
Data engineering with 
Arrow and Rust

1

Jorge C Leitao
Data Scientist, Munin Data

From bits to 
Data Frames



Background

2

● PhD in Physics (Max Planck Institute, Germany)

● Data scientist (Teradata, Denmark)

● Co-founder and consultant (Munin Data, Denmark)

● Open source as an hobby

○ Python: Django, Keras, LIME

○ Rust: Arrow



Munin Data
solve high-impact business challenges in the 
realm of Analytics and Big Data

● Operates in Denmark, Europe

● Large enterprises in Bio-tech and pharma

● Experts on

○ Data lakes, cloud infrastructure and analytics workloads

○ Open source stacks

○ DevOps and GxP in Pharma

3



Outline

● Anatomy of Analytics Workloads

● Arrow and Rust for Analytics

● Demo and Benchmarks

4



A simple ETL

5

Parquet file in 
remote blob

Pandas “transform” Pandas

Parquet file in 
remote blob

“read” “write”



Analytics workload

6

Storage / 
transfer

In-memory “transform” In-memory

Storage / 
transfer

“read” “write”



Information is both stored and used

● save space

● be cross-language compatible

● long-term storage

7

Storage formats are optimized to

● hit fast instruction sets

● be cache friendly

● be parallelizable

In-memory formats are optimized to



“Read” uses IO and CPU

8

Storage

In-memory

“read”

Parquet, ORC, Avro...

Spark, Numpy…

Deserialize Flatbuffers, Snappy, type cast

Read bytes File system, HTTPS, unix sockets



CPUs sleep and run

● CPU sleeps

● Use of external resources

● Single-thread “concurrentable”

9

IO-bounded (e.g. read)

● CPU runs

● Primarily CPU and RAM

● Multi-core “parallelizable”

CPU-bounded (e.g. deserialize)



“Read” uses IO and CPU

10

Storage

In-memory

“read”

Parquet, ORC, Avro...

Spark, Numpy…

Deserialize

Read bytes

Flatbuffers, Snappy, math

File system, HTTPS, unix sockets



“Transform” uses IO and CPU

11

In-memory “transform” In-memory

“Write” to nodes “Read” from nodes

WaitSerialize Write bytes Read bytes Deserialize



In summary

• Storage vs compute induce different formats

• Analytics is a mix of CPU- and IO-bounded tasks

• Control over CPU and IO seems quite important…

12



Outline

● Anatomy of Analytics Workloads

● Arrow and Rust for Analytics

● Demo and Benchmarks

13



Apache Arrow
In-memory columnar format (and IPC specification)

14

Storage

In-memory

“read”

Parquet, ORC, Avro...

Spark, Numpy, Arrow…

Deserialize Flatbuffers, Snappy, type cast

Read bytes File system, HTTPS, unix sockets



Rust Programming Language

● Easy to develop

● Easy to parallelize

● Easy to hit modern instruction sets

● Easy to package and distribute

The most loved language in SO survey for 7(!) consecutive years

15



Arrow with Rust
Arrow2 - Rust Library

● Complete Arrow specification

● Interoperability with Parquet, Avro, ODBC, CSV, JSON, etc.

● Fast

● Safe and sound (memory, data races, etc.)

● Complete separation between IO- and CPU-bounded APIs

16

https://github.com/jorgecarleitao/arrow2

https://github.com/jorgecarleitao/parquet2

https://github.com/jorgecarleitao/arrow2
https://github.com/jorgecarleitao/parquet2


Demo

● Example of simple math

● Write a parquet file (fast)

17



Who uses arrow2

● Databend, https://databend.rs/

● Materialize, https://materialize.com/

● Graphana SDK, https://github.com/grafana/grafana-plugin-sdk-rust

● Polars, https://pola.rs

18

https://databend.rs/
https://materialize.com/
https://github.com/grafana/grafana-plugin-sdk-rust
https://pola.rs


Polars
Blazingly fast DataFrame API

● Rust Native with Apache Arrow

● API in Python, Node.js and Rust

● Fast

https://github.com/pola-rs/polars/

https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and

-python

19

https://github.com/pola-rs/polars/
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python


Benchmarks
H2O.ai (groupby 50Gb)

20

https://h2oai.github.io/db-benchmark/

https://h2oai.github.io/db-benchmark/


Benchmarks
H2O.ai (join 5Gb)

21

https://h2oai.github.io/db-benchmark/

https://h2oai.github.io/db-benchmark/


Benchmarks

22

q1 q2 q3 q4 q5 q6 q7

E
xe

cu
tio

n 
tim

e 
(s

)
Polars Pandas Dask Vaex

TPCH SF-10 (“transform”)



Benchmarks

23

q1 q2 q3 q4 q5 q6 q7

E
xe

cu
tio

n 
tim

e 
(s

)
Polars Pandas Dask Vaex

TPCH SF-10 (“read” + “transform”) from parquet



In summary

• Information is stored and used in analytics

• Arrow with Rust are very suited for analytics workloads

• Impressive developments that will change the analytics landscape

24



And more…
join us to learn and have fun :)

25

● https://github.com/jorgecarleitao/arrow2
● https://github.com/jorgecarleitao/parquet2
● https://pola.rs
● https://databend.rs/
● https://materialize.com/
● https://github.com/DataEngineeringLabs/arrow2-convert
● https://databricks.com/dataaisummit/session/polars-blazingly-fast-dat

aframes-rust-and-python

https://github.com/jorgecarleitao/arrow2
https://github.com/jorgecarleitao/parquet2
https://pola.rs
https://databend.rs/
https://materialize.com/
https://github.com/DataEngineeringLabs/arrow2-convert
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python


26

Jorge Leitao
Data scientist

Thank you


