

Simplifying Migrations to Lakehouse

The Databricks Way

Ram Venkat

Senior Field Engineering Manager, Databricks

Ron Guerrero

Lead Partner Solutions Architect, Databricks

Product Safe Harbor Statement

This information is provided to outline Databricks' general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all.

Agenda

1. Challenges with legacy system

2. How we are reimagining migrations - The DBX way

3. The Migration journey at Databricks

4. Hadoop Migrations

Challenges of legacy platforms

Comparing Challenges

Just moving to cloud doesn't solve the problem!

Legacy Data & Al platform limitations:

- Proprietary
- Expensive
- Complex
- Inability to scale
- Tightly coupled architecture
- Limited innovation
- Siloed
- Product gaps to support future use cases

Cloud native Data & Al limitations

- Either proprietary or cloud specific
- Relatively expensive [# of services]
- Complex
- Scaling multiple services is challenging
- Two-tiered architecture storing raw data in the Data Lake and then ingesting it into a Data Warehouse or a ML service
- Fragmented experience
- Multiple services stitched together no unified experience

Challenges by workloads & personas

What customers are tackling in a holistic migration

Data engineering workloads

Data warehouse workloads

Data science workloads

- Platform is tightly coupled and difficult to scale
- Multiple services and systems have to scale together to operationalize a system or a use case
- Inability to innovate faster with unknown costs and performance of the data pipeline

- Huge data analytics backlog resulting from moving data across multiple platforms
- Lengthy data lifecycle
- Considerable amount of time spent in administering the platform
- Error prone process when multiple steps involved in data movement

- Performance comes at a huge cost
- Operational overhead to support production system is overwhelming
- Unable to justify Rol for new use cases
- Business losing confidence in IT on keeping them above competition

Key factors driving migrations

Databricks comes out on top for Data & Al platform migration

Key Factors		Begin with cloud native and figure out later	Migrate to Databricks on cloud
Cost	High	Relatively High	Low
Simplicity	Low	Relative by service	High
Features	Low	High	High
Innovation	Low	High	High
Open source	No	No	Yes
Multi-cloud support	No	No	Yes
Out of box support for multiple workloads and Personas	No	Offered through multiple services	Yes

If Data & AI is the lifeline of your business, how many migrations are you willing to undertake to get it right and would you settle for a sub-optimal platform?

How we are reimagining migrations - The DBX way

The Databricks way - Do it once and do it right

The only Data and Al target platform migration you will ever need!

Migrate to Lakehouse architecture- the only true unified data & Al platform architecture

True multi-cloud, multiple persona support, open source


Support your Engine1 and Engine2

Migrate core business and drive new avenues of future growth

Predictable model - Early Value Realization and Guaranteed Rol Minimize after-migration risk, Lower TCO, Eliminate Tech debt

The Lakehouse

Simple. Open. Collaborative.

- Lake-first approach that builds upon where the freshest, most complete data resides
- AI/ML from the ground up
- Multi-cloud & Inter-cloud capabilities
- Support for all migration use cases on a single platform:
 - Data engineering
 - Data warehousing
 - Real time streaming
 - Data science and ML
- Built on **open source** and open standards

