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Anyscale

Who are we: Original Creators of Ray

What we do: Provide cloud-managed service for Ray

Why do it: Make distributed computing easy and simple
Scale Al/ML workloads
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Overview

» Why & What Ray & Ray Ecosystem
* Ray Architecture & Components
 Ray Core APIs
 Ray Native ML Libraries

* Ray Tune
e Demo

- Scaling ML workloads (train, tune, inference)
e Q&A
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Why Ray -%

/

\_

Machine
Learning is
Pervasive

Distributea
Computing is
a necessity

~

Python is the

language of
DS/ML
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Al/ML in industries ..

Al Enabled Mobility and
Autoqnpyus Drivi

Smart Transportation AT
in

Healthcare -,

Al

: g I . ‘ y
in the Hotel Industry > ARTIFICIAL INTELLIGENCE
( IN GAMING

Ly

Proliferated & Incorporated across Industries
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Blessings of scale ....

The blessings of scale
Al training runs, estimated computing resources used
[ Floating-point operations, selected systems, by type, log scale]
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Sources: “Compute trends across three eras of machine learning”, by J. Sevilla et al,, arXiv, 2022; Our World in Data
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Compute demand - supply problem
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https://openai.com/blog/ai-and-compute/

Specialized hardware is not enough
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Python data science/ML
ecosystem dominating
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Origins of Ray %
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What is Ray?-¢

e A general-purpose library for distributed computing
e An ecosystem of native libraries to scale ML workloads
e Runs anywhere: laptop, public cloud, K8s, on-premise

A layered cake of functionality & capabillities for scaling ML
workloads
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The Layered Cake and Ecosystem

[
g'}, Datasets . 7, Library +
ANALYTICS mic B0
raj./%gd workflows } jne 200 @ XGBoost =:MODIN das@fvision pAsK app
- A ecosystem
lib 2 e X0 m &
b RayServe @ ) MARS oetll s;sg, ..
— Universal
framework
°§° for
' distributed
Universal framework for computing
Distributed computing
Run
anywhere
N
DATA+AI
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Libraries for scaling ML workloads

/
Data - . Hvper. Reinforcement
Processing Training Serving Tl}fing Learning
Built-in L
“batteries Ray Core + Ray Train i
included” Datasets / gRogServe fune Ib
libraries
=% MODIN | mlflow
O PyTorchy (egue
. O FastAPI
L e 0w ©®
DASK ¥ ' comet o HYPEROPT
Only use the libraries you need!
-
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Ray AIR in Ray 2.0

S‘JC!I?Z MARS .bln XGBoost - LightGBM ¥ - mifiow
= Iy O O PyTorch ° W TensorFlow « B SIGOoPT
Train Tune
. | Dataset |
' Storage | RLIib Serve
f and 5
. Metadata | [ !
| Services | ;
i Ray Al Runtime
Ray Core
ws A O =
\
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Who Using Ray?

amazon (inte)) wdendra  Uber
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Ray Architecture
and Components
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Anatomy of a Ray cluster

/
Head Node g Worker Node #1 s o Worker Node #N s
Driver Worker ‘ Worker | ese | Worker Worker oo Worker
AR Scheduler N 2 Scheduler N 2 Scheduler
< % N—/] % N———] %
N T ; &= ; —N &= :
Object Store N Object Store < > Object Store
N—— -
I —
7—(
Global Control Store .
(GCS) Un|que tO
Ray
-
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Anatomy of a Ray cluster

° Executes
actor/task

Object
Transfers

Global
Metadata

N—

Global
Control
Store

~—

\
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Ray Distributed
Design Patterns and
APls
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Ray Design Patterns

/ e v

Ray Parallel Ray Objects as Ray Actors (
Tasks Futures Design Patterns |8
- Functions as - Distributed - Stateful service E'ﬁg‘;{‘%ﬂiﬁgggﬁ'ﬁmm f
stateless units immutable on a cluster Erch Gammal ”’
of execution objects - Enables jonn ;
 Functions - Fetched when message :
distributed available passing and g
across a cluster - Enable maintains state 3
as task asynchronous i A <

execution %
N L A t
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Python — Ray Basic Patterns

