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Data Warehousing is ETL/ELT and Query Serving



But the reality is not so simple
Maintaining data quality and reliability at scale is complex and brittle

Data Lake

CSV,
JSON, TXT…

Kinesis

BI & 
Reporting

Streaming
Analytics

Data Science 
& ML



 
 

Data 
Warehouse

Data 
Lake

An open approach to bringing 
data management and 

governance to data lakes

Better reliability with transactions

48x faster data processing with indexing

Data governance at scale with 
fine-grained access control lists



Delta Lake is the foundation of the Lakehouse
An open format storage layer built for lake-first architecture

ACID Transactions, Time travel, Schema enforcement

Python, SQL, R, Scala

Streaming & batch, Analytics & ML

Fine-grained, role-based access controls

Advanced indexing, Caching, Auto-tuning



Modern Data Warehousing on Databricks

Data Science & 
Machine Learning

Databricks Machine Learning

 

Real time CDC

Stream Ingestion

Curated Data

Raw 
Ingestion 

and History

BRONZE

Filtered, 
Cleaned, 

Augmented

SILVER

Business 
Aggregates & 
Data Models

GOLD
Enterprise Reporting 

and BI
SQL Analytics 
& Warehouse

Databricks SQL

Databricks Notebooks, Delta Live Tables 

ETL Partners

Data Governance powered by Databricks Unity Catalog

EDC



Serverless compute for Databricks SQL
Instant, elastic & zero-management compute 

• Quickly setup instant, elastic SQL warehouse - 
decoupled from storage - Powered by Photon

• Automatically determines instance types and 
configuration for best price/perf (up to 12x)

• High concurrency built-in, automatic load 
balancing

• Intelligent workload management and faster 
reads from cloud storage

• Instant startup, greater availability, and 40% 
average lower overall costs with serverless 

Public Preview! Private Preview Coming Soon

In Preview



9

What/Who is TPC?

The TPC is a non-profit focused 
on developing data-centric 
benchmark standards and 
disseminating objective, 
verifiable data to the industry.

https://www.tpc.org/ 

https://www.tpc.org/


Widely known: TPC-DS
TPC-DS is a decision support benchmark that models several generally applicable aspects of a decision support system, 
including queries and data maintenance. The benchmark provides a representative evaluation of performance as a general 
purpose decision support system. A benchmark result measures query response time in single user mode, query throughput 
in multi user mode and data maintenance performance for a given hardware, operating system, and data processing system 
configuration under a controlled, complex, multi-user decision support workload. The purpose of TPC benchmarks is to provide 
relevant, objective performance data to industry users. TPC-DS enables emerging technologies, such as Big Data systems, to 
execute the benchmark. The TPC-DS Price/Performance metric is expressed as Price/QphDS@Size for Version 2 and 
Price/kQphDS@Size for Version 3.
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As Jim Gray and others already stated in a paper of 1985¹, “computer performance is difficult to quantify”. The only “reasonable metrics“ are 
cost (price/performance) and throughput.

TPC-DS is a Query Serving benchmark of 99 different queries to determine 
the price performance of a SQL Serving System. 



Experiment
Can Databricks SQL Warehouses handle concurrency demands? 

How would a SQL Endpoint/Warehouse scale when 10 parallel runs of 
TPC-DS 99 Power run, repeated twice? 

Large Serverless SQL Warehouse 1 to 10 Scaling
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Results
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Took 7 minutes to serve 1980 
queries and cost $22 in total

Serverless is $.70 per DBU, and 
the Large Warehouse scaled up to 
7 clusters at its peak. running this 
same workload on the best cloud 
data warehouse on the market, 
Snowflake, it would probably cost 
around $37. 

33 queries ran in 1 second or less!



TPC-DI

Data Integration (DI), also known as ETL, is the analysis, 
combination, and transformation of data from a variety 
of sources and formats into a unified data model 
representation. Data Integration is a key element of 
data warehousing lakehousing, application integration, 
and business analytics.

http://www.tpc.org/tpcdi/default5.asp



Main Concepts of TPC-DI

TPC-DI uses data integration of a factitious Retail Brokerage Firm as model:
● Main Trading System
● Internal Human Resource System
● Internal Customer Relationship Management System
● Externally acquired data

Operations measured use the above model, but are not limited to those of a 
brokerage firm

They capture the variety and complexity of typical DI tasks:
● Loading of large volumes of historical data
● Loading of incremental updates
● Execution of a variety of transformation types using various input types and various target types with inter-table relationships
● Assuring consistency of loaded data

Benchmark is technology agnostic
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Why TPC-DI?

