
Learn How to Build
Real-Time Warehouses on
Lakehouse

1

Dillon Bostwick
Sr. Solutions Architect, Databricks

So Fresh and So Clean

Franco Patano
Lead Product Specialist, Databricks

Shannon Barrow
Sr. Solutions Architect, Databricks

2

Data Platform Needs

ETL
Query

Serving
Warehouse
Data Lake
Lakehouse

ETL,Storage and Query Serving

Delta Live Tables Delta Lake Databricks SQL

Data Warehousing is ETL/ELT and Query Serving

But the reality is not so simple
Maintaining data quality and reliability at scale is complex and brittle

Data Lake

CSV,
JSON, TXT…

Kinesis

BI &
Reporting

Streaming
Analytics

Data Science
& ML

Data
Warehouse

Data
Lake

An open approach to bringing
data management and

governance to data lakes

Better reliability with transactions

48x faster data processing with indexing

Data governance at scale with
fine-grained access control lists

Delta Lake is the foundation of the Lakehouse
An open format storage layer built for lake-first architecture

ACID Transactions, Time travel, Schema enforcement

Python, SQL, R, Scala

Streaming & batch, Analytics & ML

Fine-grained, role-based access controls

Advanced indexing, Caching, Auto-tuning

Modern Data Warehousing on Databricks

Data Science &
Machine Learning

Databricks Machine Learning

Real time CDC

Stream Ingestion

Curated Data

Raw
Ingestion

and History

BRONZE

Filtered,
Cleaned,

Augmented

SILVER

Business
Aggregates &
Data Models

GOLD
Enterprise Reporting

and BI
SQL Analytics
& Warehouse

Databricks SQL

Databricks Notebooks, Delta Live Tables

ETL Partners

Data Governance powered by Databricks Unity Catalog

EDC

Serverless compute for Databricks SQL
Instant, elastic & zero-management compute

• Quickly setup instant, elastic SQL warehouse -
decoupled from storage - Powered by Photon

• Automatically determines instance types and
configuration for best price/perf (up to 12x)

• High concurrency built-in, automatic load
balancing

• Intelligent workload management and faster
reads from cloud storage

• Instant startup, greater availability, and 40%
average lower overall costs with serverless

Public Preview! Private Preview Coming Soon

In Preview

9

What/Who is TPC?

The TPC is a non-profit focused
on developing data-centric
benchmark standards and
disseminating objective,
verifiable data to the industry.

https://www.tpc.org/

https://www.tpc.org/

Widely known: TPC-DS
TPC-DS is a decision support benchmark that models several generally applicable aspects of a decision support system,
including queries and data maintenance. The benchmark provides a representative evaluation of performance as a general
purpose decision support system. A benchmark result measures query response time in single user mode, query throughput
in multi user mode and data maintenance performance for a given hardware, operating system, and data processing system
configuration under a controlled, complex, multi-user decision support workload. The purpose of TPC benchmarks is to provide
relevant, objective performance data to industry users. TPC-DS enables emerging technologies, such as Big Data systems, to
execute the benchmark. The TPC-DS Price/Performance metric is expressed as Price/QphDS@Size for Version 2 and
Price/kQphDS@Size for Version 3.

10

As Jim Gray and others already stated in a paper of 1985¹, “computer performance is difficult to quantify”. The only “reasonable metrics“ are
cost (price/performance) and throughput.

TPC-DS is a Query Serving benchmark of 99 different queries to determine
the price performance of a SQL Serving System.

Experiment
Can Databricks SQL Warehouses handle concurrency demands?

How would a SQL Endpoint/Warehouse scale when 10 parallel runs of
TPC-DS 99 Power run, repeated twice?

Large Serverless SQL Warehouse 1 to 10 Scaling

11

Results

12

Took 7 minutes to serve 1980
queries and cost $22 in total

Serverless is $.70 per DBU, and
the Large Warehouse scaled up to
7 clusters at its peak. running this
same workload on the best cloud
data warehouse on the market,
Snowflake, it would probably cost
around $37.

33 queries ran in 1 second or less!

TPC-DI

Data Integration (DI), also known as ETL, is the analysis,
combination, and transformation of data from a variety
of sources and formats into a unified data model
representation. Data Integration is a key element of
data warehousing lakehousing, application integration,
and business analytics.

http://www.tpc.org/tpcdi/default5.asp

Main Concepts of TPC-DI

TPC-DI uses data integration of a factitious Retail Brokerage Firm as model:
● Main Trading System
● Internal Human Resource System
● Internal Customer Relationship Management System
● Externally acquired data

Operations measured use the above model, but are not limited to those of a
brokerage firm

They capture the variety and complexity of typical DI tasks:
● Loading of large volumes of historical data
● Loading of incremental updates
● Execution of a variety of transformation types using various input types and various target types with inter-table relationships
● Assuring consistency of loaded data

Benchmark is technology agnostic

14

Why TPC-DI?