-
Function Task
Class Actor
Object Distributed
(immutable) Object
\_

DATA+AI
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Function — Task

@ray.remote

def read array(file):
# read ndarray “a”
# from “file”
return a

@ray.remote
def add(a, b):
return np.add(a, b)

Class — Actor

(num_gpus=1)
class Counter(object):
def init (self):
self.value =
def inc(self):
self.value += 1
return self.value

idl = read _array.remote(filel)
id2 = read _array.remote(file2)
id = add.remote(idl, id2)

sum = ray.get(id)

Counter.remote()
c.inc.remote()
c.inc.remote()

DATA+AI
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Task API

@ray.remote

def read_array(file):
# read ndarray “a”
# from “file”
return a 6

read array

@ray.remote

def add(a, b):
return np.add(a, b)

|Ie

idl = read_array.remote(filel)

id2 = read_array.remote(file2)

id = add.remote(id1l, id2) . . .

sum = ray.get(id) Return id1 (future) immediately,

before read_array() finishes

DATA+AI
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Task API

@ray.remote
def read_array(file):

N N
# read ndarray “a” . .
# from “file”
return a

@ray.remote
def add(a, b):
return np.add(a, b)

idl = read_array.remote(filel) D @ eE h:
id2 = read_array.remote(file2) %ngygt?jnéﬁif '
id = add.remote(idl, id2)

sum = ray.get(id)

read_array read_array
o >
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SUMMIT 2022




Task API

@ray.remote

def read_array(file):
# read ndarray “a”
# from “file”

return a <:::f:::>
read_array read_array

@ray.remote
def add(a, b):
return np.add(a, b)

idl = read_array.remote(filel)
id2 = read_array.remote(file2)

id = add.remote(idl, jig
sum = ray.get(id) ray.get() block
until result available

DATA+AI
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Distributed Immutable object store

N

Node

Worker slots

Worker
process

Worker
process

X

Y

2

Shared-memory object store

External object store (disk, S3, etc)

DATA+AI
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Spill over to external
storage
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Distributed object store

Shared
object store

@ray.remote
def f():

Féturn X

@ray.remote
def g(a):

Féturn Y

id X = f.remote()
1U_Y = g.IeMoLe(1lu_A)

Only X’s id (id_X) is
returned, not X’s value

DATA+AI
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Distributed object store

Shared object
store
/

@ray.remote
def f():

return X

@ray.remote
def g(a):

return Y

f.remote()

BT
g.remote(1d_X)
“idoy—

g(id_X) is scheduled on same node, so X is never transferred

DATA+AI
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How Raylet schedules Tasks

Basic Ray Task Call
double.remote(2)
@ray.remote _ e
def double(x): Python Driver Python Worker
return x x 2
Ray Core Worker # Ray Core Worker
: (2) ExecuteTask RPC
futl = double. remOtE(Z) (1) GetWorkerLease RPC
[ ]
assert ray.get(futl) == 4 Raylet
Components in green boxes represent Python code. Components in white boxes are part of the Ray common
runtime written in C++. Joined boxes represent a process. Any Python driver or worker can call into the Ray C++
core worker library to execute further tasks. In this figure, all processes are running on the same machine. Ray
uses gRPC as a unified communication layer for both local and remote procedure calls.
o
DATA+AI
SUMMIT 2022
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How Raylet schedules Tasks

SUMMIT 2022

i Scaling to Multiple Nodes
1. The driver asks Raylet 1 for a worker to execute double . It has no free
workers, but Raylet 1 knows Raylet 2 has free resources, and redirects the
request to Raylet 2.
2. The driver sends ExecuteTask to the remote Python worker leased from
Raylet 2 over gRPC.
double.remote(2)
(o] (o]
. © . L]
Python Driver Python Worker
Ray Core Worker # Ray Core Worker
s : (3) ExecuteTask RPC
" (1) GetWorkerLease RPC
i e e N _ (2.) (?elWorﬁerLease RPC succeeds
I
Raylet 1 N Raylet 2 Noda 2
Tasks are sent to remote workers if there are no local resources available, transparently scaling Ray applications
out to multiple nodes.
DATA+AI
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Ray Native Library:
Ray Tune
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Ray Tune for distributed HPO

Why use Ray tune?

