
Requirements for an ML
platform

1

Conor Murphy & Mary Grace Moesta
Databricks

Survey of Production
ML Tech Stacks

2

Your Tenacious Duo
Conor Murphy

Lead Data Scientist + Manager @ Databricks

5+ years in distributed ML and production systems

Mary Grace Moesta

Data Scientist @ Databricks

3+ years in distributed ML and production systems

3

4

The Problem
Standardize tech stacks around best practices

- ML platform technology stacks have high build costs
- There are many tools at different levels of maturity and maintenance
- Few end-to-end standards

The Solution

- Standardize tech stack around best practices
- Leverage industry talent by using the most current technologies
- Better enable data teams throughout the stack

Agenda
What to expect

- Introduction
- Organizing data teams
- Features of ML platforms
- Overview of ML tech stacks

- Language choices
- Collaboration
- Python libraries
- CI / CD
- ML workflows
- Deployment

5

6

Organizing ML Teams

7

What Doesn’t Work

1. Data science is managed under IT
2. Data scientists manage production models…and then can’t develop new

models
3. An “MLE” team is created but struggles with handoffs
4. Data pipelining teams struggle to update pipelines using the data

warehousing playbook
5. Local development doesn’t translate to production systems

8

Where to put the Data and ML Engineer(s)

- Embedded approach: embedded MLE on each team (or embedded DS
on various product teams)

- Centralized MLE approach: separate MLE team that refactors DS code
- Centralized DE approach: monolithic repo for data engineering, looser

standards on DS teams

Solution: hand-off checklists with clearly enforced standards

• Modalities
• Batch
• Real time
• Streaming
• Mobile

• Monitoring
• Drift
• Logging
• Alerting

• A/B Testing

Deployment

• CI/CD
• Orchestration
• Testing
• Retraining

Schedules

ML Workflow

Features of an ML Platform
Defining core components

• Language
• Collaboration

• Source control
• Notebooks
• IDE
• BI Tools

• Libraries
• Cloud
• ETL Processes

Core Tech Stack

9

• Feature store
• Experiment

tracking
• Model registry
• Governance

• Reproducibility
• Auditing

• Administration
• Cost
• Users

• Security

Data + Modeling

10

An Opinionated Approach

- Python (production, maturity, ecosystem)
- Open source
- Focus on traction and unified analytics, not an exhaustive list of newer

