
Requirements for an ML 
platform

1

Conor Murphy & Mary Grace Moesta
Databricks

Survey of Production 
ML Tech Stacks



2

Your Tenacious Duo
Conor Murphy

Lead Data Scientist + Manager @ Databricks

5+ years in distributed ML and production systems

Mary Grace Moesta

Data Scientist @ Databricks

3+ years in distributed ML and production systems



3



4

The Problem
Standardize tech stacks around best practices

- ML platform technology stacks have high build costs 
- There are many tools at different levels of maturity and maintenance
- Few end-to-end standards

The Solution

- Standardize tech stack around best practices
- Leverage industry talent by using the most current technologies
- Better enable data teams throughout the stack



Agenda
What to expect

- Introduction
- Organizing data teams
- Features of ML platforms
- Overview of ML tech stacks 

- Language choices 
- Collaboration 
- Python libraries 
- CI / CD 
- ML workflows 
- Deployment 
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Organizing ML Teams
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What Doesn’t Work

1. Data science is managed under IT
2. Data scientists manage production models…and then can’t develop new 

models
3. An “MLE” team is created but struggles with handoffs
4. Data pipelining teams struggle to update pipelines using the data 

warehousing playbook
5. Local development doesn’t translate to production systems
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Where to put the Data and ML Engineer(s)

- Embedded approach: embedded MLE on each team (or embedded DS 
on various product teams)

- Centralized MLE approach: separate MLE team that refactors DS code
- Centralized DE approach: monolithic repo for data engineering, looser 

standards on DS teams

Solution: hand-off checklists with clearly enforced standards



• Modalities
• Batch
• Real time
• Streaming
• Mobile

• Monitoring
• Drift
• Logging
• Alerting 

• A/B Testing

Deployment

• CI/CD
• Orchestration
• Testing
• Retraining 

Schedules

ML Workflow

Features of an ML Platform 
Defining core components 

• Language
• Collaboration

• Source control
• Notebooks
• IDE
• BI Tools

• Libraries
• Cloud
• ETL Processes

Core Tech Stack
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• Feature store
• Experiment 

tracking
• Model registry
• Governance

• Reproducibility
• Auditing

• Administration
• Cost 
• Users

• Security

Data + Modeling
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An Opinionated Approach

- Python (production, maturity, ecosystem)
- Open source
- Focus on traction and unified analytics, not an exhaustive list of newer 

players



MLflow Components

▪ APIs: CLI, Python, R, Java, REST

Tracking
Record and 
query
experiments: 
code, data, 
config, results

Projects
Packaging format
for reproducible 
runs on any 
platform

Models
General model 
format that 
supports diverse
deployment 
tools

Model Registry
Centralized and 
collaborative 
model lifecycle 
management



The Full ML Lifecycle
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ML Workflow 
Tools to support end to end ML workflows 

Open Source Adoption Production Tools Strengths Limitation Downloads

MLflow Yes High Yes Compatibility, 
multi-cloud

High overhead 
for OS 

management
~`10.1M

Weights and 
Biases

Limited 
functionality Medium Yes

Visualization and 
hyperparameter 

tuning

Limited feature 
set open 
sourced

~ 2.8M

Neptune Limited 
functionality Medium Yes Metadata 

storage
Limited feature 

set for OSS ~ 567K

Tensorboard Yes Medium Limited DL training 
visualization

Limited model 
registry ~14.4M

Azure ML No Medium Yes Azure 
ecosystem

Proprietary, 
cloud specific

Sagemaker No Medium Yes AWS ecosystem Proprietary, 
cloud specific

Vertex Ai No Low Yes GCP ecosystem Proprietary, 
cloud specific
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Language Choice

Open Source Adoption Production Tools Industry Strengths Limitation

Python Yes High Yes General Spark Limited Statistics, 
no type safety

R Yes Medium Medium Academia + Biotech Statistics Limited Spark, 
production, OOP

SQL Mixed Medium Yes General Well Known No ML

Scala Yes Medium Yes Engineering focus Data Engineering Poor ML

Excel No Medium No General Interactive Production + 
automation

Matlab No Low No Academic + 
engineering Academic standard Limited production

SAS No Low No Academic + 
financial Services

Academic + 
pipelining

Expensive, 
proprietary

SPSS No Low No Academic Academic standard UI-based, Limited 
production
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Collaboration
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Python Libraries
Python frameworks for ML

Open Source Distributed PyPi Downloads 
(monthly) Strengths Limitation

sklearn Yes No ~ 32.8 million 
Single node industry 

standard
Limited by data size 

XGBoost Yes Yes ~ 7.7 million
Accuracy, speed, 

distributed, tunable
“Boosters” can be 

clunky

LightGBM Yes Yes ~ 7.2 million
Accuracy, speed, 

GOSS
Hard to 

troubleshoot

SparkML Yes Yes N/A Good for large data
Only a subset of 

algorithms

Tensorflow Yes Partially ~ 14.2 million
Deep learning + 

production
Distributed can be 

challenging

Pytorch Yes Partially ~ 7.9 million
Deep learning + 

publications
Poor production 

tools

Horovod Yes Yes ~ 54K
Distribution with 

Spark
Poor market 
penetration

Ray Yes Yes ~ 1 million
Generalized 
distribution

Not a step function 
improvement

Petastorm Yes Yes ~92K
Data format for 
distributed DL

Can be a strange 
API
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CI / CD
Frameworks for orchestration, testing, alerting, and monitoring