* Efficient algorithms for
parallel trials

« Effective orchestration
of distributed trials

« Easy APIs

 Interoperable with Ray
Train and Ray Datasets

DATA+AI
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Cutting edge
optimization
algorithms

Compatible with ML
ecosystem

? O %CBOOSt
Q@ tearn

-

tune

tune.run(train model)

Minimal code changes
to work in distributed
settings

Single Process

Multi-process/
Multi-GPU

~
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Ray Tune supports SOTA

Search Algorithms

Trial Schedulers

/

N

Search Algorithms (tune.suggest)

Tune’s Search Algorithms are wrappers around open-source optimization libraries for efficient hyperparameter selection.

Each library has a specific way of defining the search space - please refer to their documentation for more details.

You can utilize these search algorithms as follows:

from ray.tune.suggest.hyperopt import HyperOptSearch

tune. run(my_function, search_alg=HyperOptSearch(...))
Summary

SearchAlgorithm Summary Website Code Example
Random search/grid search Random search/grid search tune_basic_example
AxSearch Bayesian/Bandit Optimization [AX] ax_example
BlendSearch Blended Search [Bs] blendsearch_example
CFO Cost-Frugal hyperparameter [Cfo] cfo_example

Optimization

DragonflySearch Scalable Bayesian Optimization [Dragonfly] dragonfly_example
SkoptSearch Bayesian Optimization [Scikit-Optimize] skopt_example
HyperOptSearch Tree-Parzen Estimators [HyperOpt] hyperopt_example
BayesOptSearch Bayesian Optimization [BayesianOptimization]bayesopt_example
TuneBOHB Bayesian Opt/HyperBand [BOHB] bohb_example
NevergradSearch Gradient-free Optimization [Nevergrad] nevergrad_example
OptunaSearch Optuna search algorithms [Optuna] optuna_example
ZOOptSearch Zeroth-order Optimization [ZOOpt] zoopt_example
SigOptSearch Closed source [SigOpt] sigopt_example
HEBOSearch Heteroscedastic Evolutionary [HEBO] hebo_example

Bayesian Optimization

/

Trial Schedulers (tune.schedulers)

In Tune, some hyperparameter optimization algorithms are written as “scheduling algorithms”. These Trial Schedulers can
early terminate bad trials, pause trials, clone trials, and alter hyperparameters of a running trial.

All Trial Schedulers take in a metric, which is a value returned in the result dict of your Trainable and is maximized or
minimized according tomode.

tune.run( ... , scheduler=Scheduler(metric="accuracy", mode="max"))

Summary

Tune includes distributed implementations of early stopping algorithms such as Median Stopping Rule, HyperBand, and
ASHA. Tune also includes a distributed implementation of Population Based Training (PBT) and Population Based Bandits
(PB2).

Tip

The easiest scheduler to start with is the ASHASchedule r which will aggressively terminate low-performing trials.
When using schedulers, you may face compatibility issues, as shown in the below compatibility matrix. Certain schedulers
cannot be used with Search Algorithms, and certain schedulers are require checkpointing to be implemented.

Schedulers can dynamically change trial resource requirements during tuning. This is currently implemented in
ResourceChangingScheduler, which can wrap around any other scheduler.

Scheduler Need Checkpointing? SearchAlg Compatible? Example
ASHA No Yes Link
Median Stopping Rule No Yes Link
HyperBand Yes Yes Link
BOHB Yes Only TuneBOHB Link
Population Based Training Yes Not Compatible Link
Population Based Bandits  Yes Not Compatible Basic Example, PPO example

DATA+AI
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What are hyperparameters?

