
1

Michael Barnathan
Director of Applied ML, Cash App

Scaling Real-Time
ML at Cash App
with Tecton

Mike Del Balso
Co-Founder, Tecton

Mike Del Balso
Co-founder & CEO

Introduction to the Speakers

Michael Barnathan
Head of Applied ML

2

Intro to Cash App
Not just payments!

3

Cash App’s goal is to “redefine the world’s relationship with money”

4

Send
Huge payment graph incoming

$5

$10

$50

$1000

$54.20

$3.14
$25

5

Spend
Cool, now it’s bipartite!

Restaurant

Coffee Shop

6

Invest
User-to-asset reasoning

AAPL

SQ

Why are search and discovery important?

1. Significant boost to conversion rates
when the result you want is in the top
three

2. You can use distances in the search
space to limit expensive
postprocessing or filtering to promising
candidates

3. Search queries are an additional
indicator of user intent

7

Search:

1. Cohesive UX: user’s past actions
influence their experience in the app

2. The right functionality is “just there” if
we predict intent accurately

Discovery

What is the
Recommendation
task?

8

Bob the data
scientist wants
to do
recommendation

9

What does Bob do?

?

0.4

0.8

0.2

Join and rank two entity types

10

Simple, right?

11

?

0.4

0.8

0.2

Maybe not so much

12

Step 1: Featurize both entities

= <0.8, 0.1, 0.5>

= <0.3, 0.1, 0.4>

= <0.1, 0.9, 0.2>

= <165, 42, 42>

= <0, 0, 128>

= <0, 128, 0>

13

Step 2: Generate joint embedding

Two tower models in Tensorflow

=

NN_Shape NN_Color Ranked (shape, color) pairs

(Or you can always use matrix factorization)

()

()

()

()

() ()()

()

()

14

https://blog.tensorflow.org/2020/09/introducing-tensorflow-recommenders.html
https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)#:~:text=Matrix%20factorization%20is%20a%20class,two%20lower%20dimensionality%20rectangular%20matrices.

Step 3: Retrieval

=

Run NN_Color

()

()

()

Shape embedding is the same for each user; you can cache the vectors

15

Ranked (shape, color) pairs

Congratulations,
Bob! You’re
hired.

16

Now do
recommendations
in Cash App

17

Bob’s dealing with some serious scale…

18

● 44 million monthly active users as of Q4 2021

● $12b in revenue as of 2022

● Can you do 100k+ QPS to feature store and model hosting pipelines?
○ With end-user acceptable (say <200ms) latency?

○ And at least 3 nines of uptime?

● Data generally needs to be recent, if not real-time

Factorization of a 44m2 matrix is impossible (without creating and exploiting
sparsity); we looked at the embedding approach

19

1. Privacy / Protecting PII. This is critical!

2. Team Ownership - core rec engine vs use case

3. Support and maintenance

4. Understanding the pipeline, running experiments

The Organizational:

But this isn’t just a technical problem

Uh oh. This is
hard.

20

● Our existing feature store wasn’t designed
for this level of throughput!

● Calling our model hosting service also
incurred network + serialization costs

● Feature caching - workable, but traded off
performance for feature freshness

● Existing infra couldn’t handle array-valued
features, which are required to store
embeddings

● Difficult for scientists; eng support

Our preexisting infra wasn’t a good match

21

Issue
● Some requests > 1s

● Extra latency

● Features delayed by 30 min or more

● Couldn’t use for recommendation

● Less eng team bandwidth

Effect

22

Raw Data
(Data Lake)

Traffic Distributed
processing

Feature Store

Derived features,
PCA, autoencoders

Batch ETL

Event streaming

Models
Events

So we looked at typical feature pipeline
architectures

Traffic

Model
Training

Model
Inference

23

Raw Data
(Data Lake)

Distributed
processing

Feature StoreEvents

Derived features,
PCA, autoencoders

Batch ETL

● Latency
● Serialization
● Type conversion
● Network bandwidth

● Logging
● Debugging
● Orchestration
● Caching
● Maintenance

Event streaming

The typical architecture has some
significant challenges too

24

Raw Data
(Data Lake)

Traffic

Feature Data
(DWH/Lake)

Feature Platform
(feature orchestration, lifecycle

management, and serving)

Distributed
processing

Models
Events

Event streaming

So we looked to a more comprehensive
“feature platform” architecture

What’s a
“Feature
Platform”?!

25

Feature platforms power the data flows in
ML applications

26

A feature platform:

● Supports the whole feature lifecycle: development, compute, backfill, storage, serving,
logging, sharing

● Implements and orchestrates efficient ML data flows (like feature compute and
compex retrieval)

● Operates high-reliability real time feature serving and compute for online ML
applications

● Solves collaboration and governance problems from operational ML applications

Feature platforms power the data flows
in ML applications

27

1. Define your features

2. Tecton orchestrates all the dataflows for your features

• Backfills old feature values for training
• Generates point-in-time accurate training datasets
• Computes and serves fresh values for real-time inference
• Logs served features / observed labels for later model training
• Monitors feature data for drift / quality / staleness

3. Train models

4. Make predictions in production!

How you use it:

