
@ItaiYaffe, @ofirski_ 1

Keeping your Data Lake optimized is HARD

@ItaiYaffe, @ofirski_ 2

Especially if you need to support data mutability

@ItaiYaffe, @ofirski_ 3

But it doesn’t have to be!

Utilizing Delta Lake and Databricks
to Map 150 Million Miles of Roads
a Month

Itai Yaffe
Senior Solutions Architect, Databricks

The Road to a
Robust Data Lake

Ofir Kerker
Data Platform Tech Lead, Nexar

Utilizing Delta Lake and Databricks
to Map 150 180 Million Miles of Roads
a Month

Itai Yaffe
Senior Solutions Architect, Databricks

The Road to a
Robust Data Lake

Ofir Kerker
Data Platform Tech Lead, Nexar

@ItaiYaffe, @ofirski_

Introduction

6

● Data Platform Tech Lead @ Nexar
● Former co-Founder & CTO @ Kapai
● Focusing on scalability and data engineering
●

Ofir Kerker Itai Yaffe
● Senior Solutions Architect @ Databricks
● Prev. Principal Solutions Architect @ Imply
● Prev. Big Data Tech Lead @ Nielsen
● Dealing with Big Data challenges since 2012
● Itai Yaffe @ItaiYaffe

Ofir Kerker @ofirski_

https://www.linkedin.com/in/itaiy/
https://twitter.com/ItaiYaffe
https://twitter.com/ofirski_
https://www.linkedin.com/in/ofirski/

@ItaiYaffe, @ofirski_ 7

What Will You Learn?

Efficiently process data in a streaming fashion,

@ItaiYaffe, @ofirski_ 8

What Will You Learn?

Efficiently process data in a streaming fashion,

support data mutability and keep your Data Lake optimized,

@ItaiYaffe, @ofirski_ 9

What Will You Learn?

Efficiently process data in a streaming fashion,

support data mutability and keep your Data Lake optimized,

by utilizing Delta Lake and Databricks

About Nexar

Nexar was founded with a
moonshot mission of building the
"air-traffic control" of the road

10

Nexar turns cars into vision sensors
to build the first Digital Twin of the
physical world

@ItaiYaffe, @ofirski_

@ItaiYaffe, @ofirski_ 11

Nexar by the Numbers

130+
Employees in
TLV, NYC, Tokyo

COMPANY NETWORK

430K+
Nexar-powered
dash-cams on the road

US market share
in dash cams units

15%

CUSTOMERS

Autonomous Vehicles | Public |

Mapping providers | Fleets |

Automotive OEMs | Insurance

4T

+280%
YoY Growth

images collected
up to today

DASH-CAM

Cloud sync | Live streaming |

Emergency access | Parking mode

alerts | Road & cabin-facing ADAS |

Parking spot detection

180M
Video miles/month

@ItaiYaffe, @ofirski_ 12

Crowdsourced Vision

Imagery AI-Based
Detections

AI-Based
Change Detection

Fresh and recent images and videos

Road Signs, Traffic Lights, Road Work
Zones, Potholes and Lane Markings

Detect changes: fallen signs, scale-up
enforcement and prioritize road maintenance

1 2 3

@ItaiYaffe, @ofirski_ 13

Privacy by Design

Using AI to remove all potential Personal
Identifiable Information (PII)

● Automatic blurring of license plates, faces around
the car

● Automatic cropping of images to avoid PII
exposure of driver dashboard

● Doesn’t share routes, personal footage

● GDPR and CCPA compliant

@ItaiYaffe, @ofirski_ 14

Nexar Platform High-Level Architecture

findDetections API

findRawFrames API

Insurance providers

Video stream +
Sensor data

Nexar Cloud

Time-lapse videos

Incident clips

Frames

Signals

Nexar Data Platform

Indexed frames

Road detections

Incident
log + clip

Incident A
PI

User dashboard

From edge devices to insights

@ItaiYaffe, @ofirski_

GIS Systems

Video, Images, Signals

V2V

15

Nexar Data Platform Architecture

AWS S3

Diving into the platform

MEC

Safety Messages,
Candidate Detections

Verified Detections

Live APIs

Searching

Metadata Extraction

Localization

Enrichment

ML Inference

Smart Sampling

Coverage

Aggregation

Change Detection

Live Feed

@ItaiYaffe, @ofirski_ 16

● During every ride, the Nexar app collects
signals into compressed files

● These files are uploaded directly to AWS S3
into a specific ride’s prefix

● The data uploaded build up a massive amount
of small files

● Each signals file independently goes through a
pipeline of transformations and enrichments

