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Intro to Cash App
Not just payments!
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Cash App’s goal is to “redefine the world’s relationship with money”
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Send
Huge payment graph incoming
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Spend
Cool, now it’s bipartite!

Restaurant

Coffee Shop
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Invest
User-to-asset reasoning

AAPL

SQ



Why are search and discovery important?

1. Significant boost to conversion rates 
when the result you want is in the top 
three

2. You can use distances in the search 
space to limit expensive 
postprocessing or filtering to promising 
candidates

3. Search queries are an additional 
indicator of user intent
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Search:

1. Cohesive UX: user’s past actions 
influence their experience in the app

2. The right functionality is “just there” if 
we predict intent accurately

Discovery



What is the 
Recommendation 
task?
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Bob the data 
scientist wants 
to do 
recommendation
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What does Bob do?

?

0.4

0.8

0.2

Join and rank two entity types
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Simple, right?
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Maybe not so much
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Step 1: Featurize both entities

= <0.8, 0.1, 0.5>

= <0.3, 0.1, 0.4>

= <0.1, 0.9, 0.2>

= <165, 42, 42>

= <0, 0, 128>

= <0, 128, 0>
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Step 2: Generate joint embedding

Two tower models in Tensorflow

=

NN_Shape NN_Color Ranked (shape, color) pairs

(Or you can always use matrix factorization)

( )

( )

( )

( )

( ) ( )( )

( )

( )

14

https://blog.tensorflow.org/2020/09/introducing-tensorflow-recommenders.html
https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)#:~:text=Matrix%20factorization%20is%20a%20class,two%20lower%20dimensionality%20rectangular%20matrices.


Step 3: Retrieval

=

Run NN_Color

( )

( )

( )

Shape embedding is the same for each user; you can cache the vectors
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Ranked (shape, color) pairs



Congratulations, 
Bob! You’re 
hired.
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Now do 
recommendations 
in Cash App
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Bob’s dealing with some serious scale…
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● 44 million monthly active users as of Q4 2021

● $12b in revenue as of 2022

● Can you do 100k+ QPS to feature store and model hosting pipelines?
○ With end-user acceptable (say <200ms) latency?

○ And at least 3 nines of uptime?

● Data generally needs to be recent, if not real-time

Factorization of a 44m2 matrix is impossible (without creating and exploiting 
sparsity); we looked at the embedding approach
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1. Privacy / Protecting PII. This is critical!

2. Team Ownership - core rec engine vs use case

3. Support and maintenance

4. Understanding the pipeline, running experiments

The Organizational:

But this isn’t just a technical problem



Uh oh. This is 
hard.
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● Our existing feature store wasn’t designed 
for this level of throughput! 

● Calling our model hosting service also 
incurred network + serialization costs

● Feature caching - workable, but traded off 
performance for feature freshness

● Existing infra couldn’t handle array-valued 
features, which are required to store 
embeddings

● Difficult for scientists; eng support

Our preexisting infra wasn’t a good match
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Issue
● Some requests > 1s

● Extra latency

● Features delayed by 30 min or more

● Couldn’t use for recommendation

● Less eng team bandwidth

Effect



22

Raw Data 
(Data Lake)

Traffic Distributed 
processing

Feature Store

Derived features, 
PCA, autoencoders

Batch ETL

Event streaming

Models
Events

So we looked at typical feature pipeline 
architectures



Traffic

Model
Training

Model 
Inference
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Raw Data 
(Data Lake)

Distributed 
processing

Feature StoreEvents

Derived features, 
PCA, autoencoders

Batch ETL

● Latency
● Serialization
● Type conversion
● Network bandwidth

● Logging
● Debugging
● Orchestration
● Caching
● Maintenance

Event streaming

The typical architecture has some 
significant challenges too
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Raw Data 
(Data Lake)

Traffic

Feature Data
(DWH/Lake)

Feature Platform
(feature orchestration, lifecycle 

management, and serving)

Distributed 
processing

Models
Events

Event streaming

So we looked to a more comprehensive 
“feature platform” architecture



What’s a 
“Feature 
Platform”?!
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Feature platforms power the data flows in 
ML applications
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A feature platform:

● Supports the whole feature lifecycle: development, compute, backfill, storage, serving, 
logging, sharing

● Implements and orchestrates efficient ML data flows (like feature compute and 
compex retrieval)

● Operates high-reliability real time feature serving and compute for online ML 
applications

● Solves collaboration and governance problems from operational ML applications



Feature platforms power the data flows 
in ML applications
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1. Define your features

2. Tecton orchestrates all the dataflows for your features

• Backfills old feature values for training
• Generates point-in-time accurate training datasets
• Computes and serves fresh values for real-time inference
• Logs served features / observed labels for later model training
• Monitors feature data for drift / quality / staleness

3. Train models

4. Make predictions in production!

How you use it:



Online
Storage

Offline
Storage

user click counts

Python SDK

Real-time 
API

last_7d_clicks 
for user 123

Simple Feature Definition

Offline
Transformation

ad click logs

// Declarative Feature Definition
@feature_view(
    inputs=[ad_impressions],
    window=’7d’,
    entities=[ad],
    online=True,
    offline=True,
    mode="sql"
)
def 
ad_ctr_preformance_7_days(ad_impressions):
    return f"""
        SELECT
            ad_id,
            feature_end_time,
            sum(clicked) as last_7d_clicks,
            count(*) as last_7d_impressions
        FROM
            {ad_impressions}
        GROUP BY
            1, 2
    """

