
1

Dyno Fu, Lead Software Engineer, UIP

Kishore Reddipalli, Sr. Director of Engineering, UIP

Scaling Salesforce In-Memory
Streaming Analytics Platform
for Trillion Events Per Day

What is Salesforce?
The World’s #1 Customer Relationship Management Platform

2

UIP - Unified Intelligence Platform
Internal Data Platform for Salesforce

● UIP is the one-stop data destination for all Salesforce teams to better understand and
improve their business areas.

● A modern, trusted, turn-key environment for analytics/ML on big data.

● UIP drives enormous value to Salesforce through it’s Trust, Scale, and Network Effects;
Reversing/preventing the insecure siloed data use.

3

UIP - Unified Intelligence Platform

4

● 100+ PB Data Lake
● Ingestion workload

○ Volume - billion events / minute;
trillions of events per day

○ Velocity - peak 1.2 TB / 5 mins;
PB/week

○ Variety - around 3k different Event
Types

Ingestion Pipeline

5

Ingestion Pipeline Data Flow

6

Read + Count + Sort + Parse + Write

Ingestion Requirements

● Input
○ mixed records of event type
○ Avro with Envelope Schema

● Output
○ Zstd compressed Parquet
○ Partitioned by batchid, date, hour
○ One table per event type in Metastore

● 10 minutes target processing time
○ Apply Schema and Exploding Columns
○ Add Partition to Metastore tables

7

Implementation Challenges
Oversimplified Pipeline

8

● Reading data for 40k+ files takes minutes
● Imbalanced data across event types
● Unique schema needs one DF per event type,

but filtering on DF is way too expensive
○ Execution plan shows filtered DF has as

many partitions as parent DF
○ Too many tasks generated even they are

empty

Issues

Pipeline Read with Spark DStream

● Faster read - 20~30 seconds v.s. Minutes
○ Why not spark.read.format(“avro”).load()?

● Amortized Spark Application startup and setup cost

9

Comparing with Batch Mode

Pipeline Read with Spark Streaming

10

Spark DStream with SQS/S3 as Source

Pipeline Event Processing

11

Partitioning + Tokenization + Parsing + Writing

Pipeline Event Processing
In Memory Partitioning with Range Partitioner

● Range Partitioner & filterByRange
● Construct RDD instead of DataFrame

○ Filtering on DataFrame is very costly but not RDD
○ Writing parquet requires DataFrame API

● RDD with Range Partitioner Optimization
○ Output stats based sizing (average record size for an event type is constant)
○ Range partitioner without sampling
○ Range Mapping Algorithm: partition key(event_type:date:hour) <-> integer salt

12

Pipeline Event Processing
Schema Management

● Schema for each event types (3k+)
● Schema version for daily patch
● Schema refresh & version fallback without pipeline restart

○ @transient lazy val … and Guava LoadingCache

13

Pipeline Event Processing
Spark Scheduling Assistant

● Spread the job submission
○ Easy the pressure on spark scheduler

● Limit the concurrency based on available cores
○ Serialize multiple DataFrame writes for the same event type

● Size the partition based on processing time
○ Identical Machine Scheduling Problem

●

14

Pipeline Event Processing
Late Arriving Data

● Late Arriving Data create too many tasks with small partition
● Short period (by hour) - in memory consolidation

○ Output with partitionBy

● Long period (by date) - diverge from the source
○ Buffer and consolidate

15

Pipeline Event Processing
Optimization towards the cloud

● S3 Performance Optimization
○ EMR S3 committer - Don’t set partitionOverwriteMode = “dynamic”
○ Prefix randomization with salted batchid batchid=xxx/date=yyy/hour=zzz
○ Avoid prefix listing with cache

● EMR Cost optimization
○ Use Spot Instance
○ Adjust resource allocation based on time with EMR scaling policy

16

Pipeline Operation Dashboard

17

18

Thank you
Dyno Fu, Lead Software Engineer, UIP

Kishore Reddipalli, Sr. Director of Engineering, UIP

Backup Slides

19

Ingestion Pipeline Architecture

20

Pipeline Read - Spark Streaming - SQS/S3

21

Pipeline Read with Spark Streaming

22

Spark DStream with SQS/S3 as Source

Pipeline Read - Spark Streaming - SQS/S3

23

