

Building a ML enrichment framework using advanced delta table features

Peter Vasko Data Architect, Emplifi

ORGANIZED BY 😂 databricks

about the speaker

Peter

- studied computer science
- 14 years of data-engineering
- last 7 years with big data technologies
- leading a team of 8 talented data engineers
- responsibilities of the team
 - building a PB scale data-lake from scratch
 - deploying (open-source) technologies on top of data-lake
 - running ML in production
 - supporting ML, analytics and product

our setup

our social media specific environment

- continuous flow of records from social media networks
 - 350M+ inserts / updates per day, 50k+ per second in peaks

social media record (post, comment, tweet, ...)

id, author, **message**, **attachments** [urls], common metadata (created, updated, ...), network specific data (retweets, likes, views, ...)

- NLP and computer vision models
 - NLP -> sentiment, topics, named entities, aspects, ...
 - computer vision -> objects, logos, similarities, NSFW, ...

motivation

existing spark solution was opaque and inefficient

- no clear answers to some typical questions
- inefficiencies on multiple levels
- no standards
 - hard to maintain individual jobs
 - barrier for other teams

overview

what we wanted to build

- an end-to-end framework usable by all data teams
- able to evaluate potentially hundreds of rules
- process each enrichment efficiently and according to the use-case
- accommodate both streaming and batch

enrichment

output of ML model appended to the original record

rule

enrichment specific set of conditions to be evaluated on record level, they determine if ML model should be applied or not

new solution

criteria

- transparent
- efficient
- scalable
- standardized and open to other teams

enrichment flow

high-level and components

high-level flow

from input to final destination

components | rule resolver

evaluate and keep only what is needed

- filter out everything we don't need
- resolve all the rules on record level -> save results into delta table
- M:N relation between rules and records
- enrichment cache selective merge into
 - common subset of columns, each record only once (upsert)
 - info about relevant models on record level
 - delta features
 - auto schema evolution (delta.io v0.8.0+)
 - auto optimize (DBR 10.4+)
 - delta change data feed (DBR 8.4+)

example of **rule**

IF source social network in ["XYZ", "ABC"] & has image / video attachments & internal rating in ["A+", "A"]

THEN apply model X

DATA+AI SUMMIT 2022

components | rule resolver

selective merge into with pyspark

```
1  # selective MERGE INTO enrichment_cache delta table
2  # only actually updated records, i.e. higher version are updated
3  # new records are inserted
4  
5  from delta.tables import DeltaTable
6  
7  base = DeltaTable.forName(spark, 'enrichment_cache').alias('ec')
8  base.merge(
9     updates_df.alias('u'),
10     'ec.id = u.id'
```

11).whenMatchedUpdateAll('u.version > ec.version').whenNotMatchedInsertAll().execute()

components | rule resolver

```
# enable features with spark.conf
    spark.conf.set('spark.databricks.delta.schema.autoMerge.enabled', True)
    spark.conf.set('spark.databricks.delta.optimizeWrite.enabled', True)
    # enable change data feed and auto optimize with write at table creation
        df.write
        .option('mergeSchema', 'true')
         .option('delta.autoOptimize.optimizeWrite', 'true')
10
         .option('delta.enableChangeDataFeed', 'true')
         .saveAsTable(ENRICHMENT_CACHE_TABLE)
11
12
13
    # or later with SQL
    ALTER TABLE ENRICHMENT_CACHE_TABLE SET TBLPROPERTIES (delta.enableChangeDataFeed = true)
15
```

components | dispatcher

deliver relevant data for processing

components | dispatcher

deliver records to various sinks

```
class Sink(ABC):
       def __init__(self, transform_batch: Callable[[DataFrame], DataFrame]):
           self.transform_batch = transform_batch
       @property
       @abstractmethod
       def name(self):
           pass
10
       @abstractmethod
       def _flush(self, df: DataFrame) -> None:
11
12
           pass
13
       def flush(self, df: DataFrame) -> None:
           self._flush(self.transform_batch(df))
15
```