Ingesting a Stream of Files

17

The Small Files Challenge

● Transforming data in small chunks is
straightforward

● However, querying data when it
spans millions of small files using
any SQL engine isn’t practical:

○ Queries can run extremely slowly

○ Cost of compute becomes excessively
high

@ItaiYaffe, @ofirski_

@ItaiYaffe, @ofirski_ 18

Stream Processing Challenges

● In order to keep our Data Lake optimized, we need to compact a stream of
small files

● Other challenges with stream processing include:

○ Continuously updating the imagery coverage across roads

○ Aggregate all previous day’s events (from the Data Lake), taking into
account late-arriving data

Let’s Go Down
Memory Lane…

19@ItaiYaffe, @ofirski_

@ItaiYaffe, @ofirski_ 20

Stream Processing in Traditional Data Lakes
A look back to 2019

● At Spark+AI Summit 2019 Europe, I shared the journey of building
Nielsen Marketing Cloud’s proprietary data infrastructure to mitigate
some of the aforementioned challenges (see tinyurl.com/4s79mdpm)

https://tinyurl.com/4s79mdpm

@ItaiYaffe, @ofirski_ 21

Stream Processing in Traditional Data Lakes
A look back to 2019

● At Spark+AI Summit 2019 Europe, I shared the journey of building
Nielsen Marketing Cloud’s proprietary data infrastructure to mitigate
some of the aforementioned challenges (see tinyurl.com/4s79mdpm)

● Nielsen is a data and measurement company

○ Nielsen Marketing Cloud - a unit within Nielsen

■ Anonymous device-level data is collected from various sources

■ The data (>5PB in total) is used for measurement and targeting

https://tinyurl.com/4s79mdpm

@ItaiYaffe, @ofirski_ 22

3 Methods of Data Processing

● Stream processing into a Data Lake

A look back to 2019

@ItaiYaffe, @ofirski_ 23

3 Methods of Data Processing

● Stream processing into a Data Lake
● Batch processing from a Data Lake

A look back to 2019

@ItaiYaffe, @ofirski_ 24

3 Methods of Data Processing

● Stream processing into a Data Lake
● Batch processing from a Data Lake
● Stream processing over a Data Lake

A look back to 2019

@ItaiYaffe, @ofirski_ 25

Stream Processing Into a Data Lake
What does it mean?

Data Lake on Cloud Storage

Structured Streaming

Messages Files

@ItaiYaffe, @ofirski_ 26

Stream Processing Into a Data Lake
What does it mean?

Data Lake on Cloud Storage

Structured Streaming
(Stateless apps)

Messages Files (Raw Data)
raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

@ItaiYaffe, @ofirski_ 27

Stream Processing Into a Data Lake
What does it mean?

Data Lake on Cloud Storage

Structured Streaming
(Stateless apps)

Messages
raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

Structured Streaming
(Stateful apps)

Messages Files (Aggregated Data)
aggregated/date=2022-06-25

aggregated/date=2022-06-26

aggregated/date=2022-06-27

Files (Raw Data)

@ItaiYaffe, @ofirski_ 28

Stream Processing Into a Data Lake

● Allows you to serve fresher data and enables more informed business
decisions

@ItaiYaffe, @ofirski_ 29

Stream Processing Into a Data Lake

● Allows you to serve fresher data and enables more informed business
decisions

● The additional (stateful) consumers increase operational costs
○ By consuming write-optimized data (e.g Avro messages) from message buses
○ By putting additional burden on the source system (e.g Kafka brokers)
○ By using 24/7 Streaming job clusters

@ItaiYaffe, @ofirski_ 30

Batch Processing From a Data Lake
What does it mean?