Open Source Databricks AWS Azure Third Party

Orchestration Airflow, Jenkins, 
Terraform

Databricks 
Workflows, Jobs

CodePipeline, 
Codebuild, 

CodeDeploy

DevOps, Data 
Factory

Git Hooks / Web 
Hooks MLflow webhooks CodeCommit DevOps Github Actions, 

Gitlab, Travis CI

Testing pytest Developer Tools Azure Test Plans Sonar

Monitoring Open Telemetry, 
OpenLineage Log Analytics Data Dog, Splunk

Alerting Jobs Cloudwatch Monitor, Teams 
integrations

PagerDuty, Slack 
integrations

Artifact 
Management

Maven, PyPi, 
Artifactory, 
TensorHub,

CodeArtifact Azure Artifacts Nexus

Environment 
Management

Conda, Docker, 
Kubernetes, MLflow projects Elastic Container 

Registry Container Registry Docker Hub

https://databricks.com/blog/2022/05/10/introducing-databricks-workflows.html
https://databricks.com/blog/2022/05/10/introducing-databricks-workflows.html
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Deployment
Toolkit for real time deployment

• For real time deployment there are many options, the most popular 
being 

• Kserve 
• Cloud-based, real time serving

• Databricks Model Serving
• AWS Sagemaker
• Azure Kubernetes Service
• Google Vertex.ai 
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Trends

Continuation of OSS, cloud, data, AI

Multi-cloud (k8, Databricks)

AutoML

CI/CD
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Wrapping up

- Think critically about team member dedicated to production ML
- Choose “unified” tech stacks over single tools
- MLflow can manage many features of an ML stack–and has some exciting 

announcements to come!



Abstract

Production machine learning demands stitching together many tools ranging from open source 
standards to cloud-specific and third party solutions. This session surveys the current ML 
deployment technology landscape to contextualize which tools solve for which features of 
production ML systems such as CI/CD, REST endpoints, and monitoring. It'll help answer the 
questions: what tools are out there? Where do I start with the MLops tech stack for my 
application? What are the pros and cons of open source versus managed solutions? This talk 
takes a features-driven approach to tool selection for MLops stacks to provide best practices 
in the most rapidly evolving field of data science.
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CI/CD and Other Deployment Considerations
Packaging up a subset of surveyed tools for deployment
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Code & 
Libraries

Data and Artifact 
Management

Orchestration Deployment

Requirements 

Tool Selection 



Let’s Look at an Example: Core Tech Stack
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting 

the training code to a production environment, retraining the model in production environment, deploying as a 
REST endpoint,  and daily monitoring of model performance
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Core Tech 
Stack

Because we need an OS 
deep learning library 
with transfer learning

● Python and 
tensoflow for 
pre-processing, 
data 
augmentation, 
and modeling 

● Local IDE for easy 
sharing of code 
across the team 



Let’s Look at an Example: Core Tech Stack
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting 

the training code to a production environment, retraining the model in production environment, deploying as a 
REST endpoint,  and daily monitoring of model performance
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Language
Collabo
ration

Libraries Cloud Data Storage



Let’s Look at an Example: Data
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting 

the training code to a production environment, retraining the model in production environment, deploying as a 
REST endpoint,  and daily monitoring of model performance

26

Data

Because we need an OS 
tools to consistently 
manage artifacts (in this 
case the code) across 
dev and prod 
environments

● MLflow to 
manage the 
lifecycle of the 
code and model 
through dev and 
prod

● Cheap cloud 
storage with 
Delta to manage 
feature 
engineered tables



Let’s Look at an Example: ML Workflow
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting 

the training code to a production environment, retraining the model in production environment, deploying as a 
REST endpoint,  and daily monitoring of model performance
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ML Workflow 

Because we need an OS 
tools to manage our 
code, automatically 
trigged based on 
actions, and 

● MLflow webhooks 
to automatically 
trigger code based 
on model changes

● Jenkins to 
managing 
automation across 
the promotion from 
development to 
production 



Let’s Look at an Example: Deployment 
Say we want to build an Open Source centric stack

Requirement: Our system involves training an image classifier in a development environment, promoting 

the training code to a production environment, retraining the model in production environment, deploying as a 
REST endpoint,  and daily monitoring of model performance
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Deployment

Because we need an real 
time serving, A/B testing 
for promotion of new 
models, and monitoring 
for feature drift and label 
drift

● Selden for 
serving in real 
time and A/B 
testing

● Writing our own 
drift tests using 
python and 
managing the 
notifications 
through Slack 
integrations
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Resources

AI Landscape

https://ai-infrastructure.org/wp-content/uploads/2022/05/AIIA-Landscape-May-2022.pdf