• Produces scales of files from GBs to TB
• Produces CSV, CDC, XML, and Text files
• Has historical and incremental CDC

Data Generator

15

• Transformations documented
• Dimensional Model for Analytics
• SCD Type 2
• Window calculations

Data Model

Implementation Reference Architecture

Bronze
RAW

Silver
STAGING

Gold
PRESENTATION

OLTP
CDC

Extract Auto Loader

HR DB
CSV Auto Loader

Prospect
List CSV Auto Loader

Financial
Newswire

Multi
Format Auto Loader

Customers
XML Auto Loader

MERGE
INTO

Concurrency and Consistency

Historical Load
Incremental Load

1
Incremental Load

2

Visibility Queries

Every 5 minutes

After the historical phase has loaded, during the incremental phases,
visibility queries are executed to ensure consistency during loading.

Delta handles this with optimistic concurrency with snapshot isolation

Select * from tables;

Select * from tables join
tables;

Implementing
TPC-DI Benchmark
on the Lakehouse

18

Shannon Barrow
Sr. Solutions Architect, Databricks

Context: What is Given vs What We Created

19

DimCustomer Example

• Historical data is read from XML
• Read only subset from XML since it is

shared with DimAccount
• Each XML record is only a single col update
• Additional complex logic
• History tracking (SCD Type 2)

Context: What is Given vs What We Created

20

DimCustomer Example

• Historical data is read from XML
• Read only subset from XML since it is

shared with DimAccount
• Each XML record is only a single col update
• Additional complex logic
• History tracking (SCD Type 2)

• Incremental data is read from TXT
• Different schema as historical XML
• History tracking (SCD Type 2) creates

complexities with Surrogate Keys and
consistency downstream

Context: What is Given vs What We Created

21

DimCustomer Example

Delta Lake

● Automatically Generated Identity
Columns meant Surrogate Keys are
created and managed under the hood

● Performance improvements to table
Merges, including Low Shuffle Merge,
helped enable the History tracking (SCD
Type 2) and SCD Type 0 merges

22

The Foundation That Makes it Possible

Surrogate Keys and History Tracking

● Generated Columns that were used as
Partitions kept data indexed for large
tables without time overhead of zorder

● Writes and target files sizes:
○ Optimized writes
○ delta.tuneFileSizesForRewrites for Incremental tables

Additional knobs to Improve Performance

Simplified Orchestration and Automation

In addition to the latest in Workflows we leveraged:

• Cluster Reuse - 1 single automated cluster, reused for all tasks
• Repos - Git integration allowed disparate teams to focus on

various parts of the code base and consume from arbitrary files
using a relative path

• Scripted workflow with Jinja - a fast, expressive, extensible
templating engine.

23

Databricks Workflows: Orchestrate anything, anywhere
Run diverse workloads for the full data and AI lifecycle, on any cloud

24

Demo

Traditional Notebook Workflow Results

• The TPC-DI has a rather confusing benchmark algorithm
• Simplified: TCO approach based on cost per row processed

These were the best performing combinations with On-Demand Pricing:

25

Run Time

(minutes) Worker Total Costs Price per Billion Rows Photon Graviton

36.4 m6gd.8xlarge $23.28 $1.44 No Yes

24.0 m6gd.4xlarge $24.47 $1.51 Yes Yes

Performance Dashboard

• SPOT instances drops this price to as low as 85 CENTS!

https://e2-dogfood.staging.cloud.databricks.com/sql/dashboards/a001a8ca-c216-4125-8aeb-4056bc01b106-tpc-di-benchmark-results?edit&o=6051921418418893

What did we learn?

• Photon consistently
>30% faster, even
for this non-optimal
workload

• TCO nearly equal
(5-10% higher)

• Leads to more
productivity for
approximately
same total cost

26

What is valuable for you to take away from our benchmarks?

Photon

• High Scale Factor:
• Very few “big” files
• Thousands of medium

size files (~128MB raw)

• Latest Gen General
Purp. tested best

• No need for
storage-optimized

• Higher core count
was more important
than extra memory

Worker Optimization

• Core counts being
equal: Opt for node
count over size (16
was the sweet spot)

• TCO dropped at
each sizing level:
• 96<64<48<32<16

• This was tested on
Scale Factor 10K w/
576 cores

• But why?...

Cluster Sizing

• These are
ARM-based
instances instead of
x86, currently only
served on AWS

• Cheaper instances
means 40% less
TCO than x86
instances

Graviton (AWS)

What were the obstacles?

