
Simplify Global DataOps 

and MLOps

1

Gregory Fee
Principal Architect, Okta

Okta’s FIG 

Automation Library



Agenda

● About Me
● The Typical Problems and Solutions I Have Seen
● The Approach at Okta using FIG

2



About Me

● Current Role: Principal Architect, Data Science @ Okta
● Previous Roles

○ Technical Lead, Data and ML @ Lyft
○ Lead Architect, Apex @ Salesforce
○ Various Security and Developer Tools Roles @ Microsoft

● Personal
○ Love hiking, warm weather, walks on the beach, and home 

improvements
○ Amateur Mentalist!

3



Remember what it 
was like to build 
your ML pipeline

4



5



Great Tools But Something is Missing

● Quality of data and ML Tools is 
increasing rapidly

● Multitude of Commercial and Open 
Source offerings

But….

● Creating Data + ML Pipelines is still 
not a great experience

6



Required Technical Expertise

● Data Engineers
● ML Engineers
● MLOps
● DataOps
● DevOps
● Data Scientist
● Data Analyst

….and they still struggle

Bigger Companies

7

● Struggle even more with a fraction of 
the people and gaps in skill sets

Smaller Companies



ML Processes

● Data Pipelines
● Data Visualization
● Rapid Prototyping Environment
● Data Preparation
● ML Training
● ML Bulk Scoring
● ML Scoring Service
● ML Monitoring

What Do We Want?

8

● Orchestration 
● SQL/Spark
● Python/R
● Terraform
● So Much Glue Code

How Are We Building It?



When I Started At Okta

9

● Data Warehouse in Snowflake with No 
ETL

● Sagemaker Notebooks
● Unsupervised streaming model in 

production

Basic Infrastructure

● 1 DevOps
● 3 Data Scientists
● Me

Small Team



Okta - Environment

10

● 15+ Production Accounts
○ Services customer traffic
○ Multiple DBs + high volume events

● 4 Analytics Accounts
○ Collect data from production accounts
○ Support analytics/science/ML

■ Prototyping
■ Data Prep
■ Training/Batch Scoring

Many Accounts



Requirements

● Support many environments without constant tweaking
● Support Data Scientists without much Data/ML Engineer/Ops
● Seamless transition from prototyping to production
● Reduce need to scale Data/ML/MLOps/Etc Engineers linearly with Data 

Scientists
● Reduce cost of porting to new technologies

○ Snowflake -> Spark
○ Sagemaker -> Pytorch
○ AWS Step Functions -> Flyte

11



Observations

● SQL mixes business logic and structural logic in a way that makes 
refactoring challenging
○ dbt is one attempt to fix this problem

● Glue code between systems is error-prone
● Multi-stage data + ML pipelines are difficult and time consuming to 

verify
● If the work is tedious then it can probably be automated

12



Use Case: Large Scale Threat Detection

● Identify large scale credential-based 
and other abuse style attacks

● Label all incoming traffic as 
malicious/legitimate based on this 
knowledge

● Create ML decision engine to identify 
and block malicious requests in 
real-time

Goal

13

● Create a shared set of request level 
features

● Create a set of weak labeling functions 
that each identify known malicious 
request types

● Combine labels to create a ground 
truth data set

● Create supervised ML models based 
on ground truth

Approach



Introducing FIG (Feature Infrastructure 
Generator)

● Specify your data transformation 
needs in a SQL-like configuration 
language

● Specify your model with Python just 
like you’ve been doing

What Do You Do?

14

● Auto-generated SQL for ad hoc 
queries

● Auto-generated data workflows
○ Daily ETL
○ Multi-day backfill

● Auto-generated Training/Scoring ML 
workflows

● Auto-generated full ML pipeline
○ Generate/transform data and (re)train 

models on a set schedule

What Do You Get?



ML Pipeline - Simplified

15

● Target two entities
○ IP address
○ Autonomous System Number (ASN)

● Aggregate data over 1 week
● Join entity aggregation data to every 

request
● Apply weak label functions and 

combine into ground truth label
● Train supervised ML model 

High Level Pipeline Steps

● Requests generate an event with IP 
and ASN plus other data

● Events are stored in Snowflake
● Sagemaker used for ML training

Environment



FIG Configuration Language

● Tabular data
● Row level data transforms
● Group-by and aggregation transforms

Similarities to SQL

16

● Structured table types
○ Events, Features, Tables

● Temporal constructs
● ML Algorithm integration
● Data Quality Checks

Differences from SQL



FIG - Import Event 
Definition

17

● Requests are captured in an event 
named ‘user.session.start’

● Non-null data quality check on org_id
● Support for row-level transformations 

like ARRAY_SIZE
● Fields are unnested from a complex 

payload



FIG - Aggregate 
Features

18

● Aggregate a week of events
● Group by the autonomous system 

number
● Apply aggregation functions

○ Count distinct
○ Count
○ Sum

● Apply simple arithmetic functions
○ Divide

IP features is similar, but group by 
ip_address



FIG - Request 
Features

19

● Use fields from event
● Join all ASN and IP features

Every request now includes the 
aggregated data from the preceding week 
automatically



FIG - Labels

20

● Each request is labeled by a series of 
weak labeling function
○ Labeling can be performed by arbitrary 

boolean expressions, includes ML classifiers

● Weak labels are combined to form a 
strong label



FIG - Model

21

● Use features from request and the 
strong label to generate a supervised 
model

● Uses Sagemaker “bring your own 
model” to support any ML algorithm



FIG - Usage

22

● pip install feature_generator
● feature_generator.execute_workflow()
● Validation to detect errors before 

anything runs
● If it validates then it is guaranteed to 

run without errors

Sagemaker Notebook

● 450+ features
● 6 models
● 45 Step Function Workflows
● 739 Total Step Function steps
● 883 Snowflake SQL queries
● 353 Lambdas
● Glue code to transfer data from 

Snowflake to S3 for Sagemaker
● 6 Containers for model code

AWS Stats for full Okta Version



Evolution
Add monthly aggregation period

● Cut’n’paste existing queries
● Edit the queries to target different the new period
● Add another join to main table
● Change unit tests to try to validate
● Execute and discover type-o
● Execute and discover that a month of data at once is too much data
● Try to refactor….

23

Traditional Approach



Evolution
Add monthly aggregation period

● Add new period to aggregation
● Refer to that point in feature family
● Run validation
● Execute and done

Generated SQL uses incremental 
aggregation to avoid inefficient execution 
on longer time periods

FIG

24



Key Takeaways

● Workflows and SQL
○ Great building blocks for creating ML pipelines
○ Clumsy and error-prone metaphors for specifying the ML pipelines

● Increase productivity by specifying in a higher level language
○ Tabular metaphor works well for scenarios where SQL is the traditional fit
○ Capture actions from different systems to allow generation of glue code 
○ Capture error-prone areas that are likely to change often
○ Write validation rules to catch most frequent errors

25



FIG Future

● Support for Spark SQL as a target to 
reduce processing costs

● Scoped backfills
○ Backfill that only computes a newly added 

column or changed column definition

● Production Integration
○ Automatically validate and deploy trained 

models
○ Automatically upload generated features to 

Feature Service

26

Short-Term

● Real-time feature generation
● ML experiment and artifact tracking
● Bootstrapping FIG config from SQL and 

Pandas
● Open Source!

Long-Term



27

Gregory Fee
Principal Architect, Data Science @ Okta

Thank you


