

## Okta's FIG **Automation Library** Simplify Global DataOps and MLOps

**Gregory Fee** Principal Architect, Okta

ORGANIZED BY Sdatabricks

## Agenda

- About Me
- The Typical Problems and Solutions I Have Seen
- The Approach at Okta using FIG



## About Me

- Current Role: Principal Architect, Data Science @ Okta
- Previous Roles
  - Technical Lead, Data and ML @ Lyft
  - Lead Architect, Apex @ Salesforce
  - Various Security and Developer Tools Roles @ Microsoft
- Personal
  - Love hiking, warm weather, walks on the beach, and home improvements
  - Amateur Mentalist!





# Remember what it was like to build your ML pipeline

ORGANIZED BY Sdatabricks

unreliable painful tedious error schedule hard exhausting unpleasant



## Great Tools But Something is Missing

- Quality of data and ML Tools is increasing rapidly
- Multitude of Commercial and Open Source offerings

But....

 Creating Data + ML Pipelines is still not a great experience





## **Required Technical Expertise**

#### **Bigger Companies**

- Data Engineers
- ML Engineers
- MLOps
- DataOps
- DevOps
- Data Scientist
- Data Analyst

....and they still struggle

#### **Smaller Companies**

• Struggle even more with a fraction of the people and gaps in skill sets



## **ML Processes**

#### What Do We Want?

- Data Pipelines
- Data Visualization
- Rapid Prototyping Environment
- Data Preparation
- ML Training
- ML Bulk Scoring
- ML Scoring Service
- ML Monitoring

#### How Are We Building It?

- Orchestration
- SQL/Spark
- Python/R
- Terraform
- So Much Glue Code



## When I Started At Okta

#### **Basic Infrastructure**

- Data Warehouse in Snowflake with No ETL
- Sagemaker Notebooks
- Unsupervised streaming model in production

#### Small Team

- 1 DevOps
- 3 Data Scientists
- Me



## Okta - Environment

#### Many Accounts

- 15+ Production Accounts
  - Services customer traffic
  - Multiple DBs + high volume events

#### • 4 Analytics Accounts

- Collect data from production accounts
- Support analytics/science/ML
  - Prototyping
  - Data Prep
  - Training/Batch Scoring



## Requirements

- Support many environments without constant tweaking
- Support Data Scientists without much Data/ML Engineer/Ops
- Seamless transition from prototyping to production
- Reduce need to scale Data/ML/MLOps/Etc Engineers linearly with Data Scientists
- Reduce cost of porting to new technologies
  - Snowflake -> Spark
  - Sagemaker -> Pytorch
  - AWS Step Functions -> Flyte



## Observations

- SQL mixes business logic and structural logic in a way that makes refactoring challenging
  - dbt is one attempt to fix this problem
- Glue code between systems is error-prone
- Multi-stage data + ML pipelines are difficult and time consuming to verify
- If the work is tedious then it can probably be automated



## **Use Case: Large Scale Threat Detection**

#### Goal

- Identify large scale credential-based and other abuse style attacks
- Label all incoming traffic as malicious/legitimate based on this knowledge
- Create ML decision engine to identify and block malicious requests in real-time

#### Approach

- Create a shared set of request level features
- Create a set of weak labeling functions that each identify known malicious request types
- Combine labels to create a ground truth data set
- Create supervised ML models based on ground truth



## Introducing FIG (Feature Infrastructure Generator)

#### What Do You Do?

- Specify your data transformation needs in a SQL-like configuration language
- Specify your model with Python just like you've been doing

#### What Do You Get?

- Auto-generated SQL for ad hoc queries
- Auto-generated data workflows
  - Daily ETL
  - Multi-day backfill
- Auto-generated Training/Scoring ML workflows
- Auto-generated full ML pipeline
  - Generate/transform data and (re)train models on a set schedule

## **ML Pipeline - Simplified**

#### **High Level Pipeline Steps**

- Target two entities
  - IP address
  - Autonomous System Number (ASN)
- Aggregate data over 1 week
- Join entity aggregation data to every request
- Apply weak label functions and combine into ground truth label
- Train supervised ML model

#### Environment

- Requests generate an event with IP and ASN plus other data
- Events are stored in Snowflake
- Sagemaker used for ML training



## **FIG Configuration Language**

#### Similarities to SQL

- Tabular data
- Row level data transforms
- Group-by and aggregation transforms

#### **Differences from SQL**

- Structured table types
  - Events, Features, Tables
- Temporal constructs
- ML Algorithm integration
- Data Quality Checks

## FIG – Import Event Definition

- Requests are captured in an event named 'user.session.start'
- Non-null data quality check on org\_id
- Support for row-level transformations like ARRAY\_SIZE
- Fields are unnested from a complex payload

```
DATA+AI
SUMMIT 2022
```

```
"name": "user_session_start",
"event_name": "user.session.start",
"fields": {
    "org_id": {
        "json": "org_id::string",
        "checks": "nonnull"
        ",
        "actor_id": "actor:id::string",
        "actor_type": "actor:type",
        "ip_address": "client:ip_address::string",
        "ip_chain": "client:ip_chain",
        "ip_chain_len": {
            "function": "@ARRAY_SIZE(@PARSE_JSON($ip_chain))"
```

"ip\_address\_originating": "client:ip\_chain[0]:ip::str "ip\_address\_connection": "client:ip\_chain[0]:ip::str: "raw\_user\_agent": "client:user\_agent:raw\_user\_agent:: "as\_org": "security\_context:as\_org", "as\_number": "security\_context:as\_number",

