Always keep the “best” N images for 
every spatial area

● The spatial area is called HexSeg: a 
combination of ”Hexagon” and “Road 
Segment”

@ItaiYaffe, @ofirski_
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Constant Coverage
Data Mutability at Scale

● For each HexSeg we’re maintaining a 
stack of frames, limited by a 
pre-defined cap

● Once the stack is filled up it will rotate 
and frames considered as “better” will 
replace existing frames within the 
HexSeg

@ItaiYaffe, @ofirski_
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Constant Coverage - Initial Version
Scylla as Source of Truth

Batch Inference Job

Online Inference

AugmentedFrame

AugmentedFrames

Consumer

CQL

Structured Streaming

+

Auto Loader

s3:ObjectCreated 
Events

s3:ObjectCreated 
Messagesfiles

Spatial Indexer

S3 Sink / ORC

ConstantCoverage
Change

ORC files
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 Write throughput is bounded to the serving store’s capacity

 Serving store cluster’s cost is linearly dependant on storage size

 Low latency updates of the Constant Coverage index

 Straightforward and simple logic

Constant Coverage - Initial Version
Scylla as Source of Truth

82

 Difficult to debug
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Constant Coverage - Final Version
Delta as Source of Truth

Batch Inference Job

Online Inference

AugmentedFrame

Spatial Frame Index

CQL

Structured Streaming

+

Auto Loader

files

Spatial Indexer

S3 Sink / ORC

ORC files
s3:ObjectCreated 

Events
s3:ObjectCreated 

Messages

Structured Streaming

Serving Updater

Cassandra Sink

Change
Data
Feed

ConstantCoverage
Change
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 Serving store cluster’s cost is only dependant on clients demand

 Still straightforward but adds some complexity with Change Data Feed

Constant Coverage - Final Version
Delta as Source of Truth

84

 Write throughput is bounded to the serving store updater job

 Easy to debug issues
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Summary

We all have a few burns from keeping our Data Lakes optimized…



@ItaiYaffe, @ofirski_ 86

Summary

We all have a few burns from keeping our Data Lakes optimized…

So don’t reinvent the wheel -
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Summary

We all have a few burns from keeping our Data Lakes optimized…

So don’t reinvent the wheel -

Leverage existing tools and practices, e.g:
● Delta Lake

○ Read-optimized format
○ Data mutability support
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Summary

We all have a few burns from keeping our Data Lakes optimized…

So don’t reinvent the wheel -

Leverage existing tools and practices, e.g:
● Delta Lake

○ Read-optimized format
○ Data mutability support

● Stream processing over your Data Lake
○ Can reduce operational costs
○ Potentially use Auto Loader
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Want to know more?
● Women in Big Data

○ A world-wide program that aims:
■ To inspire, connect, grow and champion success of women in the Big Data & analytics field

○ 40+ chapters and 17,000+ members world-wide
○ Everyone can join (regardless of gender), so find a chapter near you - 

www.womeninbigdata.org/wibd-structure/

● Past and upcoming talks
○ Itai’s Spark & Kafka talk (Spark+AI Summit 2019 Europe) - tinyurl.com/4s79mdpm
○ Delta Lake 2.0 by Tathagata Das & Denny Lee (Tuesday, 2:50PM) - tinyurl.com/57e8nf5f

● Resources
○ Nexar’s Constant Coverage blog post - tinyurl.com/y98j4hw9
○ Delta Lake - delta.io
○ Databricks Auto Loader - tinyurl.com/3yj2srvx

http://www.womeninbigdata.org/wibd-structure/
http://tinyurl.com/4s79mdpm
https://tinyurl.com/57e8nf5f
https://tinyurl.com/y98j4hw9
https://delta.io/
https://tinyurl.com/3yj2srvx
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Itai Yaffe
Senior Solutions Architect, Databricks

Thank you
Ofir Kerker
Data Platform Tech Lead, Nexar

Ofir Kerker @ofirski_Itai Yaffe @ItaiYaffe

https://twitter.com/ofirski_
https://www.linkedin.com/in/ofirski/
https://twitter.com/ItaiYaffe
https://www.linkedin.com/in/itaiy