• High Level of effort to
resolve Automated Audit
test issues

• Obscure business rules
buried in documentation
meant careful reading

• Had to “back in” to passing
results by interpreting the
expected results and
altering logic to match that
expected result

27

What could make your lives easier building similar pipelines?

Fixing Audit Issues

• Discovered DQ issues in
the raw files generated by
the datagen JAR, only after
dozens of hours debugging
code to satisfy the
automated audits

• Wasted effort sifting
through code with a fine
tooth comb only to realize
it was a DQ issue

Data Quality Issues

• While the novel
orchestration mechanism
delivers a fully scripting
pipeline via a single driver,
it is possibly as many lines
of code as the rest of the
code base combined

• Engineers have to update
the JSON with all new code
added to the pipeline,
adding extra complexity

Orchestration Complexity

28

How to Be Fresh and Clean

Sr. Solutions Architect, Databricks

29

So FRESH (AND|OR) So CLEAN:
Data Engineering Is About Tradeoffs

Semi-structured

Unstructured

Structured
Cloud
Data
Lake

ETL

ETL

ETL
ETL

ETL

Azure
Synapse

AWS Glue

Azure Data
Factory

Home-
Grown

ETL

Home-
Grown

ETL

Code
Generate

dAWS EMR

TASK
FLOW

TASK
FLOW TASK

FLOW

Data sharing

Business
Insights

Streaming
Sources

Cloud Object
Stores

SaaS
Applications

NoSQL

Relational
Databases

On-premises
systems

Data
Sources

Analytics

Machine
Learning

Streaming
Analytics

ETL

So FRESH (AND|OR) So CLEAN:
Data Engineering Is About Tradeoffs

Fresh: Data reflects the current business state in time for
actionable insight
Measured by: pipeline latency, refresh frequency, SLA %

For more info on these definitions and how to get started with DLT: https://tinyurl.com/freshandcleandais

Clean: Data is trusted by its consumers to accurately describe
the business state
Measured by: cost of wrong decision, time spent curating

Simple: Data is easily available to consumers at predictable
and effective cost
Measured by: time to insight, cost, MTBF, maintenance time

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

The Fresh and Clean
Trilemma

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

EDW
ETL

Single node
scripting

The Fresh and Clean
Trilemma

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

EDW
ETL

Cloud
DW / ELT

Single node
scripting

The Fresh and Clean
Trilemma

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

EDW
ETL

Low-latency
streaming

Cloud
DW / ELT

Single node
scripting

The Fresh and Clean
Trilemma

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

Lambda
architecture

EDW
ETL

Low-latency
streaming

Cloud
DW / ELT

Single node
scripting

The Fresh and Clean
Trilemma

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

Lambda
architecture

EDW
ETL

Lakehouse

Low-latency
streaming

Cloud
DW / ELT

Single node
scripting

The Fresh and Clean
Trilemma

EDW
ETL

Lakehouse

Can we take a traditional Data
Warehousing pipeline and give
it the Freshness and Simplicity
of Lakehouse?

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

What is Delta Live Tables?

Delta Live Tables (DLT) is the first ETL framework that uses a simple, declarative approach to
building reliable data pipelines. DLT automatically manages your infrastructure at scale so data
analysts and engineers can spend less time on tooling and focus on getting value from data.

Accelerate ETL
Development

Automatically manage
your infrastructure

Have confidence in
your data

Simplify batch and
streaming

Modern software engineering for ETL processing

Declaratively build data
pipelines with business logic and
chain table dependencies

Run in batch or streaming with
structured or unstructured data

Reuse ETL pipelines across
environments

/* Create a temp view on the accounts table */

CREATE STREAMING LIVE VIEW account_raw AS

SELECT * FROM cloud_files(“/data”, “csv”);

/* Stage 1: Bronze Table drop invalid rows */

CREATE STREAMING LIVE TABLE account_bronze AS

COMMENT "Bronze table with valid account ids"

SELECT * FROM fire_account_raw ...

/* Stage 2:Send rows to Silver, run validation rules */

CREATE BATCH LIVE TABLE account_silver AS

COMMENT "Silver Accounts table with validation checks"

SELECT * FROM fire_account_bronze ...

