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What is Salesforce?
The World’s #1 Customer Relationship Management Platform
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UIP - Unified Intelligence Platform
Internal Data Platform for Salesforce

● UIP is the one-stop data destination for all Salesforce teams to better understand and 
improve their business areas.

● A modern, trusted, turn-key environment for analytics/ML on big data.

● UIP drives enormous value to Salesforce through it’s Trust, Scale, and Network Effects; 
Reversing/preventing the insecure siloed data use.
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UIP - Unified Intelligence Platform
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● 100+ PB  Data Lake
● Ingestion workload 

○ Volume - billion events / minute; 
trillions of events per day

○ Velocity - peak 1.2 TB / 5 mins; 
PB/week

○ Variety - around 3k different Event 
Types



Ingestion Pipeline
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Ingestion Pipeline Data Flow
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Read + Count + Sort + Parse + Write



Ingestion Requirements

● Input
○ mixed records of event type 
○ Avro with Envelope Schema

● Output
○ Zstd compressed Parquet
○ Partitioned by batchid, date, hour
○ One table per event type in Metastore

● 10 minutes target processing time
○ Apply Schema and Exploding Columns
○ Add Partition to Metastore tables
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Implementation Challenges
Oversimplified Pipeline
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● Reading data for 40k+ files takes minutes
● Imbalanced data across event types
● Unique schema needs one DF per event type, 

but filtering on DF is way too expensive
○ Execution plan shows filtered DF has as 

many partitions as parent DF
○ Too many tasks generated even they are 

empty

Issues



Pipeline Read with Spark DStream

● Faster read - 20~30 seconds v.s. Minutes
○ Why not spark.read.format(“avro”).load()?

● Amortized Spark Application startup and setup cost
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Comparing with Batch Mode



Pipeline Read with Spark Streaming
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Spark DStream with SQS/S3 as Source



Pipeline Event Processing
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Partitioning + Tokenization + Parsing + Writing



Pipeline Event Processing
In Memory Partitioning with Range Partitioner

● Range Partitioner & filterByRange
● Construct RDD instead of DataFrame

○ Filtering on DataFrame is very costly but not RDD
○ Writing parquet requires DataFrame API

● RDD with Range Partitioner Optimization
○ Output stats based sizing (average record size for an event type is constant)
○ Range partitioner without sampling
○ Range Mapping Algorithm: partition key(event_type:date:hour) <-> integer salt
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Pipeline Event Processing
Schema Management

● Schema for each event types (3k+)
● Schema version for daily patch
● Schema refresh & version fallback without pipeline restart

○ @transient lazy val … and Guava LoadingCache
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Pipeline Event Processing
Spark Scheduling Assistant

● Spread the job submission
○ Easy the pressure on spark scheduler

● Limit the concurrency based on available cores
○ Serialize multiple DataFrame writes for the same event type

● Size the partition based on processing time
○ Identical Machine Scheduling Problem

●
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Pipeline Event Processing
Late Arriving Data

● Late Arriving Data create too many tasks with small partition
● Short period (by hour) - in memory consolidation

○ Output with partitionBy

● Long period (by date) - diverge from the source
○ Buffer and consolidate
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Pipeline Event Processing
Optimization towards the cloud

● S3 Performance Optimization
○ EMR S3 committer - Don’t set partitionOverwriteMode = “dynamic”
○ Prefix randomization with salted batchid batchid=xxx/date=yyy/hour=zzz
○ Avoid prefix listing with cache

● EMR Cost optimization
○ Use Spot Instance
○ Adjust resource allocation based on time with EMR scaling policy 
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Pipeline Operation Dashboard
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Thank you
Dyno Fu, Lead Software Engineer, UIP

Kishore Reddipalli, Sr. Director of Engineering, UIP



Backup Slides
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Ingestion Pipeline Architecture
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Pipeline Read - Spark Streaming - SQS/S3

21



Pipeline Read with Spark Streaming
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Spark DStream with SQS/S3 as Source



Pipeline Read - Spark Streaming - SQS/S3
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