• Produces scales of files from GBs to TB
• Produces CSV, CDC, XML, and Text files
• Has historical and incremental CDC

Data Generator
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• Transformations documented
• Dimensional Model for Analytics
• SCD Type 2 
• Window calculations 

Data Model



Implementation Reference Architecture

Bronze
RAW

Silver
STAGING

Gold
PRESENTATION

OLTP
CDC 

Extract Auto Loader

HR DB
CSV Auto Loader

Prospect 
List CSV Auto Loader

Financial 
Newswire

Multi
Format Auto Loader

Customers
XML Auto Loader

MERGE 
INTO



Concurrency and Consistency 

Historical Load
Incremental Load 

1
Incremental Load 

2

Visibility Queries

Every 5 minutes

After the historical phase has loaded, during the incremental phases, 
visibility queries are executed to ensure consistency during loading.  

Delta handles this with optimistic concurrency with snapshot isolation

Select * from tables;

Select * from tables join 
tables;



Implementing 
TPC-DI Benchmark 
on the Lakehouse
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Shannon Barrow
Sr. Solutions Architect, Databricks



Context: What is Given vs What We Created
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DimCustomer Example

• Historical data is read from XML
• Read only subset from XML since it is 

shared with DimAccount
• Each XML record is only a single col update
• Additional complex logic
• History tracking (SCD Type 2)



Context: What is Given vs What We Created
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DimCustomer Example

• Historical data is read from XML
• Read only subset from XML since it is 

shared with DimAccount
• Each XML record is only a single col update
• Additional complex logic
• History tracking (SCD Type 2)

• Incremental data is read from TXT
• Different schema as historical XML
• History tracking (SCD Type 2) creates 

complexities with Surrogate Keys and 
consistency downstream



Context: What is Given vs What We Created
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DimCustomer Example



Delta Lake

● Automatically Generated Identity 
Columns meant Surrogate Keys are 
created and managed under the hood

● Performance improvements to table 
Merges, including Low Shuffle Merge, 
helped enable the History tracking (SCD 
Type 2) and SCD Type 0 merges
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The Foundation That Makes it Possible

Surrogate Keys and History Tracking

● Generated Columns that were used as 
Partitions kept data indexed for large 
tables without time overhead of zorder

● Writes and target files sizes:
○ Optimized writes
○ delta.tuneFileSizesForRewrites for Incremental tables

Additional knobs to Improve Performance



Simplified Orchestration and Automation

In addition to the latest in Workflows we leveraged:

• Cluster Reuse - 1 single automated cluster,  reused for all tasks
• Repos - Git integration allowed disparate teams to focus on 

various parts of the code base and consume from arbitrary files 
using a relative path

• Scripted workflow with Jinja - a fast, expressive, extensible 
templating engine.
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Databricks Workflows: Orchestrate anything, anywhere
Run diverse workloads for the full data and AI lifecycle, on any cloud
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Demo



Traditional Notebook Workflow Results

• The TPC-DI has a rather confusing benchmark algorithm
• Simplified: TCO approach based on cost per row processed

These were the best performing combinations with On-Demand Pricing:
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Run Time 

(minutes) Worker Total Costs Price per Billion Rows Photon Graviton

36.4 m6gd.8xlarge $23.28 $1.44 No Yes

24.0 m6gd.4xlarge $24.47 $1.51 Yes Yes

Performance Dashboard

• SPOT instances drops this price to as low as 85 CENTS!

https://e2-dogfood.staging.cloud.databricks.com/sql/dashboards/a001a8ca-c216-4125-8aeb-4056bc01b106-tpc-di-benchmark-results?edit&o=6051921418418893


What did we learn?

• Photon consistently 
>30% faster, even 
for this non-optimal 
workload

• TCO nearly equal 
(5-10% higher)

• Leads to more 
productivity for 
approximately 
same total cost
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What is valuable for you to take away from our benchmarks?

Photon

• High Scale Factor:
• Very few “big” files
• Thousands of medium 

size files (~128MB raw)

• Latest Gen General 
Purp. tested best

• No need for 
storage-optimized

• Higher core count 
was more important 
than extra memory

Worker Optimization 

• Core counts being 
equal: Opt for node 
count over size (16 
was the sweet spot)

• TCO dropped at 
each sizing level:
• 96<64<48<32<16

• This was tested on 
Scale Factor 10K w/ 
576 cores

• But why?...

Cluster Sizing

• These are 
ARM-based 
instances instead of 
x86, currently only 
served on AWS

• Cheaper instances 
means 40% less 
TCO than x86 
instances

Graviton (AWS)



What were the obstacles?

• High Level of effort to 
resolve Automated Audit 
test issues 

• Obscure business rules 
buried in documentation 
meant careful reading

• Had to “back in” to passing 
results by interpreting the 
expected results and 
altering logic to match that 
expected result 
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What could make your lives easier building similar pipelines?