Unstructured, semi-structured, structured, and streaming data

Migrations expertise

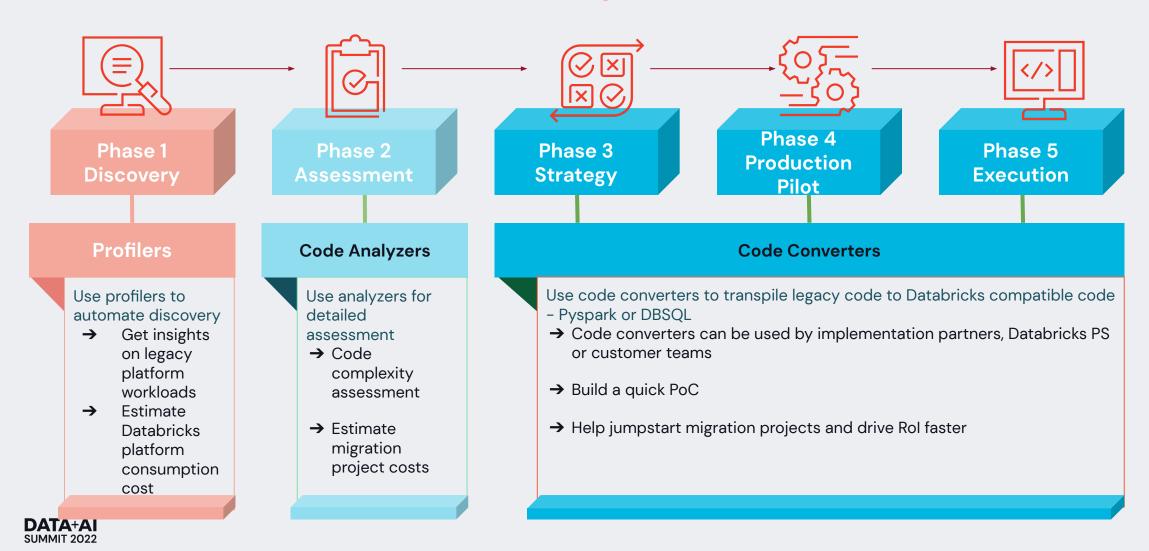
Optimal pathway with right technology mapping

Migration architecture is consistent & predictable across clouds supporting all workload migrations

Code compatibility and interoperability

Retain code or automate your code migration to your choice of programming language, bring your IDE's and Notebooks

Tight integration with our Partner ecosystem


Augment or compliment with partner integration tools after migration for DE, DW or ML workloads

Databricks Migration Journey

Migration Methodology

Automation to accelerate different migrations phases

Hadoop Migrations

Databricks success in migrations

Our customer stories depicts the success

300+ Successful Hadoop Migrations to Databricks

600+ person years of Hadoop experience in-house

Methodical framework with automation and transformative migration capabilities

CBC/Radio-Canada uses Databricks Lakehouse to deliver audience-centric programs that delight and retain listeners.

Use Case

- Customer Retention
- Customer Segmentation
- Rigid Hadoop system led to uncontrollable costs

Why Databricks?

- Lakehouse allows "data warehouse-like" interaction with tables, enabling streamlined workflows
- Delta Lake provides a common data layer to bridge gaps between engineers & analysts
- Databricks SQL enables new insights into their digital audiences

Impact

- 50% reduction in time to insight
- More visibility into digital audiences
- Ability to develop strategies and services that boost engagement and retention

CVS Health uses Databricks to provide highly-personalized pharmacy recommendations to its customers, improving medication adherence.

Use Case

- Personalized pharmacy and store experiences
- Legacy Hadoop infrastructure complex, unable to scale and support the need to understand behaviors of customer segments

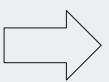
Why Databricks?

- Flexible, cloud-based platform can spin up clusters supporting multiple use cases without hardware constraints
- Data teams work together in a unified environment and MLflow standardizes workflow
- Tableau integration delivers analysts visualization of financial and operational data

Impact

 Personalization at scale delivers better outcomes:
 1.6% improvement in medication adherence by CVS customers

Journey from Hadoop to Databricks



Automated Profiling and Analysis

Open Source Compatibility

Automated Code Migration

Supports JAR files and Notebook code 95%+ SQL compatibility with Hive/Impala* SQL Interface for non-spark users 3rd party tooling for Data and Code migration

