
Spark Data Source V2
Performance Improvement

Huaxin Gao & DB Tsai
Apple Inc.

Aggregate Push
Down

Who are we?
Huaxin Gao

• Apache Spark PMC
• Software Engineer at Apple

DB Tsai

• Apache Spark PMC
• Engineering Manager at Apple

2

Query of the interest

Queries that contain aggregate functions:

SELECT MIN (col1), MAX(col1), COUNT(col1) FROM test

 GROUP BY col2

 WHERE col3 > 100;

Without aggregate push down, Spark needs to do a full scan.

3

Performance improvement for Push Down
J

• No need for a full scan. Only the aggregated results are returned to
Spark. Save lots of network I/O and disk I/O.

• Aggregate function could execute faster.
• SQL based (JDBC):

data source has index support and better statistics info.

• File based (Parquet/ORC/Iceberg):

gets statistics info from footer or manifest files, and uses

these statistics info to calculate Max/Min/Count.

4

Data Source API
Data Source API provides Spark the ability to integrate with the external
data storage such as Hive, Parquet, ORC, JDBC, Iceberg, etc.

5
Figure cited from
https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html

Data Source API
• Provides a pluggable mechanism for accessing structured data from the

external storage though Spark SQL
• Efficient data access powered by Spark SQL query optimizer
• Has interfaces to push down operators to data source for optimization
• Filter push down and column pruning can dramatically reduce the

amount of data that need to be transferred and processed

6

Data Source V1 API Limitations
• Dependency on higher level API such as SQLContext

and DataFrame
• Lack of support for Columnar Read and Streaming
• Lack of transactional support in write
• Hard to add new operators push down

7

Data Source V2 API Framework
Introduced in Spark 2.3, Data Source V2 API provides a set of java
interfaces. They are located in spark.sql.connector. Some basic APIs are:

• read
• Batch
• Scan
• ScanBuilder
• SupportsPushDownFilters
• SupportsPushDownRequiredColumn
• SupportsPushDownAggregates
• SupportsPushDownLimit
• SupportsPushDownTableSample

• write
• catalog

8

Data Source V2 API Framework
• Spark driver:

• determines the schema, and generates the query plans
• creates and serializes PartitionReaderFactory, and sends to executors.

• Spark executors:
• create PartitionReader using InputPartition
• PartitionReader fetches data from external storage
• process data

9

Spark Query Plan
• When executing a query, Spark will produce different types of plans.
• Query optimization is done at logical optimization phase. Once the

Logical plan has been produced, it will be optimized based on various
rules applied on logical operations.

10

Data Source V2 API optimization strategy
Data Source V2 has optimization rules to push down operators to external
storage

New operators push down added in Spark 3.2/3.3:

• Push down aggregates to JDBC (Spark 3.2)
• Push down MIN/MAX/COUNT to Parquet (Spark 3.3)
• Push down MIN/MAX/COUNT to ORC (Spark 3.3)
• Push down Data Source V2 filter (including push down functions in V2 filter) (Spark 3.3)
• Push down Limit (Spark 3.3)
• Push down Table Sample (Spark 3.3)

11

Data Source V2 API optimization strategy
Data Source V2 has optimization rules to push down operators to external storage.

def apply(plan: LogicalPlan): LogicalPlan = {

 val pushdownRules = Seq[LogicalPlan => LogicalPlan] (

 createScanBuilder,

 pushDownSample,

 pushDownFilters,

 pushDownAggregates,

 pushDownLimits,

 pruneColumns)

 pushdownRules.foldLeft(plan) { (newPlan, pushDownRule) =>

 pushDownRule(newPlan)

 }

 }

12

JDBC Aggregate Push Down

case class JDBCScanBuilder(

 session: SparkSession,

 schema: StructType,

 jdbcOptions: JDBCOptions)

 extends ScanBuilder

 with SupportsPushDownV2Filters

 with SupportsPushDownRequiredColumns

 with SupportsPushDownAggregates

 with SupportsPushDownLimit

 with SupportsPushDownTableSample

 with SupportsPushDownTopN

 with Logging
13

JDBC Aggregate Push Down
• Data Source V2 has an option pushDownAggregate. The default is false.
• If sets to true, Spark pushes down aggregates (MIN, MAX, COUNT, SUM,

AVG) to the JDBC data source.
• GROUP BY can be pushed down as well.
• If there is only one partition, no final aggregate will be needed at Spark.
• If there are more than one partitions, final aggregate will be done at

Spark.