Data Lake on Cloud Storage

Files

…

@ItaiYaffe, @ofirski_ 31

Batch Processing From a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

@ItaiYaffe, @ofirski_ 32

Batch Processing From a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

Write aggregated data for
that day

Read the previous
day’s folder

Batch

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

aggregated/date=2022-06-25

aggregated/date=2022-06-26

aggregated/date=2022-06-27

@ItaiYaffe, @ofirski_ 33

Batch Processing From a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud

storage
○ By periodically launching transient Batch job clusters

@ItaiYaffe, @ofirski_ 34

Batch Processing From a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud

storage
○ By periodically launching transient Batch job clusters

● Hard to tell when all the raw data has arrived to the destination (=date)
folder
○ How much time should we wait for the data to arrive? 2 hours? 6 hours? More?

■ If we don’t wait long enough - we’ll miss late-arriving data
■ If we re-process the same date folder to handle late-arriving data - we’ll need to add support

for data mutability

@ItaiYaffe, @ofirski_ 35

Stream Processing Over a Data Lake
What does it mean?

Data Lake on Cloud Storage

Files

…

@ItaiYaffe, @ofirski_ 36

Stream Processing Over a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

@ItaiYaffe, @ofirski_ 37

Stream Processing Over a Data Lake
What does it mean?

Files

…

Data Lake on Cloud Storage

Write aggregated data for
the current execution

Read all new files added
since last execution

Streaming/Batch

raw/date=2022-06-25

raw/date=2022-06-26

raw/date=2022-06-27

aggregated/date=2022-06-25

aggregated/date=2022-06-26

aggregated/date=2022-06-27

@ItaiYaffe, @ofirski_ 38

Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud

storage
○ By periodically launching transient Batch job clusters

@ItaiYaffe, @ofirski_ 39

Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud

storage
○ By periodically launching transient Batch job clusters

● Enables handling late-arriving data
○ By reading all new files since last execution (rather than reading a specific date

folder)

@ItaiYaffe, @ofirski_ 40

Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud

storage
○ By periodically launching transient Batch job clusters

● Enables handling late-arriving data
○ By reading all new files since last execution (rather than reading a specific date

folder)

● Lack of support for reading files in a streaming fashion

@ItaiYaffe, @ofirski_ 41

Stream Processing Over a Data Lake

● It can reduce operational costs
○ By consuming read-optimized data (e.g Parquet files) from infinite-scale cloud

storage
○ By periodically launching transient Batch job clusters

● Enables handling late-arriving data
○ By reading all new files since last execution (rather than reading a specific date

folder)

● Lack of support for reading files in a streaming fashion
● No built-in support for data mutability

@ItaiYaffe, @ofirski_ 42

Stream processing into a
Data Lake (for stateful apps)

Operational costs

Burden on source systems
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a
streaming fashion N/A

A look back to 2019
3 Methods of Data Processing

@ItaiYaffe, @ofirski_ 43

Stream processing into a
Data Lake (for stateful apps)

Batch processing from a
Data Lake

Operational costs

Burden on source systems
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a
streaming fashion N/A N/A

A look back to 2019
3 Methods of Data Processing

@ItaiYaffe, @ofirski_ 44

Stream processing into a
Data Lake (for stateful apps)

Batch processing from a
Data Lake

Stream processing over a
Data Lake

Operational costs

Burden on source systems
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a
streaming fashion N/A N/A

A look back to 2019
3 Methods of Data Processing

@ItaiYaffe, @ofirski_ 45

Stream processing into a
Data Lake (for stateful apps)

Batch processing from a
Data Lake

Stream processing over a
Data Lake

Operational costs

Burden on source systems
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a
streaming fashion N/A N/A

A look back to 2019
3 Methods of Data Processing

@ItaiYaffe, @ofirski_ 46

Stream processing into a
Data Lake (for stateful apps)

Batch processing from a
Data Lake

Stream processing over a
Data Lake

Operational costs

Burden on source systems
(e.g Kafka brokers)