^{*} observed with previous migrations

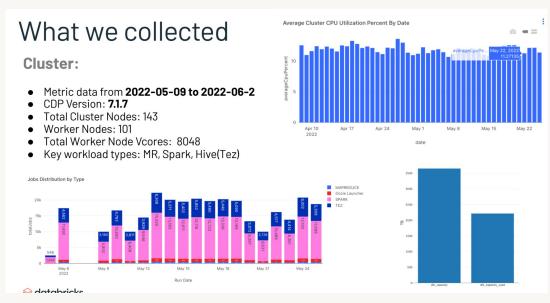
Key Tenets of Migration

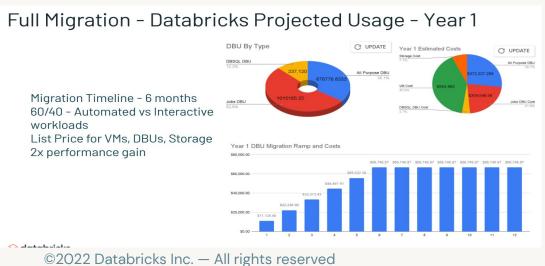
Workload	Hadoop component	Databricks component	
Data engineering and machine learning	Spark on YARN	Spark on Databricks	
ETL via SQL	Hive/Impala	Spark (SQL notebook) on Databricks	
BI/Analytics	Hive/Impala	Databricks SQL	
Stream processing	Spark DStream/Storm	Spark Structured Streaming	
Batch processing data	MapReduce	Spark on Databricks	
Machine learning	Zepplin/Cloudera Data Science Workbench	Databricks Notebook + ML Runtime + MLflow + Horovod	

Code Compatibility and Interoperability

Koalas

Open Source

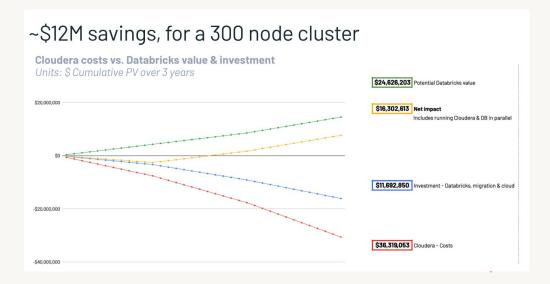



Partners

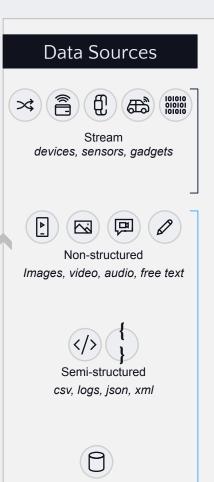
Technology Mapping

DATA+AI SUMMIT 2022

Hadoop Profiler



https://github.com/databricks-migrations/hadoop-profiler


Workload Breakdown

Workload Type	Unique Job Names	Associated Users	Databricks Equivalent	Notes
Spark	5565	8	Databricks Notebooks/JAR	Minor change, Spark Version 2-3
Hive	86149	1	Databricks Notebooks DBSQL	Minimal syntax changes Recommend Delta format
MapReduce	7 Includes Scoop Job	3	Databricks Notebooks / JAR	Requires refactor
Oozie	Shell: 2546 Hive: 1 Hive2: 14681 Spark: 5	47	ADF Airflow	Database Multi-task Jobs recommended for Databricks workloads only (notebooks, jars, etc)

Target State Architecture

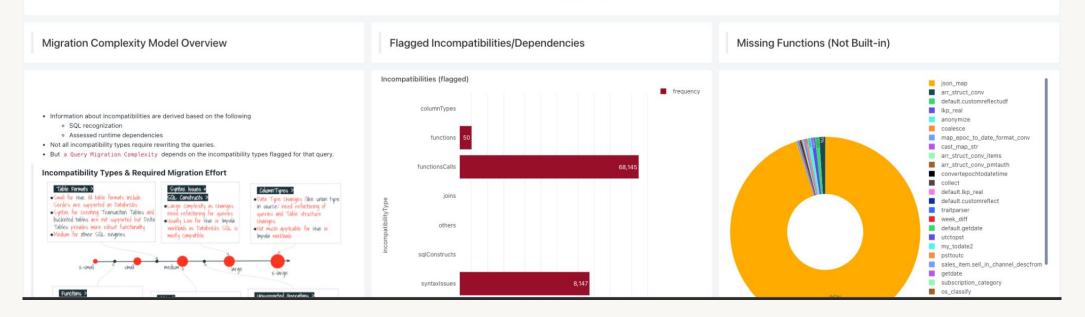
Single Security Context (IDP SSO) **Analytics Applications**