.py file

Data 
Source

Compiles to Physical Pipeline
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Simple definitions → production features 
in minutes
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1) Feature dev workflow: manage features as code

Deploy feature to production3

Merge local Git 
branch to master

Apply changes to 
production Tecton 

workspace
Monitor feature

Write Feature Definitions1

Test changes in private workspace2

Commit feature to 
local Git branch

Apply changes to 
private Tecton 

workspace

Test and validate 
feature

// Declarative Feature Definition
@feature_view(
    inputs=[ad_impressions],
    window=’7d’,
    entities=[ad],
    online=True,
    offline=True,
    mode="sql"
)
def 
ad_ctr_preformance_7_days(ad_impressions):
    return f"""
        SELECT
            ad_id,
            feature_end_time,
            sum(clicked) as last_7d_clicks,
            count(*) as last_7d_impressions
        FROM
            {ad_impressions}
        GROUP BY
            1, 2
    """



Fully-automated 
ML data pipelines

• Orchestrates reliable 
compute of fresh feature 
values

• Easy to build batch, 
streaming, realtime 
features

• Simple and optimized 
common features like 
time-window aggregates

• Automated backfilling
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2) Feature Pipelines: Transform feature data reliably

Feature Pipelines

Historical Data 
(training)

Fresh Data 
(serving)

Time-window 
Aggregates

7-Days Click Count

Batch Source(s)

Streaming Source(s)

Real-Time

Real-time 
Transformations

User Location, Current weather

Batch (SQL)  + 
Streaming

...

...

// Declarative Feature Definition

@feature_view(

    inputs=[ad_impressions],

    entities=[ad],

    online=True,

    offline=True,

    mode="sql"

)

def 

ad_ctr_preformance_7_days(ad_impression

s):

    return f"""

        SELECT

            ad_id,

            window(timestamp, "7 days", 

"1 day").end as timestamp,

            sum(clicked) as 

ad_total_clicked_7_days,

            count(*) as 

ad_total_impressions_7_days

        FROM

            {ad_impressions}

        GROUP BY

            1, 2

    """

...
Feature Definition
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3) Feature Store: Store and Serve features at scale

Online Store

Offline Store

get_feature_vector(keys)

Serve Features Online

Se
rv

in
g 

A
PI

Monitoring Cataloging

            

Historical Data 

Fresh Data 

Feature StoreServe accurate data 
for training and 
online inference

• Ensure consistency between 
online and offline data

• Serve features online at very low 
latency and very high scale 
reliably

• Store historical feature values 
and retrieve feature data with 
point-in-time accuracy

• Log served values

• Monitors data and service levels get_historical_features(keys)

Get Training Data
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The Feature Platform manages data across 
the entire ML lifecycle

Performance 
data set

Joined 
prediction logs

Joined 
Feature logs

Data 
Lakehouse

Product

Scoring 
candidates Served 

features

Served 
Predictions

Observation

Observed 
Metrics

Logged 
Predictions 

and Features

Logged Labels

Model

Computed 
Feature data

Training 
data sets
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Now adding features to a production model is easy 
for any team member

Serve OnlineDeployDefine Fetch Offline Share Monitor

Individual 
Data Scientist 
or Engineer



One system to manage features across the 
entire ML Lifecycle
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Feature Platform for ML

Monitoring

Feature Repository

Feature Pipelines Feature Store

Real-Time Sources

Batch Sources

Compute & Storage

Online Inference

Offline Training



Holistic feature management enables an 
ML flywheel with compounding returns

35

Data

Observation

Model

Real world



So how does this 
apply to payments 
recommendation?

36



This sped up our ML teams, both DS and eng!
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Raw Data 
(Data Lake)

Traffic

Feature Data
(DWH/Lake)

Feature Platform
(feature orchestration, lifecycle 

management, and serving)

Distributed 
processing

Models
Events

Event streaming

No more fussing with 
where/how/when to 
compute or store my features

No more worrying 
about ensuring 
training data is 
consistent with 
inference data

No more configuring 
serving/production 
infrastructure every time 
I want to use a new feature



Nice outcomes
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Technical

● Simplifies our ecosystem

● Data and compute were kept “close”, 30ms 
reduction in network latency

● Eliminated 100ms serialization overhead 
between compute and feature layer

● Fewer SEVs / less maintenance overhead

● One system, no ownership questions

● Easier for scientists to plug in directly 
without requiring engineering support

● Can focus more on end to end SLAs, 
high level business logic

● Locating the data needed to trace and 
respond to events becomes easier

● Configure a feature in hours, not days!

Organizational



Happily ever after

Faster iteration = happier modelers

Features get easier = happier data scientists

More focus on business logic = happier engineers

Lower latency = happier users
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If you think 
this is cool, 
join us and see 
more!

cash.app/careers
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Visit booth 127
for a chance to win 
a Skydio 2+ drone! 

 

Request a free trial 
www.tecton.ai 
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Thank you