Handling late-arriving data

Support for data mutability

Support for reading files in a
streaming fashion N/A N/A

A look back to 2019
3 Methods of Data Processing

@ItaiYaffe, @ofirski_ 47

Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

+ +
Data Lake on

Cloud Storage

@ItaiYaffe, @ofirski_ 48

Stream Processing Over a Data Lake
DIY solution - producer side

Data Lake on Cloud Storage

Streaming
(Stateless app)

Messages Files (Raw Data)
raw-<TOPIC>/date=2022-06-25

raw-<TOPIC>/date=2022-06-26

raw-<TOPIC>/date=2022-06-27

@ItaiYaffe, @ofirski_ 49

Stream Processing Over a Data Lake
DIY solution - producer side

Data Lake on Cloud Storage

Streaming
(Stateless app)

Messages Files (Raw Data)
raw-<TOPIC>/date=2022-06-25

raw-<TOPIC>/date=2022-06-26

raw-<TOPIC>/date=2022-06-27

Files’ paths

Topics with files’ paths
as messages

@ItaiYaffe, @ofirski_ 50

Stream Processing Over a Data Lake
DIY solution - consumer side

Files’ paths

@ItaiYaffe, @ofirski_ 51

Stream Processing Over a Data Lake
DIY solution - consumer side

Data Lake on Cloud Storage

Files’ paths

raw-<TOPIC>/date=2022-06-25

raw-<TOPIC>/date=2022-06-26

raw-<TOPIC>/date=2022-06-27

Files (Raw Data)

@ItaiYaffe, @ofirski_ 52

Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● %80 cost reduction
○ By Moving from 24/7 Spark Streaming clusters to transient Spark Batch clusters

80% REDUCTION

Source: tinyurl.com/4s79mdpm (slide 33)

https://tinyurl.com/4s79mdpm

@ItaiYaffe, @ofirski_ 53

Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● %80 cost reduction
○ By Moving from 24/7 Spark Streaming clusters to transient Spark Batch clusters

● No more extreme load on Kafka brokers
○ Only one consumer per Kafka topic (a stateless Spark Streaming application)
○ All other consumers read from S3 (i.e our Data Lake)

@ItaiYaffe, @ofirski_ 54

Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● %80 cost reduction
○ By Moving from 24/7 Spark Streaming clusters to transient Spark Batch clusters

● No more extreme load on Kafka brokers
○ Only one consumer per Kafka topic (a stateless Spark Streaming application)
○ All other consumers read from S3 (i.e our Data Lake)

● Built-in handling of late-arriving events
○ Instead of reading entire folders by date (e.g date=2022-06-27), we read by file

names, which means we don’t miss files that were written to a folder after that
date has passed

@ItaiYaffe, @ofirski_ 55

Stream Processing Over a Data Lake
DIY solution - Nielsen Marketing Cloud example

● But… It took a small team and a few months of development to build
this proprietary solution

@ItaiYaffe, @ofirski_ 56

Fast Forward to 2022…
What has changed?

● With the rise of tools like Delta Lake and features such as Auto Loader,
this becomes SOOOO much easier

https://delta.io/
https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html

@ItaiYaffe, @ofirski_ 57

Auto Loader

● Incrementally and efficiently processes new data files as they arrive in
cloud storage like AWS S3

● Supports multiple file formats

● Provides a Structured Streaming source called cloudFiles which
automatically processes new files as they arrive

● Enables the developer to incrementally write the data to any supported
sink

By Databricks

@ItaiYaffe, @ofirski_ 58

Auto Loader

● Directory listing

○ Auto Loader identifies new files by listing the input directory in an optimized
manner

Modes for detecting new files

@ItaiYaffe, @ofirski_ 59

Auto Loader

● Directory listing

○ Auto Loader identifies new files by listing the input directory in an optimized
manner

● File notification

○ Auto Loader can automatically set up a notification service (e.g AWS SNS) and
queue service (e.g AWS SQS) that subscribe to file events from the input directory

○ This mode is more performant and scalable for large input directories or a high
volume of files

Modes for detecting new files

@ItaiYaffe, @ofirski_ 60

Delta Lake

● Brings reliability to data lakes

○ ACID transactions

○ Support for data mutability

○ Ability to “time travel”

