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Storage at Rest
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Analytics at Rest
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Use Cases for Data at Rest
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Apache Spark - The De Facto Standard for Big Data at Rest @
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Delta Lake

Integrations

Open-source storage framework and open format for data analytics
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Real-time Data beats Slow Data.

Time-critical
Decisions

Information Half-Life
In Decision-Making

Traditional “Batch”
Business Intelligence

Value of Data to Dedision-Making

Real Seconds  Minutes Hours Days Months...
Time

Source: Perishable insights, Mike Gualtieri, Forrester
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Real-time Data beats Slow Data. )
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Data at Rest Data in Motion

Active Query: Passive Data: Active Data: Passive Query:
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Tables at Streams in
Rest Motion
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Data Streaming = Data at Rest + Data in Motion

USER PAYMENTS

JAY 42 CREATE TABLE credit scores AS
SUE 18 SELECT user, updateScore (p.amount)..

Payments Stream
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Apache Kafka - The De Facto Standard for Data in Motion (%)
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Data Lakehouse
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Lambda Architecture )

Option 1: Unified serving layer

Real-Time Layer
(Data Processing in Motion)
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Lambda Architecture )

Option 2: Separate serving layers

Real-Time Layer
(Data Processing in Motion)

 S— Real-time Query

Data

Source

/ Mixed Query
Batch Layer

(Data Processing at Rest)
me/hr \ T
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Kappa Architecture )

One pipeline for real-time and batch consumers

ms .
Real-Time App
Data Real-Time Layer (Data Processing in Motion)
Source | (Data Processing in Motion)
Storage
Batch App
(Data Processing at Rest)
min/hr

Storage
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Kappa @ Uber Uber

Kafka at Uber
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Confluent + Databricks Reference Architecture @
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Connected Car Infrastructure at Audi Gﬁ[ﬁfﬁ? @
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https://www.youtube.com/watch?v=yGLKi3TMJv8
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https://www.youtube.com/watch?v=yGLKi3TMJv8

Kappa Architecture for a Lakehouse with Kafka and Spark 6@
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Machine Learning Model Training @
with Spark MLlIib
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https://dev.to/siddhantpatro/spark-mllib-for-big-data-and-machine-learning-330j
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Model Deployment with @
Apache Kafka, ksqlDB and Spark MLlib

“CREATE STREAM AnomalyDetection AS
SELECT sensor_id, detectAnomaly(sensor_values)
FROM car_engine;“

User Defined Function (UDF)
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Stream Processing with Kafka or Spark? )

Kafka Streams /
ksqlDB

Component of the
data streaming infrastructure

Low latency
Focus on 24/7 operations

Lightweight, decoupled
microservices

KW

Spark
Streaming

Component of the data
analytics infrastructure

Strong integration with the rest
of the Spark ecossytem

Stream and batch

Machine Learning “embedded”
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Cloud-Native Deployment &)

- Elastic Infrastructure and Faster Time-to-Market

Y, kubernetes
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What is a (truly) fully-managed SaaS?

A Self-managed laaS Hosted Cloud Service Fully Managed SaaS
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AWS Cloud Outage hit Disney World Visitors...

Disney parks were already facing heat qy S peleren (b ustenous0 ) o
from fans. Then an AWS outage came

along

As Disney increasingly leans on apps for almost every facet of guest

experience, tech problems have a wide-reaching impact on expensive
days in the theme parks.

Not even Disney's vaunted magic could save its Disneyland park app from a
widespread Amazon Web Services outage temporarily wrecking the day for its guests
this week. But for fans of "the happiest place on Earth," this was just the latest in a
string of problems.

Disney has been increasingly pushing its theme park guests to use their mobile
devices to do everything from ordering food to accessing tickets and park
reservations. It has also put a new paid version of its FastPass system, now re-branded
Genie Plus, into the app. That means outages, including one that hit Walt Disney

World last week, can bring enjoyment in the parks to a screeching halt.

More and more Disneyland services require a mobile app.

https://www.cnet.com/tech/services-and-software/disney-parks-were-already-facing-heat-from-fans-then-an-aws-outage-came-along/ Disney Parks




Disaster Recovery - RPO and RTO )

System Operational
o with data from time pointo

Overall Recovery Goals
e

RPO RTO
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e >

Time - 5IC g >
T Bl
Actual Actual
Data Loss Recovery Period

RPO = Recovery Point Objective
RTO = Recovery Time Objective
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Use Cases for Hybrid and Multi-Cloud Data Lakehouses )

Disaster Recovery and High Availability:
Create a disaster recovery cluster, and fail
over to it during an outage.

Global and Multi-Cloud Replication: Move
and aggregate data across regions and

clouds. %
Data Sharing: Share data with other teams, V

lines-of-business, or organizations.

Data Migration: Migrate data and workloads
from one cluster to another (like from legacy
on-premise data warehouse to cloud-native
data lakehouse).

Data Replication
at Rest
or in Motion?
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Global Data Lakehouse across Edge and Hybrid Cloud

Streaming Replication between Kafka Clusters
Bridge to Databases, Data Lakes, Apps, APIs, SaaS

B 00 0n 0000,
....................

E g Disaster Recovery Global Data Streaming with

Operations with Replication and Cluster Linking
Multi-Region Clusters . .-
for RPO=0 and RTO~0 .-

Aggregation of Edge
Deployments with p:
Replication (Aggregation) O
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A data mesh for decentralized data products

Independent Data Products databricks
for Reporting, Analytics,
Data Streaming

Data
Product

A

For instance:
A KSQL microservice

databricks
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