/
Hyperparameters
Set before training
Model type and architecture
e Learning and training related
parameters
Number of trees, depth etc
Model
parameters Learn during training
NG
DATA+AI
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What are hyperparameters

/
Hyperparameter tuning
“choosing a set of optimal hyperparameters for a learning algorithm”
724 >5 dense dense
> 13 13 13 degse
11 55
/I >4 24 24 24 > > .
11I/' 5I) 27 3|13 3PP"43 3P a3
384 384 256 1000
224 256 Max Max 4096 4096
%6 Max pooling pooling
Stride pooling
3 of 4
Example: what network structure is best for your binary classification problem?
How many layers? What kinds of layers? Learning rate schedule?
Every number here is a hyperparameter!
o
DATA+AI
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Challenges of HPO

"
» Time consuming
- Costly over time $ $ $
« Uses resources
(CPU/GPU) [\ —\ [\ [—\
- Fault-tolerance and — e B s =
elasticity
\_ N

DATA+AI
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Ray Tune HPO algorithms

Host of algorithms

Three strategies

N

/

e Over 15+ algorithms
natively provided or
Integrated

e Easy to swap out
different algorithms with
minimal code change

/

1. Exhaustive search
2. Bayesian optimization

3. Advanced scheduling

DATA+AI
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1. Exhaustive Search

e Easily parallelizable and easy to use

e W
% Random Search

E L ‘,\/J

g o o o %\

= - °

: 2 0 ©

e @) O O I= o

£ £ ®

= / o o ©O

o = @)

€ S o

= @) @) @) S

D Important parameter Important parameter
_ yV |

DATA+AI
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2. Bayesian Optimization

/
1.0 2 ]
+ Uses results from previous X
i : i 0.8 X_—%
combinations for the next trial ( %, x
X
* Inherently sequential 061, ok B3 x;);"
. . Uy 9 xX X -
«  Popular libraries support : i 04 Qx X R X e ) -
«  Hyperopt ; X x = =
*  Optuna 0.2- X
«  Scikit-optimize x
° 0,0 T T o T T
Nevergrad 0.0 0.2 0.4 0.6 0.8 1.0
X1
https://www.wikiwand.com/en/Hyperparameter optimization
\_
DATA-AI /G
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https://www.wikiwand.com/en/Hyperparameter_optimization

3. Advanced Scheduling

Early Stopping

/

-

- Fan out parallel trials and
observe

+ Use intermediate results
(epochs, tree sample) to
prune underperforming trials

* Median stopping,
ASHA/Hyperband

Validation
Metric (min)

Resources per Trial

I
max

DATA+AI
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Ray Tune — Distribute HPO Example

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO
algorithm

DATA+AI
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(G

from ray import tune

def train_func(config):
model = ConvNet(config)
for i in range(epochs):
current_loss = model.train()

Easily define
your training
function

tune.report( 1oss=curr‘ent_1
Just use
tun.run(..)
tune.run(

train_func,

config={“alpha”: tune.uniform(0.001,
0.1)},

num_samples=100,

scheduler=“asha”,

search_alg="optuna”)

Easily specify

hyperparameter
ranges to search

over

42



Ray Tune — Distributed HPO

Architecture and components

/
Worker Node
Head Node
Worker Node
DriverProcess
Worker Node
tune.run(train_func)
Launch WorkerProcess WorkerProcess
Orchestrator running HPO algorithm AIEILEL RS AEHET UGS
train_func train_func
Launch —Launch—
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
train_func train_func Actor: Runs Actor: Runs
train_func train_func
Each actor performs one set of hyperparameter combination
evaluation (a trial)
\
DATA+AI 43
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Ray Tune — Distributed HPO

Architecture and components

4 Worker Node
Head Node
Worker Node
DriverProcess
Worker Node
tune.run(train_func) Report metrics WorkerProcess WorkerProcess

Orchestrator running HPO algorithm

——Report metrics

Report metrics-

WorkerProcess
Actor: Runs train_func

WorkerP,ocess

Actor: Runs train_func

-

Orchestrator keeps track of all the trials’ progress and metrics.

