
Serving Near Real-Time Features at Scale

Feng Xu
Software Engineer | Uber Marketplace
May, 2022

1



● Common Challenges
● Streaming Processing
● Streaming Platform
● Framework of Tuning

○ How to tune a pipeline with examples
● Key Takeaways
● Q&A

Agenda



At scale - data as a product

● Data onboarding and extension
● Data quality
● Data discovery
● ACL

3



At scale - define the serving contract

4

Use Case Data Freshness Latency of Access Data Range …

Backend 
Service 1

Most recent data At Second level Past 30 minutes

Backend 
Service 2

Most recent data At Millisecond level Past 1 hour

Trend 
Dashboard

Up to hours At Second Level Could be more than 1 
year

Ad-hoc Query Up to hours At Minute Level Could be more than 1 
year

…



Since Uber operates in the transportation domain, we need to have 
the visibility into the state of market as close to REAL-TIME as 
possible, and make informed decisions in a timely manner.

Next we focus on serving near real-time features with the streaming 
processing.

5



6



7

https://lucid.app/documents/edit/6e3429d9-d84d-4ddd-91fb-b23432eb1ec5/0?callback=close&name=slides&callback_type=back&v=311&s=442.18119685039375


8



Which solution, Java-based or uMetric Streaming?

Gairos uMetric Streaming
Typical Use 
Cases

● Enriched raw-data or 
non-metric related

● Customized window 
operation

● Feature computation on a 
time window

Formula is SQL based and 
common UDFs

Onboarding 
Effort

● Customized Java code
● One day to couple months

● Feature definition with YAML
● Fulfill with workflow

One day for 80% use case

9



What does the real-time data analytics platform look like?

Three major layers:

● Ingestion Layer
● Storage Layer
● Query Layer

Let’s go through each layer...

10



Where does the streaming data come from?

Microservices

Upstream 
Pipelines

Kafka

Yarn Clusters

Streaming 
Pipelines

Common Services

Ingestion Layer



Ingestion Layer Real-time Data layer

Where is the data stored?

Streaming 
Pipelines

Common Services 

KV ES

HIVE

write

Spark 
Pipelines

History Data layer

Pinot



Real-time Data layer

How to access the data?

KV ES

Real-time Query Layer

Query Service

Common Services

Pinot



Real-time Data layer

To put together

Microservices

Upstream 
Pipelines

Kafka

Yarn Clusters

Streaming 
Pipelines

Common Services

Ingestion Layer

KV ES

HIVE

Spark 
Jobs

History Data layer

Real-time Query Layer

Query 
Service

Backfill 
Pipelines



15

https://lucid.app/documents/edit/72c5c0d7-d9a6-4ff5-a85a-66aa4167e35a/0?callback=close&name=slides&callback_type=back&v=249&s=390.8582291338583


How to backfill?

16

https://lucid.app/documents/edit/36d03e13-0fa1-45b5-9edd-08d00704b71a/0?callback=close&name=slides&callback_type=back&v=568&s=720


How could 
the platform 
help 
developers 
if to have 
pipelines in 
Java?

17

https://lucid.app/documents/edit/58ce0812-7579-4b75-a7fa-84664b5087ea/0?callback=close&name=slides&callback_type=back&v=458&s=390.7180050677202


Some Numbers

18

Streaming Pipelines in Flink

100+
Data ingestion to Hive

1T
Messages per second

2M
Real time tables

80+



Time to explore some pipelines with scale concern

Demand & Supply Pipelines: 
● Eyeball minute & supply minute

● Time granularities: 1, 2, 4, 8, 16, 32 min, sliding by 1-minute

● Spatial Index: kring 0, 1, 2, 3, 4, 5, 10, 15, 20

19



Uber’s 
H3 
Spatial 
Index

20



Scales of Eyeballs

21

Count(Hexagon with Eyeball in a 
city)

70K
Ingestion rate of Eyeball per 
second

120K
Eyeball count of busiest 
Hexagon per minute

6.5K

Number of neighbours

1200+
Features per hexagon per minute

54
The count of windows where an 
event is computed

63



Logic 
Job 
DAG

22

Optimized DAG

https://lucid.app/documents/edit/cf42ba95-395b-40bb-952b-49568fa016a1/0?callback=close&name=slides&callback_type=back&v=545&s=720


23



Integration 
Test

Before Optimization

24



How to 
optimize 
streaming 
pipeline?

25

https://lucid.app/documents/edit/67e2a7c9-718a-470d-9f23-60c37d3303cd/0?callback=close&name=slides&callback_type=back&v=520&s=720


Tuning on network

● Only pass necessary fields from upstream to downstream

● Encode the parent product type uuid as a byte via an internal coding

● Apply filters and dedup operators as early as possible

● Replace the sliding window operators (for 2, 4, 8, 16, 32 min) with 

a customized FlatMap operator

26



Tuning on memory

● Use Tuple rather than POJO

● Integer is used at intermediate stage, reduced the message size from 

450+ bytes to less than 240 bytes

● Enable Object Reuse

27



Tuning on CPU

● Applied dedup before further aggregation

● Customized operator to replace sliding window, avoided the overhead 

for the window management and related de/ser costs

● Avoid the cost of boxing/unboxing

28



Optimized 
Job DAG

29

Before Optimization

https://lucid.app/documents/edit/5a750300-4898-4916-a870-013f9e9f6808/0?callback=close&name=slides&callback_type=back&v=331&s=720


30



Key Takeaways

● To be scalable: build a platform which enable engineers to focus on 

the business logic

● To have the scalable pipeline, you need to have a Framework of 

performance tuning

31



Further Readings

● H3: Uber’s Hexagonal Hierarchical Spatial Index
● The journey towards metric standardization
● Uber's Real-time Data Intelligence Platform At Scale: Improving Gairos 

Scalability/Reliability
● Building Scalable Streaming Pipelines for Near Real-Time Features

32

https://eng.uber.com/h3/
https://eng.uber.com/umetric/
https://eng.uber.com/gairos-scalability/
https://eng.uber.com/gairos-scalability/
https://eng.uber.com/building-scalable-streaming-pipelines/


Thank you! 
Q&A

33