Store

Relational Databases

Target State Architecture

Single Security Context (IDP SSO) Data Sources Model and Serve Business User Store Process & train Ingest Storage Data science & Al (E) Auto Loader Stream DB SQL **Analytics** devices, sensors, gadgets Raw storage 3rd Party Stream Engines DB SQL mlflow 回 Structured Streaming **Applications** Non-structured Collaborative Relational Extracts Notebooks Images, video, audio, free text Cloud Storage JDBC Source Ingestion Engines **Business Insights** Data Engineering Semi-structured csv, logs, json, xml 3rd Party **ETL** Recommendations Orchestration Security Governance Admin 3rd Party Unity Catalog, Workflow UI / CLI / REST **Relational Databases** 3rd Party Or 3rd Party Unity Catalog



Unified Platform

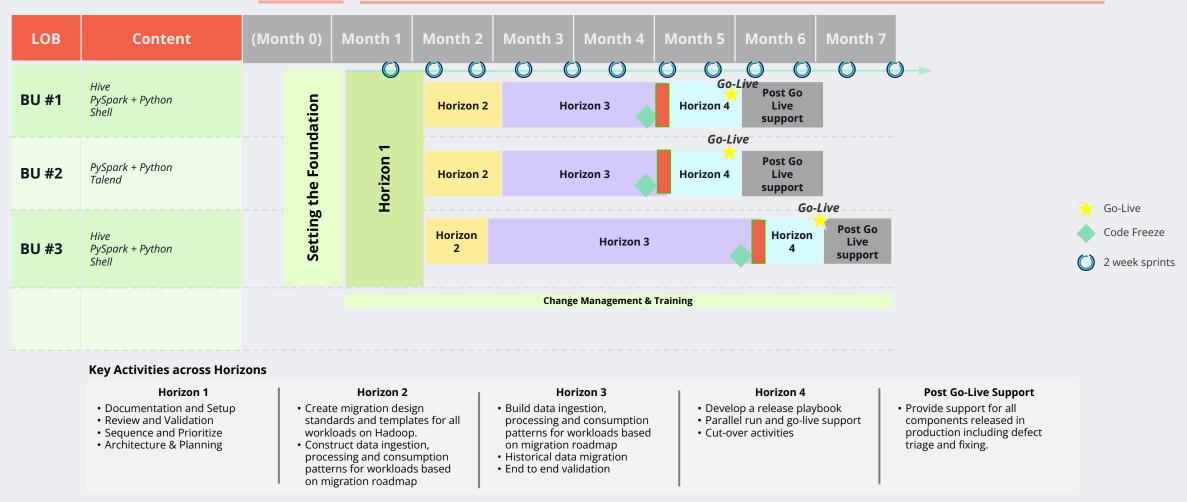
Code Assessment - SQL Analyzer

Incompatibilities

24

Code Migration

Databrick Professional Services


Partner SI Tooling

70% Automated Conversion Rate

Sample migration plan

The migration typically takes 4 to 7 months. Horizon 1 is common across all the LOBs, during which Hadoop workloads associated to LOBs would be prioritized to stagger the migration. The timelines include 1 month of parallel run and reconciliation prior to Go Live. 1 month of post Go Live support is provided to resolve migration/conversion related issues that may be detected after cutover.

Hadoop T-Shirt sizing guidance

Sizing guidance				
Workloads	Small	Medium	Large	Custom
Jobs	<3000 Jobs	3000-15000 Jobs	15000-50000 Jobs	>50000 Jobs
Data volume	<100 TB	100-500 TB	500TB - 1PB	>1PB
Node count [Baseline of 24 Vcores per node]	<50 Nodes	50-150 Nodes	150-500 Nodes	>500 Nodes
Avg % workload distribution	80% Spark and Hive/Impala 15-18% Mapreduce 2-5% Sqoop	80% Spark and Hive/Impala 15-18% Mapreduce 2-5% Sgoop	80-90% Spark and Hive/Impala 8-15% Mapreduce 2-5% Sqoop	80-90% Spark and Hive/Impala 8-15% Mapreduce 2-5% Sgoop
Timing Estimates	12-18 weeks	16-24 weeks	24-48 weeks	24+ weeks

Delivery Framework

Partners

Professional Services for Migration Assurance

Migration Guide Blog Posts Notebooks

Call to Action

Attend

Explore

Engage

DATA+AI SUMMIT 2022

Thank you

Ram Venkat - ram.venkat@databricks.com

Ron Guerrero - ron.guerrero@databricks.com