Bronze

Silver

Gold

Source

Declarative ETL Pipelines with DLT

Modern data engineering & ETL on the Lakehouse

• Easily build and orchestrate pipelines with
native observability, lineage, and quality
checks

• Quickly ingest business critical data in
batch or streaming

• Empower analytics engineers with dbt
integration and full ANSI SQL support for
SQL-based ETL

Load and transform at any scale with high quality data pipelines

TPC-DI Cluster Utilization on DLT

41

Ganglia Snapshot for 72 md5.2xl (16 core)

● Meet streaming SLAs with backlog-aware scaling
decisions - Monitor both, backlog metrics and
cluster utilization to scale up or down

● Reduce down time with automatic error handling
and easy replay

● Eliminate maintenance with automatic
optimizations of all Delta Live Tables

● Execute data pipeline workload on automatically
provisioned elastic Apache Spark™-based
compute clusters that parallelize jobs as well as
minimize data movement

Streaming source Spark executors

No/Small
backlog

& low
utilization

Backlog
monitoring

Utilization
monitoring

Scale
down

Automated scaling and fault tolerance with Delta Live Tables

Trust your data

Prevent bad data from flowing into
tables with Delta Expectations

Avoid and address quality errors with
pre-defined error policies (fail, drop,
alert or quarantine data)

Monitor data quality trends over time

/* Stage 1: Bronze Table drop invalid rows */

CREATE INCREMENTAL LIVE TABLE fire_account_bronze AS

(CONSTRAINT valid_account_open_dt EXPECT (acconut_dt is not null AND

(account_close_dt > account_open_dt)) ON VIOLATION DROP ROW

COMMENT "Bronze table with valid account ids"

SELECT * FROM fire_account_raw ...

/* Stage 1: Bronze Table drop invalid rows */

CREATE INCREMENTAL LIVE TABLE fire_account_bronze AS

(CONSTRAINT valid_account_open_dt EXPECT (account_dt is not null AND

(account_close_dt > account_open_dt)) ON VIOLATION DROP ROW

COMMENT "Bronze table with valid account ids"

SELECT * FROM fire_account_raw ...

DQ Notes: FactWatches Example

DQ Dashboard
44

https://e2-dogfood.staging.cloud.databricks.com/sql/dashboards/b6ce1b66-04a2-4722-88f5-7f88901195d3?o=6051921418418893

Bronze Silver

UPSERT
via CDC

UPSERT
via CDC

UPSERT
via CDCStreaming

Sources

Cloud Object
Stores

Structured
Data

Unstructured
Data

Semi-
structured

data

Data
Migration
Services

Data
Sources

Change Data Capture (CDC) with Delta Live Tables
APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates)

KEYS (id)

APPLY AS DELETE WHEN update=”_DEL”

SEQUENCE BY timestamp

STORED AS SCD TYPE 2

null

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}
{"id": 1, "ts": 2, "city": "Berkeley, CA"}

cities
city

Bekerly, CA
__starts_at

1
__ends_at

2

46

DEMO:
Delta Live Tables
TPC-DI Pipeline

Shannon Barrow
Sr. Solutions Architect, Databricks

DLT Results

• Caveats:
• DLT was not developed to be submitted for benchmark, therefore does not do audit

checks between historical -> incremental (batch-approach is not conducive to DLT)
• DLT does not use Scala, meaning the XML library couldn’t be loaded - so it is run as first

step in 2-stage Workflow. To account for this add ~3 minutes to times for DLT
• DLT optimizes pipeline better because of more granular orchestration

(table-level vs notebook level) - leads to better cluster utilization!

47

Revisiting best performing TCO combinations vs Traditional Notebooks

Run Time (minutes) Worker Total Costs Price per Billion Rows Photon Graviton Traditional or DLT

17.1 m5d.4xlarge $15.10 $0.93 No No DLT

10.7 m5d.2xlarge $16.25 $1.01 Yes No DLT

36.4 m6gd.8xlarge $23.28 $1.44 No Yes Traditional

24.0 m6gd.4xlarge $24.47 $1.51 Yes Yes Traditional

Performance Dashboard

• SPOT instances drops this price to as low as 58 CENTS!

https://e2-dogfood.staging.cloud.databricks.com/sql/dashboards/a001a8ca-c216-4125-8aeb-4056bc01b106-tpc-di-benchmark-results?edit&o=6051921418418893

Why pay up to 3x or more for just
warehousing, when you can build a data
platform that has ETL Orchestration
and Data Quality with Delta Live
Tables, Machine Learning and AI
built-in with Auto ML, and SQL
Warehouse serving, all on one copy of
your data in Delta Lake?

48

Franco Patano
Lead Product Specialist, Databricks

49

Partners

50

No coding required with Prophecy.io!

www.prophecy.io/prophecy-for-databricks

Special Thanks!

Alex Desroches,
Brad Barker,
David Radford,
Itai Weiss,
Joe Harris,
Joe Russell,
Lorin Dawson,
Max Nienu,
Nico Poggi

51

Q&A?

52

53

Thank you
Dillon Bostwick
Sr. Solutions Architect, Databricks

Franco Patano
Lead Product Specialist, Databricks

Shannon Barrow
Sr. Solutions Architect, Databricks