Fixing Audit Issues

• Discovered DQ issues in 
the raw files generated by 
the datagen JAR, only after 
dozens of hours debugging 
code to satisfy the 
automated audits

• Wasted effort sifting 
through code with a fine 
tooth comb only to realize 
it was a DQ issue

Data Quality Issues

• While the novel 
orchestration mechanism 
delivers a fully scripting 
pipeline via a single driver, 
it is possibly as many lines 
of code as the rest of the 
code base combined

• Engineers have to update 
the JSON with all new code 
added to the pipeline, 
adding extra complexity

Orchestration Complexity
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How to Be Fresh and Clean

Sr. Solutions Architect, Databricks



29

So FRESH (AND|OR) So CLEAN:
Data Engineering Is About Tradeoffs

Semi-structured

Unstructured

Structured
Cloud 
Data 
Lake

ETL

ETL

ETL
ETL

ETL

Azure 
Synapse

AWS Glue

Azure Data 
Factory

Home-
Grown 

ETL

Home-
Grown 

ETL

Code 
Generate

dAWS EMR

TASK
FLOW

TASK
FLOW TASK

FLOW

Data sharing

Business
Insights

Streaming
Sources

Cloud Object 
Stores

SaaS 
Applications

NoSQL

Relational 
Databases

On-premises 
systems

Data 
Sources

Analytics

Machine
Learning

Streaming
Analytics

ETL



So FRESH (AND|OR) So CLEAN:
Data Engineering Is About Tradeoffs

Fresh: Data reflects the current business state in time for 
actionable insight
Measured by: pipeline latency, refresh frequency, SLA %

For more info on these definitions and how to get started with DLT: https://tinyurl.com/freshandcleandais

Clean: Data is trusted by its consumers to accurately describe 
the business state
Measured by: cost of wrong decision, time spent curating

Simple: Data is easily available to consumers at predictable 
and effective cost
Measured by: time to insight, cost, MTBF, maintenance time



Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

The Fresh and Clean 
Trilemma
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(Real-time)

Simple
(Cost-effective)

EDW 
ETL

Single node 
scripting

The Fresh and Clean 
Trilemma
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Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

Lambda 
architecture
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Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)

Lambda 
architecture

EDW 
ETL

Lakehouse

Low-latency 
streaming

Cloud 
DW / ELT

Single node 
scripting

The Fresh and Clean 
Trilemma



EDW
ETL

Lakehouse

Can we take a traditional Data 
Warehousing pipeline and give 
it the Freshness and Simplicity 
of Lakehouse?

Clean
(Accurate)

Fresh
(Real-time)

Simple
(Cost-effective)



What is Delta Live Tables?

Delta Live Tables (DLT) is the first ETL framework that uses a simple, declarative approach to 
building reliable data pipelines. DLT automatically manages your infrastructure at scale so data 
analysts and engineers can spend less time on tooling and focus on getting value from data. 

Accelerate ETL 
Development

Automatically manage 
your infrastructure 

Have confidence in 
your data

Simplify batch and 
streaming

Modern software engineering for ETL processing



Declaratively build data 
pipelines with business logic and 
chain table dependencies

Run in batch or streaming with 
structured or unstructured data 

Reuse ETL pipelines across 
environments 

/* Create a temp view on the accounts table */

CREATE STREAMING LIVE VIEW account_raw AS

SELECT * FROM cloud_files(“/data”, “csv”);

/* Stage 1: Bronze Table drop invalid rows */

CREATE STREAMING LIVE TABLE account_bronze AS

COMMENT "Bronze table with valid account ids"

SELECT * FROM fire_account_raw ...

/* Stage 2:Send rows to Silver, run validation rules */ 

CREATE BATCH LIVE TABLE account_silver AS

COMMENT "Silver Accounts table with validation checks"

SELECT * FROM fire_account_bronze ...

Bronze

Silver

Gold

Source

Declarative ETL Pipelines with DLT



Modern data engineering & ETL on the Lakehouse

• Easily build and orchestrate pipelines with 
native observability, lineage, and quality 
checks

• Quickly ingest business critical data in 
batch or streaming

• Empower analytics engineers with dbt 
integration and full ANSI SQL support for 
SQL-based ETL
 

Load and transform at any scale with high quality data pipelines 



TPC-DI Cluster Utilization on DLT
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Ganglia Snapshot for 72 md5.2xl (16 core)



● Meet streaming SLAs with backlog-aware scaling 
decisions - Monitor both, backlog metrics and 
cluster utilization to scale up or down

● Reduce down time with automatic error handling 
and easy replay

● Eliminate maintenance with automatic 
optimizations of all Delta Live Tables

● Execute data pipeline workload on automatically 
provisioned elastic Apache Spark™-based 
compute clusters that parallelize jobs as well as 
minimize data movement

