
Spark
Inception

Exploiting the Spark REPL to build
Streaming Notebooks

with Scott Haines

Twitter: @newfront Source Code: https://bit.ly/spark-inception

https://twitter.com/newfront
https://bit.ly/spark-inception

< This Guy:
Scott Haines: Spark
Community Member,
Databricks Beacon, Teacher,
Author

Today’s Material:
Collection of
experimental content
from my book.

Twitter: @newfront Source Code: https://bit.ly/spark-inception

“ I like data, hot sauce, and
distributed systems”

– Scott Haines

< Experience: Startups,
Yahoo, Twilio, Nike

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Plan of
Attack

1. What is a Notebook Environment?

2. Building the Streaming Notebook

Application

3. Demo Time…

4. Questions & Source Code

“you’ve all probably used notebooks, let’s
dive deeper into how they work and build our
own”

https://twitter.com/newfront
https://bit.ly/spark-inception

Inception: The Point in which something
begins its course or existence. A Start

Basics: The
Science
behind the
Notebook
Environment

What is the
difference
between

Hypothesis &
Law?

A hypothesis is
a theory based

on initial
assumptions.

A law is a
universal truth
predicated on
deterministic
results given
the same set

of inputs.

The notebook environment is
the modern scientific

notebook and facilitates the
simple sharing of codified

ideas and predictable
results.

Twitter: @newfront Source Code: https://bit.ly/spark-inception

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Popular Notebook Environments: What are they?

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Notebook Environments: Why they are Awesome?

In a Nutshell:

Notebook Environments enable you, the

engineer, to focus on “what your software

‘should’ do” vs “all the other stuff”

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Notebook Environments: Why they are Awesome?

In a Nutshell:

Notebook Environments enable you to quickly

test ideas (hypothesis) interactively. Each code

block (paragraph) is stitched together to

procedurally generate (code), that when run in-

series, produces reproducible results (output).

“on-the-fly data (engineering / science) pipelines”

https://twitter.com/newfront
https://bit.ly/spark-inception

Basics: The Anatomy of a Digital Notebook?

Twitter: @newfront Source Code: https://bit.ly/spark-inception

The Notebook:

Stores your software (code) and notes (markdown

/ simple text) in a series of blocks (paragraphs or

cells)

https://twitter.com/newfront
https://bit.ly/spark-inception

Basics: The Anatomy of a Digital Notebook?

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Notebook > Paragraph(s):

Each paragraph can be modified, compiled, and

run independently (async) or the collection

(notebook) can be run as a pipeline.

%spark
val df = spark.read.delta(…)
df.select(…).createOrReplace…

%sql
SELECT * FROM x WHERE y …

https://twitter.com/newfront
https://bit.ly/spark-inception

Basics: The Anatomy of a Digital Notebook?

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Recap:

Notebook environments help you move fast, and

test and share ideas without the trouble of “local

developer environment” pain.

https://twitter.com/newfront
https://bit.ly/spark-inception

Part 2: Building the Streaming Notebook Application

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Under the Hood:

Learn how to remote control the Spark REPL (think spark-shell) using

streaming remote procedure calls (RPC).

https://twitter.com/newfront
https://bit.ly/spark-inception

What is the Spark REPL?

Spark REPL Source Code

> $SPARK_HOME/bin/spark-shell

Twitter: @newfront

https://github.com/apache/spark/blob/master/repl/src/main/scala-2.12/org/apache/spark/repl/SparkILoop.scala
https://twitter.com/newfront

Source Code: https://bit.ly/spark-inception

Architecture: Overview

Redis: (Stream)

Redis: (Hashset)

Structured Streaming

RPC Microbatch:
Dataset[NetworkCommand]

RPC
(request)

RPC
(result)

ProcessCommand

SparkILoop (REPL)

Sp
ar

k
D

ri
ve

r

https://bit.ly/spark-inception

Architecture: RPC Command: NetworkCommand

Twitter: @newfront Source Code: https://bit.ly/spark-inception

case class NetworkCommand(
notebookId: String,
paragraphId: String,
command: String,
requestId: String,
userId: Option[String] = Some("nobody")

)

com:coffeeco:notebooks:v1:notebook1:rpc < This is a Redis Stream for the
transport of our
NetworkCommand’s

< This is the metadata
encapsulating a notebook, the
paragraph, the command to be
evaluated, and more goodies.

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

case class NotebookExecutionDetails(
notebookId: String,
paragraphId: String,
command: String,
requestId: String,
userId: Option[String],
commandStatus: String,
result: String)

com:coffeeco:notebooks:v1:notebook1:results < This is a Redis location for the
collection of our processed
commands

< This is the metadata
encapsulating the complete
execution of a remote
notebook paragraph run

Architecture: RPC Command: NotebookExecutionDetails

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Spark Inception App: RPC Processing Flow

SparkInceptionControllerApp.runApp()

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront

SparkInceptionControllerApp.processBatch

Spark Inception App:
Command Processing

Source Code: https://bit.ly/spark-inception

processBatch (part 1: processCommand)

For each microbatch:

1. Collect the RPC commands (bring to

driver)

2. Evaluate each command.

3. Repeat forever…

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

SparkRemoteSession.processCommand

Spark Inception App:
Command Processing
processCommand:

From the Spark Driver:

1. Evaluate: should we run?

2. Redirect the commands

(%spark or %sql)

3. Respond (return results)

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Spark Inception App:
Command Processing
processSparkScala:

1. Interpret (eg: use the REPL)

2. return results

SparkRemoteSession.processSparkScala

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront Source Code: https://bit.ly/spark-inception

Spark Inception App:
Command Processing
processSparkSQL:

1. Try to evaluate the SQL

(unsafe sure!)

2. Capture results

SparkRemoteSession.processSparkSQL

https://twitter.com/newfront
https://bit.ly/spark-inception

Twitter: @newfront

SparkInceptionControllerApp.processBatch

Spark Inception App:
Command Processing

Source Code: https://bit.ly/spark-inception

processBatch (part 2: results to redis)

After evaluating the NetworkCommands:

1. Create a Results Dataset

2. Write to our Redis output table

3. Repeat forever…

https://twitter.com/newfront
https://bit.ly/spark-inception

Part 3: Demo Time!

Inception: The Point in which something
begins its course or existence.

Thank You. Thanks. Now some Q&A

https://bit.ly/spark-inceptionGithub:
https://medium.com/@newfrontcreativeMedium:

https://www.linkedin.com/in/scotthaines/LinkedIn:

https://dockr.ly/3OuSom2Docker:

Learn at your own Pace

https://bit.ly/spark-inception
https://medium.com/@newfrontcreative
https://www.linkedin.com/in/scotthaines/
https://dockr.ly/3OuSom2