○ Scalable metadata handling

○ Unifies streaming and batch data processing

An open-source storage framework

@ItaiYaffe, @ofirski_ 61

Delta Lake

● An open-source format

○ Uses versioned Parquet files to store the data

○ Also stores a transaction log to keep track of all the commits made to the table or
blob store directory to provide ACID transactions

An open-source storage framework

@ItaiYaffe, @ofirski_ 62

Delta Lake

● Has a large ecosystem

○ Can be integrated with Compute engines including Spark, PrestoDB, Flink, Trino,
and Hive

○ Provides APIs for Scala, Java, Rust, Ruby, and Python

An open-source storage framework

@ItaiYaffe, @ofirski_ 63

Fast Forward to 2022…
What has changed?

● With the rise of tools like Delta Lake and features such as Auto Loader,
this becomes SOOOO much easier
○ Delta Lake brings support for data mutability on top of your Data Lake
○ Auto Loader allows you to read files in a streaming fashion in a few lines of

code
■ Behind the scenes, it actually uses a similar mechanism to what we implemented at Nielsen

https://delta.io/
https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html

Now Let’s
“Time-Travel”
Forward to 2022

64@ItaiYaffe, @ofirski_

@ItaiYaffe, @ofirski_ 65

The Small Files Challenge

● In order to keep our Data Lake optimized, we need to compact a stream of
small files

Recap

@ItaiYaffe, @ofirski_ 66

Introducing Nexar’s Delta Compactor

Structured Streaming

+

Auto Loader

.orc files

s3:ObjectCreated
Events

s3:ObjectCreated
Messages files

Delta Compactor

Delta Compactor Code Highlights
Setup Source

67

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Source

68

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Structured Streaming Source

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Source

69

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Uses s3:ObjectCreated Events

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Source

70

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Don’t include existing files

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Source

71

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Set source files format (ORC)

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Source

72

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Set limits per trigger

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Source

73

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Set SQS queue url

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Source

74

def setup_stream_source(self) -> DataFrame:

 return self.ctx.spark.readStream.format("cloudFiles") \

 .option("cloudFiles.useNotifications", "true") \

 .option("cloudFiles.includeExistingFiles", "false") \

 .option("cloudFiles.format", self.job_config.source_files_format) \

 .option("cloudFiles.maxFilesPerTrigger", self.job_config.max_files_per_trigger) \

 .option("cloudFiles.maxBytesPerTrigger", self.job_config.max_bytes_per_trigger) \

 .option("cloudFiles.queueUrl", self.job_config.queue_url) \

 .schema(self.get_schema()) \

 .load(self.job_config.source_files_path)

1

2

3

4

5

6

7

8

9

10

11

12

Specify source files schema

@ItaiYaffe, @ofirski_

Delta Compactor Code Highlights
Setup Sink

75

def setup_stream_sink(self, stream: DataFrame):

 write_stream = stream.writeStream.format("delta") \

 .outputMode("append") \

 .option("checkpointLocation", self.job_config.delta_table_checkpoint_path)

 return write_stream.table(self.job_config.table_name)

1

2

3

4

5

6

7

8

9

10

11

12

@ItaiYaffe, @ofirski_

@ItaiYaffe, @ofirski_ 76

Delta Compactor

Combining Delta Lake’s auto compaction with Databricks’ Auto
Loader, creates a reliable, simple and cost-effective solution.

Summary

77@ItaiYaffe, @ofirski_

78

Constant Coverage Index
Data Mutability at Scale

Providing a constant,
predictable and
consistent view of the
roads

@ItaiYaffe, @ofirski_

79

Constant Coverage
Data Mutability at Scale

● Always keep the “best” N images for
every spatial area

● The spatial area is called HexSeg: a
combination of ”Hexagon” and “Road
Segment”

@ItaiYaffe, @ofirski_

80

Constant Coverage
Data Mutability at Scale

● For each HexSeg we’re maintaining a
stack of frames, limited by a
pre-defined cap

● Once the stack is filled up it will rotate
and frames considered as “better” will
replace existing frames within the
HexSeg