components | dispatcher

stream from delta feed

<pre>2 spark 3 .readStream 4 .format('delta') 5 .option('maxBytesPerTrigger', INPUT_STREAM_MAX_BYTES_PER_TRIGGER) 6 .option('readChangeFeed', 'true')</pre>
<pre>3 .readStream 4 .format('delta') 5 .option('maxBytesPerTrigger', INPUT_STREAM_MAX_BYTES_PER_TRIGGER) 6 .option('readChangeFeed', 'true')</pre>
<pre>4 .format('delta') 5 .option('maxBytesPerTrigger', INPUT_STREAM_MAX_BYTES_PER_TRIGGER) 6 .option('readChangeFeed', 'true')</pre>
<pre>5 .option('maxBytesPerTrigger', INPUT_STREAM_MAX_BYTES_PER_TRIGGER) 6 .option('readChangeFeed', 'true')</pre>
6 .option('readChangeFeed', 'true')
7 .table(ENRICHMENT_CACHE_TABLE)
8 . filter(f.col('_change_type') .isin('insert', 'update_postimage'))
9 .writeStream
10 .queryName(QUERY_NAME)
<pre>11 .option('checkpointLocation', QUERY_CHECKPOINT)</pre>
<pre>12 .trigger(processingTime='10 seconds')</pre>
13 .foreachBatch(process_batch)
14 .start()
15)

job specific data, standardized output

- jobs -> batch or stream processing
 - **common library** + specific model
 - inputs from model cache only the **job specific partition**
- output enrichment log
 - everything from input (also nulls, errs)
 - with model output, model version and payload
- atomic with exactly once processing
 - job processes everything from last checkpoint
 - writes result to enrichment log
 - dispatcher can anti-join on enrichment log

enrichment job implementation flow

- job developer friendly flow
 - inputs ready
 - no need to care about downstream

implement enrichment job from common library

```
def process_batch(df: DataFrame, batch_id: int) -> None:
         job = EnrichmentJob(...)
         job.run(
             data_source=...
             transformations=[
                 job.apply_enrichers([
                      . . .
                 ]),
10
                  . . .
             ],
11
             output=job.write_to_log,
             finalizers=...
13
14
```


stream from delta input to delta output

1	(
2		spark
3		.readStream
4		.format('delta')
5		.table(MODEL_CACHE['table'])
6		.filter(f.col('job') == f.lit(JOB))
7		.repartition(spark.sparkContext.defaultParallelism)
8		.writeStream
9		.queryName(QUERY_NAME)
10		.option('checkpointLocation', MODEL_CACHE_CHECKPOINT_PATH)
11		.trigger(once=True)
12		.foreachBatch(process_batch)
13		.start()
14)	

components | output streamer

deliver data to downstream consumers

- various consumers / target systems
- sending data downstream efficiently
- all outputs at one place in delta
 - easy debug
 - same code for backfills (with new temporary job instance)
 - using delta options "startingVersion" or "startingTimestamp"

results and takeaways

takeaways

what we found out about the technologies

- delta
 - performing well in all of our scenarios
 - performance -> affected by size and structure
 - clever partitioning, compaction and optimize are needed
 - versioning -> easy backfills even in a streaming environment
- spark structure streaming
 - efficient (single-node clusters)
 - rule resolver -> m5d.2xlarge
 - dispatcher -> m5d.xlarge
 - output streamer -> r5d.xlarge
 - usable for both streaming and batch (checkpointing, .foreachBatch())

result and added benefits

what we ended up building

- other teams now write efficient code applying models on records
- transparent == trusted
- **split of responsibility** within data teams
- **decoupling** parts of the enrichment process
 - **phased** and phases validated separately

DATA+AI SUMMIT 2022

DATA+AI SUMMIT 2022

Thank you

Peter Vasko Data Architect | emplifi.io

UMMIT 2022