players

MLflow Components

▪ APIs: CLI, Python, R, Java, REST

Tracking
Record and
query
experiments:
code, data,
config, results

Projects
Packaging format
for reproducible
runs on any
platform

Models
General model
format that
supports diverse
deployment
tools

Model Registry
Centralized and
collaborative
model lifecycle
management

The Full ML Lifecycle

13

ML Workflow
Tools to support end to end ML workflows

Open Source Adoption Production Tools Strengths Limitation Downloads

MLflow Yes High Yes Compatibility,
multi-cloud

High overhead
for OS

management
~`10.1M

Weights and
Biases

Limited
functionality Medium Yes

Visualization and
hyperparameter

tuning

Limited feature
set open
sourced

~ 2.8M

Neptune Limited
functionality Medium Yes Metadata

storage
Limited feature

set for OSS ~ 567K

Tensorboard Yes Medium Limited DL training
visualization

Limited model
registry ~14.4M

Azure ML No Medium Yes Azure
ecosystem

Proprietary,
cloud specific

Sagemaker No Medium Yes AWS ecosystem Proprietary,
cloud specific

Vertex Ai No Low Yes GCP ecosystem Proprietary,
cloud specific

14

Language Choice

Open Source Adoption Production Tools Industry Strengths Limitation

Python Yes High Yes General Spark Limited Statistics,
no type safety

R Yes Medium Medium Academia + Biotech Statistics Limited Spark,
production, OOP

SQL Mixed Medium Yes General Well Known No ML

Scala Yes Medium Yes Engineering focus Data Engineering Poor ML

Excel No Medium No General Interactive Production +
automation

Matlab No Low No Academic +
engineering Academic standard Limited production

SAS No Low No Academic +
financial Services

Academic +
pipelining

Expensive,
proprietary

SPSS No Low No Academic Academic standard UI-based, Limited
production

15

Collaboration

16

17

Python Libraries
Python frameworks for ML

Open Source Distributed PyPi Downloads
(monthly) Strengths Limitation

sklearn Yes No ~ 32.8 million
Single node industry

standard
Limited by data size

XGBoost Yes Yes ~ 7.7 million
Accuracy, speed,

distributed, tunable
“Boosters” can be

clunky

LightGBM Yes Yes ~ 7.2 million
Accuracy, speed,

GOSS
Hard to

troubleshoot

SparkML Yes Yes N/A Good for large data
Only a subset of

algorithms

Tensorflow Yes Partially ~ 14.2 million
Deep learning +

production
Distributed can be

challenging

Pytorch Yes Partially ~ 7.9 million
Deep learning +

publications
Poor production

tools

Horovod Yes Yes ~ 54K
Distribution with

Spark
Poor market
penetration

Ray Yes Yes ~ 1 million
Generalized
distribution

Not a step function
improvement

Petastorm Yes Yes ~92K
Data format for
distributed DL

Can be a strange
API

18

CI / CD
Frameworks for orchestration, testing, alerting, and monitoring

Open Source Databricks AWS Azure Third Party

Orchestration Airflow, Jenkins,
Terraform

Databricks
Workflows, Jobs

CodePipeline,
Codebuild,

CodeDeploy

DevOps, Data
Factory

Git Hooks / Web
Hooks MLflow webhooks CodeCommit DevOps Github Actions,

Gitlab, Travis CI

Testing pytest Developer Tools Azure Test Plans Sonar

Monitoring Open Telemetry,
OpenLineage Log Analytics Data Dog, Splunk

Alerting Jobs Cloudwatch Monitor, Teams
integrations

PagerDuty, Slack
integrations

Artifact
Management

Maven, PyPi,
Artifactory,
TensorHub,

CodeArtifact Azure Artifacts Nexus

Environment
Management

Conda, Docker,
Kubernetes, MLflow projects Elastic Container

Registry Container Registry Docker Hub

https://databricks.com/blog/2022/05/10/introducing-databricks-workflows.html
https://databricks.com/blog/2022/05/10/introducing-databricks-workflows.html

19

Deployment
Toolkit for real time deployment

• For real time deployment there are many options, the most popular
being

• Kserve
• Cloud-based, real time serving

• Databricks Model Serving
• AWS Sagemaker
• Azure Kubernetes Service
• Google Vertex.ai

20

Trends

Continuation of OSS, cloud, data, AI

Multi-cloud (k8, Databricks)

AutoML

CI/CD

21

Wrapping up

- Think critically about team member dedicated to production ML
- Choose “unified” tech stacks over single tools
- MLflow can manage many features of an ML stack–and has some exciting

announcements to come!

Abstract

Production machine learning demands stitching together many tools ranging from open source
standards to cloud-specific and third party solutions. This session surveys the current ML
deployment technology landscape to contextualize which tools solve for which features of
production ML systems such as CI/CD, REST endpoints, and monitoring. It'll help answer the
questions: what tools are out there? Where do I start with the MLops tech stack for my
application? What are the pros and cons of open source versus managed solutions? This talk
takes a features-driven approach to tool selection for MLops stacks to provide best practices
in the most rapidly evolving field of data science.

22

CI/CD and Other Deployment Considerations
Packaging up a subset of surveyed tools for deployment

23

Code &
Libraries

Data and Artifact
Management

Orchestration Deployment

Requirements

Tool Selection

Let’s Look at an Example: Core Tech Stack
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting

the training code to a production environment, retraining the model in production environment, deploying as a
REST endpoint, and daily monitoring of model performance

24

Core Tech
Stack

Because we need an OS
deep learning library
with transfer learning

● Python and
tensoflow for
pre-processing,
data
augmentation,
and modeling

● Local IDE for easy
sharing of code
across the team

Let’s Look at an Example: Core Tech Stack
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting

the training code to a production environment, retraining the model in production environment, deploying as a
REST endpoint, and daily monitoring of model performance

25

Language
Collabo
ration

Libraries Cloud Data Storage

Let’s Look at an Example: Data
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting

the training code to a production environment, retraining the model in production environment, deploying as a
REST endpoint, and daily monitoring of model performance

26

Data

Because we need an OS
tools to consistently
manage artifacts (in this
case the code) across
dev and prod
environments

● MLflow to
manage the
lifecycle of the
code and model
through dev and
prod

● Cheap cloud
storage with
Delta to manage
feature
engineered tables

Let’s Look at an Example: ML Workflow
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting

the training code to a production environment, retraining the model in production environment, deploying as a
REST endpoint, and daily monitoring of model performance

27

ML Workflow

Because we need an OS
tools to manage our
code, automatically
trigged based on
actions, and

● MLflow webhooks
to automatically
trigger code based
on model changes

● Jenkins to
managing
automation across
the promotion from
development to
production

Let’s Look at an Example: Deployment
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting

the training code to a production environment, retraining the model in production environment, deploying as a
REST endpoint, and daily monitoring of model performance

28

Deployment

Because we need an real
time serving, A/B testing
for promotion of new
models, and monitoring
for feature drift and label
drift

● Selden for
serving in real
time and A/B
testing

● Writing our own
drift tests using
python and
managing the
notifications
through Slack
integrations

29

Resources

AI Landscape

https://ai-infrastructure.org/wp-content/uploads/2022/05/AIIA-Landscape-May-2022.pdf