@ItaiYaffe, @ofirski_

@ItaiYaffe, @ofirski_ 81

Constant Coverage - Initial Version
Scylla as Source of Truth

Batch Inference Job

Online Inference

AugmentedFrame

AugmentedFrames

Consumer

CQL

Structured Streaming

+

Auto Loader

s3:ObjectCreated
Events

s3:ObjectCreated
Messagesfiles

Spatial Indexer

S3 Sink / ORC

ConstantCoverage
Change

ORC files

@ItaiYaffe, @ofirski_

 Write throughput is bounded to the serving store’s capacity

 Serving store cluster’s cost is linearly dependant on storage size

 Low latency updates of the Constant Coverage index

 Straightforward and simple logic

Constant Coverage - Initial Version
Scylla as Source of Truth

82

 Difficult to debug

@ItaiYaffe, @ofirski_ 83

Constant Coverage - Final Version
Delta as Source of Truth

Batch Inference Job

Online Inference

AugmentedFrame

Spatial Frame Index

CQL

Structured Streaming

+

Auto Loader

files

Spatial Indexer

S3 Sink / ORC

ORC files
s3:ObjectCreated

Events
s3:ObjectCreated

Messages

Structured Streaming

Serving Updater

Cassandra Sink

Change
Data
Feed

ConstantCoverage
Change

@ItaiYaffe, @ofirski_

 Serving store cluster’s cost is only dependant on clients demand

 Still straightforward but adds some complexity with Change Data Feed

Constant Coverage - Final Version
Delta as Source of Truth

84

 Write throughput is bounded to the serving store updater job

 Easy to debug issues

@ItaiYaffe, @ofirski_ 85

Summary

We all have a few burns from keeping our Data Lakes optimized…

@ItaiYaffe, @ofirski_ 86

Summary

We all have a few burns from keeping our Data Lakes optimized…

So don’t reinvent the wheel -

@ItaiYaffe, @ofirski_ 87

Summary

We all have a few burns from keeping our Data Lakes optimized…

So don’t reinvent the wheel -

Leverage existing tools and practices

@ItaiYaffe, @ofirski_ 88

Summary

We all have a few burns from keeping our Data Lakes optimized…

So don’t reinvent the wheel -

Leverage existing tools and practices, e.g:
● Delta Lake

○ Read-optimized format
○ Data mutability support

@ItaiYaffe, @ofirski_ 89

Summary

We all have a few burns from keeping our Data Lakes optimized…

So don’t reinvent the wheel -

Leverage existing tools and practices, e.g:
● Delta Lake

○ Read-optimized format
○ Data mutability support

● Stream processing over your Data Lake
○ Can reduce operational costs
○ Potentially use Auto Loader

@ItaiYaffe, @ofirski_ 90

Want to know more?
● Women in Big Data

○ A world-wide program that aims:
■ To inspire, connect, grow and champion success of women in the Big Data & analytics field

○ 40+ chapters and 17,000+ members world-wide
○ Everyone can join (regardless of gender), so find a chapter near you -

www.womeninbigdata.org/wibd-structure/

● Past and upcoming talks
○ Itai’s Spark & Kafka talk (Spark+AI Summit 2019 Europe) - tinyurl.com/4s79mdpm
○ Delta Lake 2.0 by Tathagata Das & Denny Lee (Tuesday, 2:50PM) - tinyurl.com/57e8nf5f

● Resources
○ Nexar’s Constant Coverage blog post - tinyurl.com/y98j4hw9
○ Delta Lake - delta.io
○ Databricks Auto Loader - tinyurl.com/3yj2srvx

http://www.womeninbigdata.org/wibd-structure/
http://tinyurl.com/4s79mdpm
https://tinyurl.com/57e8nf5f
https://tinyurl.com/y98j4hw9
https://delta.io/
https://tinyurl.com/3yj2srvx

91

Itai Yaffe
Senior Solutions Architect, Databricks

Thank you
Ofir Kerker
Data Platform Tech Lead, Nexar

Ofir Kerker @ofirski_Itai Yaffe @ItaiYaffe

https://twitter.com/ofirski_
https://www.linkedin.com/in/ofirski/
https://twitter.com/ItaiYaffe
https://www.linkedin.com/in/itaiy