Online
Storage

Offline
Storage

user click counts

Python SDK

Real-time
API

last_7d_clicks
for user 123

Simple Feature Definition

Offline
Transformation

ad click logs

// Declarative Feature Definition
@feature_view(
 inputs=[ad_impressions],
 window=’7d’,
 entities=[ad],
 online=True,
 offline=True,
 mode="sql"
)
def
ad_ctr_preformance_7_days(ad_impressions):
 return f"""
 SELECT
 ad_id,
 feature_end_time,
 sum(clicked) as last_7d_clicks,
 count(*) as last_7d_impressions
 FROM
 {ad_impressions}
 GROUP BY
 1, 2
 """

.py file

Data
Source

Compiles to Physical Pipeline

28

Simple definitions → production features
in minutes

29

1) Feature dev workflow: manage features as code

Deploy feature to production3

Merge local Git
branch to master

Apply changes to
production Tecton

workspace
Monitor feature

Write Feature Definitions1

Test changes in private workspace2

Commit feature to
local Git branch

Apply changes to
private Tecton

workspace

Test and validate
feature

// Declarative Feature Definition
@feature_view(
 inputs=[ad_impressions],
 window=’7d’,
 entities=[ad],
 online=True,
 offline=True,
 mode="sql"
)
def
ad_ctr_preformance_7_days(ad_impressions):
 return f"""
 SELECT
 ad_id,
 feature_end_time,
 sum(clicked) as last_7d_clicks,
 count(*) as last_7d_impressions
 FROM
 {ad_impressions}
 GROUP BY
 1, 2
 """

Fully-automated
ML data pipelines

• Orchestrates reliable
compute of fresh feature
values

• Easy to build batch,
streaming, realtime
features

• Simple and optimized
common features like
time-window aggregates

• Automated backfilling

30

2) Feature Pipelines: Transform feature data reliably

Feature Pipelines

Historical Data
(training)

Fresh Data
(serving)

Time-window
Aggregates

7-Days Click Count

Batch Source(s)

Streaming Source(s)

Real-Time

Real-time
Transformations

User Location, Current weather

Batch (SQL) +
Streaming

...

...

// Declarative Feature Definition

@feature_view(

 inputs=[ad_impressions],

 entities=[ad],

 online=True,

 offline=True,

 mode="sql"

)

def

ad_ctr_preformance_7_days(ad_impression

s):

 return f"""

 SELECT

 ad_id,

 window(timestamp, "7 days",

"1 day").end as timestamp,

 sum(clicked) as

ad_total_clicked_7_days,

 count(*) as

ad_total_impressions_7_days

 FROM

 {ad_impressions}

 GROUP BY

 1, 2

 """

...
Feature Definition

31

3) Feature Store: Store and Serve features at scale

Online Store

Offline Store

get_feature_vector(keys)

Serve Features Online

Se
rv

in
g

A
PI

Monitoring Cataloging

Historical Data

Fresh Data

Feature StoreServe accurate data
for training and
online inference

• Ensure consistency between
online and offline data

• Serve features online at very low
latency and very high scale
reliably

• Store historical feature values
and retrieve feature data with
point-in-time accuracy

• Log served values

• Monitors data and service levels get_historical_features(keys)

Get Training Data

32

The Feature Platform manages data across
the entire ML lifecycle

Performance
data set

Joined
prediction logs

Joined
Feature logs

Data
Lakehouse

Product

Scoring
candidates Served

features

Served
Predictions

Observation

Observed
Metrics

Logged
Predictions

and Features

Logged Labels

Model

Computed
Feature data

Training
data sets

33

Now adding features to a production model is easy
for any team member

Serve OnlineDeployDefine Fetch Offline Share Monitor

Individual
Data Scientist
or Engineer

One system to manage features across the
entire ML Lifecycle

34

Feature Platform for ML

Monitoring

Feature Repository

Feature Pipelines Feature Store

Real-Time Sources

Batch Sources

Compute & Storage

Online Inference

Offline Training

Holistic feature management enables an
ML flywheel with compounding returns

35

Data

Observation

Model

Real world

So how does this
apply to payments
recommendation?

36

This sped up our ML teams, both DS and eng!

37

Raw Data
(Data Lake)

Traffic

Feature Data
(DWH/Lake)

Feature Platform
(feature orchestration, lifecycle

management, and serving)

Distributed
processing

Models
Events

Event streaming

No more fussing with
where/how/when to
compute or store my features

No more worrying
about ensuring
training data is
consistent with
inference data

No more configuring
serving/production
infrastructure every time
I want to use a new feature

Nice outcomes

38

Technical

● Simplifies our ecosystem

● Data and compute were kept “close”, 30ms
reduction in network latency

● Eliminated 100ms serialization overhead
between compute and feature layer

● Fewer SEVs / less maintenance overhead

● One system, no ownership questions

● Easier for scientists to plug in directly
without requiring engineering support

● Can focus more on end to end SLAs,
high level business logic

● Locating the data needed to trace and
respond to events becomes easier

● Configure a feature in hours, not days!

Organizational

Happily ever after

Faster iteration = happier modelers

Features get easier = happier data scientists

More focus on business logic = happier engineers

Lower latency = happier users

39

If you think
this is cool,
join us and see
more!

cash.app/careers

40

41

Visit booth 127
for a chance to win
a Skydio 2+ drone!

Request a free trial
www.tecton.ai

42

Thank you

