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At scale - data as a product

Data onboarding and extension
Data quality

Data discovery

ACL



At scale - define the serving contract

Use Case

Backend
Service 1

Backend
Service 2

Trend
Dashboard

Ad-hoc Query

Data Freshness

Most recent data

Most recent data

Up to hours

Up to hours

Latency of Access

At Second level

At Millisecond level

At Second Level

At Minute Level

Data Range

Past 30 minutes

Past 1 hour

Could be more than 1
year

Could be more than 1
year



Since Uber operates in the transportation domain, we need to have
the visibility into the state of market as close to REAL-TIME as
possible, and make informed decisions in a timely manner.

Next we focus on serving near real-time features with the streaming
processing.
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https://lucid.app/documents/edit/6e3429d9-d84d-4ddd-91fb-b23432eb1ec5/0?callback=close&name=slides&callback_type=back&v=311&s=442.18119685039375

Solutions-&-

Gairos (Java Based)

uMetric Streaming
Configuration Driven)



Which solution, Java-based or uMetric Streaming?

Gairos uMetric Streaming
Typical Use e Enriched raw-data or e Feature computation on a
Cases non-metric related time window
e Customized window
operation Formula is SQL based and

common UDFs

e (Customized Java code e Feature definition with YAML
Onboarding e One day to couple months | e  Fulfill with workflow
Effort
One day for 80% use case



What does the real-time data analytics platform look like?

Three major layers:

e Ingestion Layer
e Storage Layer
e Query Layer

Let's go through each layer...
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Where does the streaming data come from?

Upstream
Pipelines

Microservices

Ingestion Layer

Yarn Clusters

~

Streaming

_

S

Pipelines

Common Services




Where is the data stored?

Ingestion Layer

Streaming
Pipelines

write

Real-time Data layer
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How to access the data?

Real-time Data layer

Real-time Query Layer

Query Service

Common Services




To put together

Ingestion Layer

Real-time Data layer

Yarn Clusters
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Streaming
Pipelines

Backfill
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History Da}a layer

HIVE

Real-time Query Layer

Service
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https://lucid.app/documents/edit/72c5c0d7-d9a6-4ff5-a85a-66aa4167e35a/0?callback=close&name=slides&callback_type=back&v=249&s=390.8582291338583

How to backfill?

( O

Kafka

v

Hoover
Pipeline

[
Write
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Raw Data in
HIVE
Read

-« Read

Kappa Backfill
Spark
Pipeline

Ingestion Layer

Streaming
Pipelines

Kappa+ Backfill

—Write_>(

[

Flink Pipelines

Kappa Backfill

Backfill Topics

Flink Pipelines

Dependencies
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https://lucid.app/documents/edit/36d03e13-0fa1-45b5-9edd-08d00704b71a/0?callback=close&name=slides&callback_type=back&v=568&s=720

How could
the platform
help
developers
if to have
pipelines in
Java?

Dependency
Ingestion

Common
Operators

Integration
Test
Framework /

Pipeline
Management

Metrics,
Alerts
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https://lucid.app/documents/edit/58ce0812-7579-4b75-a7fa-84664b5087ea/0?callback=close&name=slides&callback_type=back&v=458&s=390.7180050677202

Streaming Pipelines in Flink

Some Numbers

Messages per second Data ingestion to Hive

Real time tables



Time to explore some pipelines with scale concern

Demand & Supply Pipelines:
e Eyeball minute & supply minute

e Time granularities: 1, 2, 4, 8, 16, 32 min, sliding by 1-minute
e Spatial Index: kring O, 1, 2, 3, 4, 5, 10, 15, 20
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Uber’s
H3
Spatial
Index
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Scales of Eyeballs

/0K 120K

Count(Hexagon with Eyeball in a Ingestion rate of Eyeball per
city) second

1200+

Number of neighbours Features per hexagon per minute

Eyeball count of busiest
Hexagon per minute

The count of windows where an
event is computed
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Logic S
Job
DAG
Zeroed
Input

Optimized DAG

2-Min

4-Min

32-Min

Kring
Smooth . Merge
™ on 1-Min GEMIT Windows
16-Min

Sink
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https://lucid.app/documents/edit/cf42ba95-395b-40bb-952b-49568fa016a1/0?callback=close&name=slides&callback_type=back&v=545&s=720

Oooh, Not Good

v Kafka Input & @

Consumer Lag Input message rate per Topic

1400

max avg

1400 = gairos-athena-flink-agg_demand_supply-processor-demand-agg - hp_optic_client-eyeballed 260K 145K
maxv avg = gairos-athena-flink-agg_demand_supply-processor-demand-agg - hp_optic_client-zeroed 108K 64K

= gairos-athena-flink-agg_demand_supply-processor-demand-agg 1296min  3.12min gairos-athena-flink-agg_demand_supply-processor-demand-agg 368K 209K




Before Optimization

Integration
Test




How to
optimize
streaming
pipeline?

Parallelism

Network
Remote iti
s Partition
CPU )
G
Metrics
Memory
: Garbage
Algorith
garim Collector
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https://lucid.app/documents/edit/67e2a7c9-718a-470d-9f23-60c37d3303cd/0?callback=close&name=slides&callback_type=back&v=520&s=720

Tuning on network

e Only pass necessary fields from upstream to downstream

e Encode the parent product type uuid as a byte via an internal coding
e Apply filters and dedup operators as early as possible

e Replace the sliding window operators (for 2, 4, 8, 16, 32 min) with

a customized FlatMap operator
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Tuning on memory

e Use Tuple rather than POJO
e Integer is used at intermediate stage, reduced the message size from
450+ bytes to less than 240 bytes

e Enable Object Reuse
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Tuning on CPU

e Applied dedup before further aggregation
e Customized operator to replace sliding window, avoided the overhead
for the window management and related de/ser costs

e Avoid the cost of boxing/unboxing
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Eyeballed

Input
s Kring
Optimized FlatMap
Dedup By Smooth for Slidin .
Job DAG ~ ClentlD —  onlMin — J —> Sink
Window
Zeroed
Input

Before Optimization
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https://lucid.app/documents/edit/5a750300-4898-4916-a870-013f9e9f6808/0?callback=close&name=slides&callback_type=back&v=331&s=720

Consumer Lag




Key Takeaways

e To be scalable: build a platform which enable engineers to focus on
the business logic
e To have the scalable pipeline, you need to have a Framework of

performance tuning

31



Further Readings

e H3: Uber’s Hexagonal Hierarchical Spatial Index
e The journey towards metric standardization
e Uber's Real-time Data Intelligence Platform At Scale: Improving Gairos

Scalability/Reliability
e Building Scalable Streaming Pipelines for Near Real-Time Features
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https://eng.uber.com/h3/
https://eng.uber.com/umetric/
https://eng.uber.com/gairos-scalability/
https://eng.uber.com/gairos-scalability/
https://eng.uber.com/building-scalable-streaming-pipelines/

Thank you!
Q&A



