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Background
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● PhD in Physics (Max Planck Institute, Germany)

● Data scientist (Teradata, Denmark)

● Co-founder and consultant (Munin Data, Denmark)

● Open source as an hobby

○ Python: Django, Keras, LIME

○ Rust: Arrow



Munin Data
solve high-impact business challenges in the 
realm of Analytics and Big Data

● Operates in Denmark, Europe

● Large enterprises in Bio-tech and pharma

● Experts on

○ Data lakes, cloud infrastructure and analytics workloads

○ Open source stacks

○ DevOps and GxP in Pharma
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Outline

● Anatomy of Analytics Workloads

● Arrow and Rust for Analytics

● Demo and Benchmarks

4



A simple ETL
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Parquet file in 
remote blob

Pandas “transform” Pandas

Parquet file in 
remote blob

“read” “write”



Analytics workload
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Storage / 
transfer

In-memory “transform” In-memory

Storage / 
transfer

“read” “write”



Information is both stored and used

● save space

● be cross-language compatible

● long-term storage
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Storage formats are optimized to

● hit fast instruction sets

● be cache friendly

● be parallelizable

In-memory formats are optimized to



“Read” uses IO and CPU
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Storage

In-memory

“read”

Parquet, ORC, Avro...

Spark, Numpy…

Deserialize Flatbuffers, Snappy, type cast

Read bytes File system, HTTPS, unix sockets



CPUs sleep and run

● CPU sleeps

● Use of external resources

● Single-thread “concurrentable”
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IO-bounded (e.g. read)

● CPU runs

● Primarily CPU and RAM

● Multi-core “parallelizable”

CPU-bounded (e.g. deserialize)



“Read” uses IO and CPU
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Storage

In-memory

“read”

Parquet, ORC, Avro...

Spark, Numpy…

Deserialize

Read bytes

Flatbuffers, Snappy, math

File system, HTTPS, unix sockets



“Transform” uses IO and CPU
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In-memory “transform” In-memory

“Write” to nodes “Read” from nodes

WaitSerialize Write bytes Read bytes Deserialize



In summary

• Storage vs compute induce different formats

• Analytics is a mix of CPU- and IO-bounded tasks

• Control over CPU and IO seems quite important…
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Outline

● Anatomy of Analytics Workloads

● Arrow and Rust for Analytics

● Demo and Benchmarks
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Apache Arrow
In-memory columnar format (and IPC specification)
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Storage

In-memory

“read”

Parquet, ORC, Avro...

Spark, Numpy, Arrow…

Deserialize Flatbuffers, Snappy, type cast

Read bytes File system, HTTPS, unix sockets



Rust Programming Language

● Easy to develop

● Easy to parallelize

● Easy to hit modern instruction sets

● Easy to package and distribute

The most loved language in SO survey for 7(!) consecutive years
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Arrow with Rust
Arrow2 - Rust Library

● Complete Arrow specification

● Interoperability with Parquet, Avro, ODBC, CSV, JSON, etc.

● Fast

● Safe and sound (memory, data races, etc.)

● Complete separation between IO- and CPU-bounded APIs
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https://github.com/jorgecarleitao/arrow2

https://github.com/jorgecarleitao/parquet2

https://github.com/jorgecarleitao/arrow2
https://github.com/jorgecarleitao/parquet2


Demo

● Example of simple math

● Write a parquet file (fast)
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Who uses arrow2

● Databend, https://databend.rs/

● Materialize, https://materialize.com/

● Graphana SDK, https://github.com/grafana/grafana-plugin-sdk-rust

● Polars, https://pola.rs
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https://databend.rs/
https://materialize.com/
https://github.com/grafana/grafana-plugin-sdk-rust
https://pola.rs


Polars
Blazingly fast DataFrame API

● Rust Native with Apache Arrow

● API in Python, Node.js and Rust

● Fast

https://github.com/pola-rs/polars/

https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and

-python
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https://github.com/pola-rs/polars/
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python


Benchmarks
H2O.ai (groupby 50Gb)
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https://h2oai.github.io/db-benchmark/

https://h2oai.github.io/db-benchmark/


Benchmarks
H2O.ai (join 5Gb)
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https://h2oai.github.io/db-benchmark/

https://h2oai.github.io/db-benchmark/


Benchmarks
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Benchmarks
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TPCH SF-10 (“read” + “transform”) from parquet



In summary

• Information is stored and used in analytics

• Arrow with Rust are very suited for analytics workloads

• Impressive developments that will change the analytics landscape
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And more…
join us to learn and have fun :)
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● https://github.com/jorgecarleitao/arrow2
● https://github.com/jorgecarleitao/parquet2
● https://pola.rs
● https://databend.rs/
● https://materialize.com/
● https://github.com/DataEngineeringLabs/arrow2-convert
● https://databricks.com/dataaisummit/session/polars-blazingly-fast-dat

aframes-rust-and-python

https://github.com/jorgecarleitao/arrow2
https://github.com/jorgecarleitao/parquet2
https://pola.rs
https://databend.rs/
https://materialize.com/
https://github.com/DataEngineeringLabs/arrow2-convert
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python
https://databricks.com/dataaisummit/session/polars-blazingly-fast-dataframes-rust-and-python
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Jorge Leitao
Data scientist

Thank you


