
1

Peter Vasko
Data Architect, Emplifi

Building a ML enrichment
framework using advanced
delta table features

about the speaker
Peter

• studied computer science
• 14 years of data-engineering
• last 7 years with big data technologies
• leading a team of 8 talented data engineers
• responsibilities of the team

• building a PB scale data-lake from scratch
• deploying (open-source) technologies on top of data-lake
• running ML in production
• supporting ML, analytics and product

2

• continuous flow of records from social media networks
• 350M+ inserts / updates per day, 50k+ per second in peaks

social media record (post, comment, tweet, …)

id, author, message, attachments [urls],
common metadata (created, updated, …),
network specific data (retweets, likes, views, …)

our setup
our social media specific environment

3

• NLP and computer vision models
• NLP -> sentiment, topics, named entities, aspects, ...
• computer vision -> objects, logos, similarities, NSFW, …

motivation
existing spark solution was opaque and inefficient

• no clear answers to some typical questions
• inefficiencies on multiple levels
• no standards

• hard to maintain individual jobs
• barrier for other teams

4

overview
what we wanted to build

rule

enrichment specific set of conditions to be
evaluated on record level, they determine if ML
model should be applied or not

• an end-to-end framework usable by all data teams
• able to evaluate potentially hundreds of rules

5

enrichment

output of ML model appended
to the original record

• process each enrichment efficiently and according to the use-case
• accommodate both streaming and batch

new solution
criteria

6

• transparent
• efficient
• scalable
• standardized and open to other teams

7

enrichment flow

high-level
and components

high-level flow
from input to final destination

8

components | rule resolver
evaluate and keep only what is needed

• filter out everything we don’t need
• resolve all the rules on record level -> save results into delta table
• M:N relation between rules and records

9

example of rule

IF source social network in [“XYZ”, “ABC”]
& has image / video attachments
& internal rating in [“A+”, “A”]

THEN apply model X

• enrichment cache – selective merge into
• common subset of columns, each record only once (upsert)
• info about relevant models on record level
• delta features

• auto schema evolution (delta.io v0.8.0+)
• auto optimize (DBR 10.4+)
• delta change data feed (DBR 8.4+)

components | rule resolver
selective merge into with pyspark

10

selective MERGE INTO enrichment_cache delta table

only actually updated records, i.e. higher version are updated

new records are inserted

from delta.tables import DeltaTable

base = DeltaTable.forName(spark, 'enrichment_cache').alias('ec')

base.merge(

 updates_df.alias('u'),

 'ec.id = u.id'

).whenMatchedUpdateAll('u.version > ec.version').whenNotMatchedInsertAll().execute()

1

2

3

4

5

6

7

8

9

10

11

components | rule resolver
delta features

11

enable features with spark.conf

spark.conf.set('spark.databricks.delta.schema.autoMerge.enabled', True)

spark.conf.set('spark.databricks.delta.optimizeWrite.enabled', True)

enable change data feed and auto optimize with write at table creation

(

 df.write

 .option('mergeSchema', 'true')

 .option('delta.autoOptimize.optimizeWrite', 'true')

 .option('delta.enableChangeDataFeed', 'true')

 .saveAsTable(ENRICHMENT_CACHE_TABLE)

)

or later with SQL

ALTER TABLE ENRICHMENT_CACHE_TABLE SET TBLPROPERTIES (delta.enableChangeDataFeed = true)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

components | dispatcher
deliver relevant data for processing

12

• on input only records want to enrich
• send records down various sinks
• processing delta change feed -> big timesaver
• custom components

job (enrichment specific)

spark job (streaming / batch) processing only
relevant records to the job with enrichment
specific ML model

e.g. adding sentiment to a record from social
network by processing its message column

• output (for DeltaSink) – model cache
• one record per job (model version)
• subset of job specific fields (as json) + schema
• partitioning by job

components | dispatcher
deliver records to various sinks

13

class Sink(ABC):

 def __init__(self, transform_batch: Callable[[DataFrame], DataFrame]):

 self.transform_batch = transform_batch

 @property

 @abstractmethod

 def name(self):

 pass

 @abstractmethod

 def _flush(self, df: DataFrame) -> None:

 pass

 def flush(self, df: DataFrame) -> None:

 self._flush(self.transform_batch(df))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

components | dispatcher
stream from delta feed

14

(

spark

.readStream

.format('delta')

.option('maxBytesPerTrigger', INPUT_STREAM_MAX_BYTES_PER_TRIGGER)

.option('readChangeFeed', 'true')

.table(ENRICHMENT_CACHE_TABLE)

.filter(f.col('_change_type').isin('insert', 'update_postimage'))

.writeStream

.queryName(QUERY_NAME)

.option('checkpointLocation', QUERY_CHECKPOINT)

.trigger(processingTime='10 seconds')

.foreachBatch(process_batch)

.start()

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

components | jobs (model)
job specific data, standardized output

15

• jobs -> batch or stream processing
• common library + specific model
• inputs from model cache - only the job specific partition

• output - enrichment log
• everything from input (also nulls, errs)
• with model output, model version and payload

• atomic with exactly once processing
• job processes everything from last checkpoint
• writes result to enrichment log
• dispatcher can anti-join on enrichment log

components | jobs (model)
enrichment job implementation flow

16

• job developer friendly flow
• inputs ready
• no need to care about downstream

components | jobs (model)
implement enrichment job from common library

17

def process_batch(df: DataFrame, batch_id: int) -> None:

 job = EnrichmentJob(...)

 job.run(

 data_source=...

 transformations=[

 job.apply_enrichers([

 ...

]),

 ...

],

 output=job.write_to_log,

 finalizers=...

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

components | jobs (model)
stream from delta input to delta output

18

(

 spark

 .readStream

 .format('delta')

 .table(MODEL_CACHE['table'])

 .filter(f.col('job') == f.lit(JOB)) # partitioning

 .repartition(spark.sparkContext.defaultParallelism)

 .writeStream

 .queryName(QUERY_NAME)

 .option('checkpointLocation', MODEL_CACHE_CHECKPOINT_PATH)

 .trigger(once=True)

 .foreachBatch(process_batch)

 .start()

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

components | output streamer
deliver data to downstream consumers

19

• various consumers / target systems
• sending data downstream efficiently
• all outputs at one place in delta

• easy debug
• same code for backfills (with new temporary job instance)
• using delta options “startingVersion” or “startingTimestamp”

20

results
and takeaways

takeaways
what we found out about the technologies

• delta
• performing well in all of our scenarios
• performance -> affected by size and structure
• clever partitioning, compaction and optimize are needed
• versioning -> easy backfills even in a streaming environment

21

• spark structure streaming
• efficient (single-node clusters)

• rule resolver -> m5d.2xlarge
• dispatcher -> m5d.xlarge
• output streamer -> r5d.xlarge

• usable for both streaming and batch (checkpointing, .foreachBatch())

result and added benefits
what we ended up building

• other teams now write efficient code applying models on records
• transparent == trusted
• split of responsibility within data teams
• decoupling parts of the enrichment process

• phased and phases validated separately

22

23

24

Peter Vasko
Data Architect | emplifi.io

Thank you

