
An efficient way to 
replicate Transactional data 
into Delta Lake

1

Dibyendu Karmakar
SDE 3, Swiggy

CDC System



OLAP queries can interfere 
with OLTP workloads which 
can have an impact on the 
transactional flow.

Side effects

Cross database joins are 
also not easy and typically 
span multiple transactional 
domain boundaries.

Cross database joins

Background
Demand for new efficient mechanisms to create a near real-time replica of 
a transactional database into an analytical database is growing.

Traditional transactional 
database replicas are not 
suitable for analytical 
workloads (OLAP).

Scalability

2



Motivation

• Analytical uses cases required transactional data in near real-time.
• ML models require near real-time data for feature generation
• Business reports, dashboards, alerting use cases requires these data with low latency.

3

Requirements for transactional data is growing organically to serve 
multiple use cases.



For incremental snapshot 
based ingestion systems 
there is a need for a 
solution which supports 
update and delete 
operations for existing 
data.

Consistency

Storing large numbers of 
small files affects the read 
latency.

Performance

Challenges
Challenges of building this kind of systems

To operate in real-time, 
there is a need for 
providing data consumers 
with the latest data. 
Typically there is a 12/24 
hours latency, which is high 
for most use cases.

Freshness

4



CDC

CDC is a design pattern that captures all the changes happening on the data instead of 
dealing with the entire dataset.

5

Change Data Capture

https://app.diagrams.net/?page-id=z18VZ6bCKDgvnQauugzw&scale=auto#G1PKENkFIRNmw0HqRTew-UodcYqhxnFVJW


Motivating use-case
Late arriving updates and deletes

6

An order lifecycle in swiggy contains the following 
phases.

➔ Majority of order updates are done within a span of 
an hour.

➔ Some of these updates (e.g. customer service 
related updates, refund reconciliation etc) may 
come for the orders created in the last 15 days.

Challenges —

• Finding the correct partition and the correct file 
where data is present, requires a lot of data scan.

• Ensuring data consistency while updating the file is 
difficult.

Pre-order system 
(Storefront) Fulfillments Delivery 

systems
Post-delivery 
systems

https://app.diagrams.net/?page-id=CBRuveth6VsGJDDgRlwj&scale=auto#G104VSnMXG8w8PpRIzH0l95KltQPaJpJxT


Approach
Concept

The principal idea of CDC based approach 
is to apply the changes on the analytical 
database in the same order as the 
transactional database does.

Order matters

7

Continuous and incrementally apply the 
changes based on the transaction type 
(insert / update / delete).

Type aware



Approach
Two major steps

Create a copy of the current state of the 
transactional database.

Initial load

8

Apply current changes incrementally on 
initial copy in the same order as they 
appear in the transactional database.

Continuous replication



Approach

9

Key consideration is the timeline

T1 T2 T3 T4

Initial Load

Continuous replication

Stop accepting writes or data loss

Continuous replication

Initial Load

No data loss. Handle duplicate data



High Level Design
High level system components in CDC systems.

10

https://app.diagrams.net/?page-id=HO8-UtBU8GCP76l19-SK&scale=auto#G1ByfLTrFmIlwNjBY507rw4dPMxJWWUbtK


Data processing

11

Cleaning and 
pre-processing

Clean and process 
the data to remove 
extra field, duplicates 
and orders the data.

Source

Read transaction 
logs from the 
source

Transformation

Modify the input 
data

Reconciliation
(Delta)

Merge or append

Data flow from source to destination



Databricks and Delta lake

12

Delta lake is our primary storage format layer

Autoloader

Helped us to reduce 
the execution time 
from 8 hrs to 30 
mins.

Delta merge

Powers the 
reconciliation 
process.

Schema evolution

Out-of-the-box 
schema evolution for 
backward 
compatible changes.

Optimize

Optimized the read 
jobs. Execution time 
reduced to 15 mins 
from 2 hrs.

Z-Order

Improved the read 
operations.

Vacuum

Clears the old 
commits and helps 
us to optimize 
storage cost.

Time travel
Reproduce the 
reports, Audit data 
changes.



Evolution of CDC system

13

CDC for DynamoDB 
In-house built schema 
inference library for 
DynamoDB(No-SQL)

Efficient 
transformation layer

Auditing capability

Data Ingestion from 
Kafka source

Mask PII data

Generalizing the ingestion system



Benefits of CDC system
Helps to obtain greater value from the data by allowing us to ingest and 
analyze data faster and use fewer system resources in the process.

14

It distributes the 
load round the 
clock. The overhead 
of bulk extract and 
load is broken down 
into small sets of 
incremental 
changes which 
makes the ingestion 
easy and efficient.

Distributed load 
The system is 
scalable to support 
a number of 
sources and it’s 
very easy to scale 
at different points 
of the system like 
CDC replicator, 
Storage, Spark jobs 
etc.

Scalable

As it deals with 
incremental 
changes, time to 
upsert is very low as 
compared to bulk 
insert/overwrite.

Fast and 
efficient upsert It provides the 

freedom to the user 
to choose the 
latency 
requirements. 
Based on the 
requirement it 
decides the polling 
interval/ refresh 
frequency.

Latency



Benefits of CDC system
Helps to obtain greater value from the data by allowing us to ingest and 
analyze data faster and use fewer system resources in the process.

15

One of the key 
tenets of this 
system is 
consistency. 
System is capable 
of handling data 
duplication, data 
loss etc.

Consistency
As it deals with 
incremental data, 
overall load became 
very less and with 
that requirements 
of system resources 
also decreases. 

Cost
The failure recovery 
process is very easy 
and simple. In case 
of failures, the 
system starts from 
the last checkpoint 
and duplicate 
events are handled 
at the spark layer.

Easy Recovery



16

Dibyendu Karmakar
SDE 3

Thank you


