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about the speaker
Peter

• studied computer science
• 14 years of data-engineering
• last 7 years with big data technologies
• leading a team of 8 talented data engineers
• responsibilities of the team

• building a PB scale data-lake from scratch
• deploying (open-source) technologies on top of data-lake
• running ML in production
• supporting ML, analytics and product
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• continuous flow of records from social media networks
• 350M+ inserts / updates per day, 50k+ per second in peaks

social media record (post, comment, tweet, …)

id, author, message, attachments [urls], 
common metadata (created, updated, … ), 
network specific data (retweets, likes, views, …)

our setup
our social media specific environment
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• NLP and computer vision models
• NLP -> sentiment, topics, named entities, aspects, ...
• computer vision -> objects, logos, similarities, NSFW, …



motivation
existing spark solution was opaque and inefficient

• no clear answers to some typical questions
• inefficiencies on multiple levels
• no standards 

• hard to maintain individual jobs
• barrier for other teams
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overview
what we wanted to build

rule

enrichment specific set of conditions to be 
evaluated on record level, they determine if ML 
model should be applied or not

• an end-to-end framework usable by all data teams
• able to evaluate potentially hundreds of rules
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enrichment

output of ML model appended 
to the original record 

• process each enrichment efficiently and according to the use-case
• accommodate both streaming and batch



new solution
criteria
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• transparent
• efficient
• scalable
• standardized and open to other teams
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enrichment flow

high-level
and components



high-level flow
from input to final destination
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components | rule resolver
evaluate and keep only what is needed

• filter out everything we don’t need
• resolve all the rules on record level -> save results into delta table
• M:N relation between rules and records
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example of rule

IF source social network in [“XYZ”, “ABC”]
& has image / video attachments 
& internal rating in [“A+”, “A”]

THEN apply model X

• enrichment cache – selective merge into
• common subset of columns, each record only once (upsert)
• info about relevant models on record level
• delta features

• auto schema evolution (delta.io v0.8.0+)
• auto optimize (DBR 10.4+)
• delta change data feed (DBR 8.4+)



components | rule resolver
selective merge into with pyspark
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# selective MERGE INTO enrichment_cache delta table

# only actually updated records, i.e. higher version are updated

# new records are inserted

from delta.tables import DeltaTable

base = DeltaTable.forName(spark, 'enrichment_cache').alias('ec')

base.merge(

   updates_df.alias('u'),

   'ec.id = u.id'

 ).whenMatchedUpdateAll('u.version > ec.version').whenNotMatchedInsertAll().execute()
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components | rule resolver
delta features
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# enable features with spark.conf

spark.conf.set('spark.databricks.delta.schema.autoMerge.enabled', True)

spark.conf.set('spark.databricks.delta.optimizeWrite.enabled', True)

# enable change data feed and auto optimize with write at table creation

( 

    df.write

    .option('mergeSchema', 'true')

    .option('delta.autoOptimize.optimizeWrite', 'true')

    .option('delta.enableChangeDataFeed', 'true')

    .saveAsTable(ENRICHMENT_CACHE_TABLE)

)

# or later with SQL

ALTER TABLE ENRICHMENT_CACHE_TABLE SET TBLPROPERTIES (delta.enableChangeDataFeed = true)
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components | dispatcher
deliver relevant data for processing
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• on input only records want to enrich
• send records down various sinks
• processing delta change feed -> big timesaver
• custom components

job (enrichment specific)

spark job (streaming / batch) processing only 
relevant records to the job with enrichment 
specific ML model

e.g. adding sentiment to a record from social 
network by processing its message column

• output (for DeltaSink) – model cache
• one record per job (model version) 
• subset of job specific fields (as json) + schema
• partitioning by job



components | dispatcher
deliver records to various sinks
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class Sink(ABC):

    def __init__(self, transform_batch: Callable[[DataFrame], DataFrame]):

        self.transform_batch = transform_batch

    @property

    @abstractmethod

    def name(self):

        pass

    @abstractmethod

    def _flush(self, df: DataFrame) -> None:

        pass

    def flush(self, df: DataFrame) -> None:

        self._flush(self.transform_batch(df))
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components | dispatcher
stream from delta feed
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(

spark

.readStream

.format('delta')

.option('maxBytesPerTrigger', INPUT_STREAM_MAX_BYTES_PER_TRIGGER)

.option('readChangeFeed', 'true')

.table(ENRICHMENT_CACHE_TABLE)

.filter(f.col('_change_type').isin('insert', 'update_postimage'))

.writeStream

.queryName(QUERY_NAME)

.option('checkpointLocation', QUERY_CHECKPOINT)

.trigger(processingTime='10 seconds')

.foreachBatch(process_batch)

.start()

)
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components | jobs (model)
job specific data, standardized output
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• jobs -> batch or stream processing
• common library + specific model
• inputs from model cache - only the job specific partition

• output - enrichment log
• everything from input (also nulls, errs)
• with model output, model version and payload

• atomic with exactly once processing
• job processes everything from last checkpoint
• writes result to enrichment log
• dispatcher can anti-join on enrichment log



components | jobs (model)
enrichment job implementation flow
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• job developer friendly flow
• inputs ready
• no need to care about downstream



components | jobs (model)
implement enrichment job from common library
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def process_batch(df: DataFrame, batch_id: int) -> None:

    job = EnrichmentJob(...)

    job.run(

        data_source=...

        transformations=[

            job.apply_enrichers([

                ...

            ]),

            ...     

        ],

        output=job.write_to_log,

        finalizers=...        

    )
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components | jobs (model)
stream from delta input to delta output
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(

    spark

    .readStream

    .format('delta')

    .table(MODEL_CACHE['table'])

    .filter(f.col('job') == f.lit(JOB))  # partitioning

    .repartition(spark.sparkContext.defaultParallelism)

    .writeStream

    .queryName(QUERY_NAME)

    .option('checkpointLocation', MODEL_CACHE_CHECKPOINT_PATH)

    .trigger(once=True)

    .foreachBatch(process_batch)

    .start()

)
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components | output streamer
deliver data to downstream consumers
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• various consumers / target systems
• sending data downstream efficiently
• all outputs at one place in delta

• easy debug 
• same code for backfills  (with new temporary job instance) 
• using delta options “startingVersion” or “startingTimestamp”
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results
and takeaways



takeaways
what we found out about the technologies

• delta
• performing well in all of our scenarios
• performance -> affected by size and structure
• clever partitioning, compaction and optimize are needed
• versioning -> easy backfills even in a streaming environment
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• spark structure streaming 
• efficient (single-node clusters)

• rule resolver -> m5d.2xlarge
• dispatcher -> m5d.xlarge
• output streamer -> r5d.xlarge

• usable for both streaming and batch (checkpointing, .foreachBatch())



result and added benefits
what we ended up building

• other teams now write efficient code applying models on records
• transparent == trusted
• split of responsibility within data teams
• decoupling parts of the enrichment process

• phased and phases validated separately

22



23



24

Peter Vasko
Data Architect | emplifi.io

Thank you