Streaming source Spark executors

No/Small 
backlog 

&  low 
utilization

Backlog 
monitoring

Utilization 
monitoring

Scale
down

Automated scaling and fault tolerance with Delta Live Tables 



Trust your data

Prevent bad data from flowing into 
tables with Delta Expectations 

Avoid and address quality errors with 
pre-defined error policies (fail, drop, 
alert or quarantine data) 

Monitor data quality trends over time

/* Stage 1: Bronze Table drop invalid rows */

CREATE INCREMENTAL LIVE TABLE fire_account_bronze AS

( CONSTRAINT valid_account_open_dt EXPECT (acconut_dt is not null AND 

(account_close_dt > account_open_dt)) ON VIOLATION DROP ROW 

COMMENT "Bronze table with valid account ids"

SELECT * FROM fire_account_raw ...

/* Stage 1: Bronze Table drop invalid rows */

CREATE INCREMENTAL LIVE TABLE fire_account_bronze AS

( CONSTRAINT valid_account_open_dt EXPECT (account_dt is not null AND 

(account_close_dt > account_open_dt)) ON VIOLATION DROP ROW 

COMMENT "Bronze table with valid account ids"

SELECT * FROM fire_account_raw ...



DQ Notes: FactWatches Example

DQ Dashboard
44

https://e2-dogfood.staging.cloud.databricks.com/sql/dashboards/b6ce1b66-04a2-4722-88f5-7f88901195d3?o=6051921418418893


Bronze Silver

UPSERT 
via CDC

UPSERT 
via CDC

UPSERT 
via CDCStreaming 

Sources 

Cloud Object 
Stores 

Structured 
Data

Unstructured 
Data  

Semi-
structured 

data

Data 
Migration 
Services

Data 
Sources 

Change Data Capture (CDC) with Delta Live Tables
APPLY CHANGES INTO LIVE.cities

FROM STREAM(LIVE.city_updates) 

KEYS (id)

APPLY AS DELETE WHEN update=”_DEL”

SEQUENCE BY timestamp

STORED AS SCD TYPE 2 

null

city_updates

{"id": 1, "ts": 1, "city": "Bekerly, CA"}
{"id": 1, "ts": 2, "city": "Berkeley, CA"}

cities
city

Bekerly, CA
__starts_at

1
__ends_at

2
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DEMO:
Delta Live Tables 
TPC-DI Pipeline

Shannon Barrow
Sr. Solutions Architect, Databricks



DLT Results

• Caveats: 
• DLT was not developed to be submitted for benchmark, therefore does not do audit 

checks between historical -> incremental (batch-approach is not conducive to DLT)
• DLT does not use Scala, meaning the XML library couldn’t be loaded - so it is run as first 

step in 2-stage Workflow.  To account for this add ~3 minutes to times for DLT 
• DLT optimizes pipeline better because of more granular orchestration 

(table-level vs notebook level) - leads to better cluster utilization!
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Revisiting best performing TCO combinations vs Traditional Notebooks

Run Time (minutes) Worker Total Costs Price per Billion Rows Photon Graviton Traditional or DLT

17.1 m5d.4xlarge $15.10 $0.93 No No DLT

10.7 m5d.2xlarge $16.25 $1.01 Yes No DLT

36.4 m6gd.8xlarge $23.28 $1.44 No Yes Traditional

24.0 m6gd.4xlarge $24.47 $1.51 Yes Yes Traditional

Performance Dashboard

• SPOT instances drops this price to as low as 58 CENTS!

https://e2-dogfood.staging.cloud.databricks.com/sql/dashboards/a001a8ca-c216-4125-8aeb-4056bc01b106-tpc-di-benchmark-results?edit&o=6051921418418893


Why pay up to 3x or more for just 
warehousing, when you can build a data 
platform that has ETL Orchestration 
and Data Quality with Delta Live 
Tables, Machine Learning and AI 
built-in with Auto ML, and SQL 
Warehouse serving, all on one copy of 
your data in Delta Lake?
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Franco Patano
Lead Product Specialist, Databricks
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Partners
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No coding required with Prophecy.io!

www.prophecy.io/prophecy-for-databricks



Special Thanks!

Alex Desroches,
Brad Barker,
David Radford,
Itai Weiss,
Joe Harris,
Joe Russell,
Lorin Dawson,
Max Nienu,
Nico Poggi
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Q&A?
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Thank you
Dillon Bostwick
Sr. Solutions Architect, Databricks

Franco Patano
Lead Product Specialist, Databricks

Shannon Barrow
Sr. Solutions Architect, Databricks