"anonymizer\_status": "metadata:ip\_metadata:value:anon "hosting\_facility": "metadata:ip\_metadata:value:hosts" "ip\_routing\_type": "metadata:ip\_metadata:value:ipRout" "org\_type": "metadata:ip\_metadata:value:org\_type::str "residence": "metadata:ip\_metadata:value:residence::k "proxy\_level": "metadata:ip\_metadata:value:proxy\_leve" "proxy\_type": "metadata:ip\_metadata:value:proxy\_leve" "device": "client:device",

"browser": "client:user\_agent:browser::string",
"os": "client:user\_agent:os::string",

## FIG – Aggregate Features

- Aggregate a week of events
- Group by the autonomous system number
- Apply aggregation functions
  - Count distinct
  - Count
  - o Sum
- Apply simple arithmetic functions
  - o Divide

IP features is similar, but group by

ip\_address

DATA+AI SUMMIT 2022

```
"name": "asn",
"granularity": "autonomous_system_number",
"granularity_type": "bigint",
"period": [
    "weekly_by_day"
"groups": [
       "source": "user_session_start",
        "granularity_field": "as_number",
        "features": {
            "ip_address_count": {
                "function": "@COUNT_DISTINCT($ip_address)",
                "type": "bigint"
            "login_count": {
                "function": "@COUNT(*)",
                "type": "bigint"
            "failure_count": {
                "function": "@SUM($is_failure)",
                "type": "bigint"
            },
            "failure_rate": {
                "function": "@DIVIDE($failure_count, $login_count)",
                "type": "float"
            },
            "threat_suspected_count": {
                "function": "@SUM($is_threat_suspected)",
                "type": "bigint"
            },
            "unknown_actor_count": {
                "function": "@SUM($is_unknown_actor)",
                "type": "bigint"
            },
            "unknown_raw_user_agent_count": {
```

## FIG – Request Features

- Use fields from event
- Join all ASN and IP features

Every request now includes the aggregated data from the preceding week automatically



```
"name": "request",
"granularity": "external_session_id",
"granularity_type": "string",
"groups": [
```

"source": "user\_session\_start",
"granularity\_field": "external\_session\_id",
"features": {

"timestamp": { "function": "\$start\_time", "type": "da "org\_id": { "function": "\$org\_id", "type": "string" } "ip\_address": { "function": "\$ip\_address", "type": "s "as\_number": { "function": "\$as\_number", "type": "int"

```
{
    "source": "asn",
    "granularity_match": {
        "field": "as_number",
        "period": "weekly_by_day"
    },
    "features": "*"
},
    "source": "ip",
    "granularity_match": {
        "field": "client_ip",
        "period": "weekly_by_day"
    },
        "features": "*"
```

## FIG – Labels

- Each request is labeled by a series of weak labeling function
  - Labeling can be performed by arbitrary boolean expressions, includes ML classifiers
- Weak labels are combined to form a strong label



## FIG – Model

- Use features from request and the strong label to generate a supervised model
- Uses Sagemaker "bring your own model" to support any ML algorithm

```
K
    "name": "request_threat_scorer",
    "location": "request_threat_scorer",
    "training_delay_delta_days": 3,
    "training_time_delta_days": 1,
    "input_features": [
            "family_name": "request",
            "feature names": {
                "session_definition": [
                    "ip_address",
                    "ip chain length",
                    "country",
                    "latitude",
                    "longitude",
                    "raw_user_agent",
                    "http_header_accept",
                    "http_header_accept_encoding",
                    "http_header_accept_language",
                    "browser",
                    "os",
                    "device",
                    "device_token_type",
                    "ssws_present_and_valid",
                    "outcome_result"
    "truth_label": {
        "source": "request_labels",
        "name": "plurality_vote",
    "output_features": [
        "request_threat_score"
}
```



## FIG – Usage

#### Sagemaker Notebook

- pip install feature\_generator
- feature\_generator.execute\_workflow()
- Validation to detect errors before anything runs
- If it validates then it is guaranteed to run without errors

#### AWS Stats for full Okta Version

- 450+ features
- 6 models
- 45 Step Function Workflows
- 739 Total Step Function steps
- 883 Snowflake SQL queries
- 353 Lambdas
- Glue code to transfer data from Snowflake to S3 for Sagemaker
- 6 Containers for model code

## **Evolution**

#### Add monthly aggregation period

#### **Traditional Approach**

- Cut'n'paste existing queries
- Edit the queries to target different the new period
- Add another join to main table
- Change unit tests to try to validate
- Execute and discover type-o
- Execute and discover that a month of data at once is too much data
- Try to refactor....



## Evolution

Add monthly aggregation period

#### FIG

- Add new period to aggregation
- Refer to that point in feature family
- Run validation
- Execute and done

Generated SQL uses incremental aggregation to avoid inefficient execution on longer time periods "name": "asn",
"granularity": "autonomous\_system\_number",
"granularity\_type": "bigint",
"period": [
 "weekly\_by\_day",
 "monthly\_by\_day"





## Key Takeaways

- Workflows and SQL
  - Great building blocks for creating ML pipelines
  - Clumsy and error-prone metaphors for specifying the ML pipelines
- Increase productivity by specifying in a higher level language
  - Tabular metaphor works well for scenarios where SQL is the traditional fit
  - Capture actions from different systems to allow generation of glue code
  - Capture error-prone areas that are likely to change often
  - Write validation rules to catch most frequent errors



## **FIG Future**

#### Short-Term

- Support for Spark SQL as a target to reduce processing costs
- Scoped backfills
  - Backfill that only computes a newly added column or changed column definition
- Production Integration
  - Automatically validate and deploy trained models
  - Automatically upload generated features to Feature Service

#### Long-Term

- Real-time feature generation
- ML experiment and artifact tracking
- Bootstrapping FIG config from SQL and Pandas
- Open Source!

### DATA+AI SUMMIT 2022

## Thank you

**Gregory Fee** Principal Architect, Data Science @ Okta