14

JDBC Aggregate Push Down
If there is only one partition, aggregates are completely pushed down to
data source. No final aggregation is needed at Spark.

val df = sql("SELECT * FROM h2.test.employee")

 .filter("SALARY > 1000.0")

 .groupBy($"DEPT")

 .min("SALARY")

df.explain(true)

15

JDBC Aggregate Push Down
== Analyzed Logical Plan ==

Aggregate [DEPT], [DEPT, min(SALARY)]

+- Filter (SALARY > 1000)

 +- RelationV2[DEPT, NAME, SALARY, BONUS, IS_MANAGER] test.employee

== Optimized Logical Plan ==

RelationV2[DEPT, MIN(SALARY)]

== Physical Plan ==

JDBCScan [DEPT,MIN(SALARY)]

 PushedAggregates: [MIN(SALARY)],

 PushedFilters: [SALARY IS NOT NULL, SALARY > 1000.00],

 PushedGroupByExpressions: [DEPT]
16

JDBC Aggregate Push Down
If there are more than one partition, aggregates are partially pushed down
to data source. Final aggregation is done at Spark.
 val df = spark.read

 .option("partitionColumn", "dept")

 .option("lowerBound", "0")

 .option("upperBound", "2")

 .option("numPartitions", "2")

 .table("h2.test.employee")

 .filter("SALARY > 1000.0")
 .agg(sum($"SALARY").as("sum"))

 df.explain(true)

17

JDBC Aggregate Push Down
== Analyzed Logical Plan ==

Aggregate [sum]

+- Filter (SALARY > 1000.0)

 +- RelationV2[DEPT, NAME SALARY, BONUS, IS_MANAGER]

== Optimized Logical Plan ==

Aggregate [SUM(SALARY)]

+- RelationV2[SUM(SALARY)]

== Physical Plan ==

+- HashAggregate

 +- JDBCScan [SUM(SALARY)]

 PushedAggregates: [SUM(SALARY)],

 PushedFilters: [SALARY IS NOT NULL, SALARY > 1000.00] 18

JDBC Aggregate Push Down
Benchmark results using TPCH Query 6

19

Parquet Aggregate Push Down
Parquet Layout

• Multiple Row groups
• Each Row group splits into column

chunks
• Metadata for row group and column

chunks is stored in the footer.

20

Figure cited from
https://saince.io/2020/08/13/data-lakes-apache-parquet/

Parquet Aggregate Push Down
Parquet Layout
Footer contains metadata info: schema, row groups and column statistics.

21Figure cited from http://cloudsqale.com/2021/01/15/parquet-1-x-file-format-footer-content/

Parquet Partial Aggregate Push Down

• Property spark.sql.parquet.aggregatePushdown,
defaults to false.

• Push down MIN/MAX/COUNT to Parquet
• Use the statistics information in Parquet Row group

metadata and calculate the MIN/MAX/COUNT
• Have final aggregate at Spark

22

Parquet Partial Aggregate Push Down

• Aggregate with filter can be pushed
down only if the filter is on partition
columns.

• Aggregate with GROUP BY can be
pushed down only if GROUP BY is on
partition columns.

23

 events year = 2015

 year = 2016

 year = 2017

 year = 2018

Parquet file

Row
group 0

Row
group 1

Row
group 2

Footer

Filter: year = 2015

Parquet Aggregate Push Down
 val conf = new SparkConf()

 .set(SQLConf.USE_V1_SOURCE_LIST, "")

 .set(SQLConf.PARQUET_AGGREGATE_PUSHDOWN_ENABLED.key, "true")

 val agg = sql("SELECT max(id), min(id), count(id) FROM tmp WHERE p = 0")

 agg.explain(true)

24

Parquet Aggregate Push Down
Before Aggregate push down
== Physical Plan ==

+- HashAggregate

 +- BatchScan[id]

 ReadSchema: struct<id:bigint>

After Aggregate push down
== Physical Plan ==

+- HashAggregate

 +- BatchScan[max(id), min(id), count(id)]

 ReadSchema: struct<max(id):bigint,min(id):bigint,count(id):bigint> partitionFilter p = 0

 PushedAggregation: [MAX(id), MIN(id), COUNT(id)] 25

Parquet Aggregate Push Down
Benchmark results
• Use Spark SqlBasedBenchmark
• Create a table with a single column,

insert 100M random number,

so it has 100M rows

• Test Integer, Long and Double

SELECT MIN(col), MAX(col), COUNT(col)

 FROM tmp;
Integer Col 54ms vs. 787ms

Long Col 55ms vs. 1126ms

Double Col 54ms vs. 1185ms 26

14.5X

20.5X 22X

Iceberg Aggregate Push Down

Take advantage of the statistics information in Iceberg manifest
files and push down MIN/MAX/COUNT to Iceberg.

27

28

Huaxin Gao & DB Tsai

Thank you