Actor: Runs train_func

Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

DATA+AI
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Ray Tune — Distributed HPO

Architecture and components

/
Worker Node
Head Node
Worker Node
DriverProcess
Worker Node
tune.run(train_func)
Continue WorkerProcess WorkerProcess
Orchestrator running HPO algorithm Actor: Runs Actor: Runs
train_func train_func
Early stop —Continue—
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
train_func train_func Actor: Runs Actor: Runs
train_func train_func
Based on the metrics, the orchestrator may
stop/pause/mutate trials or launch new trials when
resources are available.
\
DATA+AI 45
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Ray Tune — Distributed HPO

Architecture and components

/

-

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO algorithm

Launch a new trial

WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Resources are repurposed to explore new trials.

Worker Node

Worker Node

Worker Node

WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

DATA+AI
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Ray Tune — Distributed HPO

Architecture and components

/

—Trials are
checkpointed to cloud
storage

Worker Node g
fizoel el Worker Node
DriverProcess
. Worker Node
tune.run(train_func) Checkpoint
. WorkerProcess WorkerProcess
Orchestrator running HPO Actor: RUNS Actor: RUNs
algorithm train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
tral'n_ func train_ func Actor: Runs Actor: Runs
train_func train_func
L Orchestrator also manages checkpoint state.

DATA+AI
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Ray Tune — Distributed HPO

Architecture and components

/
Worker Node
Head Node
Worker Node
DriverProcess
Worker Node
U (traln_ func) WorkerProcess WorkerProcess
Orchestrator running HPO algorithm Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
train_func train_func Actor: Runs Actor: Runs
train_ train_func
Some worker process crashes.
\
DATA+AI 48

SUMMIT 2022




Ray Tune — Distributed HPO

Architecture and components
TN

i Jj
Load checkpoint from
—cloud storage

crashed trial is restored from remote
checkpoint.

-

Worker Nor
rene Lo Worker Node
DriverProcess Worker Nod
orker Node
tune.run(train_func)
h . WorkerPror s WorkerProcess
Orc gstrotor running HPO —Actor: RUY Actor: RUNS
algorithm train_fi train_func
WorkerProcess WorkerProcess restore
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
train_ func train_ func Actor; Runs Actor: Runs
train_func train_func
New actor comes up fresh and the

DATA+AI
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Takeaways

e Distributed computing is a necessity & norm
e Ray’s vision: make distributed programming
simple
o Don’t have to be distributed systems

expert. Just use @ray.remote :)
e Scale your ML workloads with Ray Libraries

RT3 50
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Libraries v Documentation

Learn v

Ecosystem Community

[ C) | 20541 ]

Get involved and stay informed

Live and on-demand. Virtual and in-person. Ask questions and share learnings. File bugs and submit code.

Whatever your preference, there are lots of ways to connect with the global Ray community, get involved

with the project, and stay informed on the latest and greatest.

O GitHub

Follow the project, track issues, file bugs
and feature requests, or contribute code.

Follow the project —>

M Newsletter

Subscribe to the monthly Ray newsletter
to get curated updates delivered to your
inbox.

Sign up for updates =

ray.io/community

Q Discussion forum

Join the forum to get technical help and
share best practices and tips with the Ray
community.

Join the forum —

, Twitter

Follow @raydistributed on Twitter to stay
informed on the latest news and updates.

Follow us on Twitter =

Q
....' Slack
05

Connect with other users and project
maintainers on the official Ray Slack
channel.

Chat with other users =

0Sp RAY

Ray Meetup
() san Francisco, CA

& 828 members - Public group
& Organized by Robert N. and 3 others

share: [ W [} &


http://ray.io/community

DATA+AI
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Thank youl!

Let’s stay in touch:

B @2twitme

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

ORGANIZED BY & databricks


https://www.linkedin.com/in/dmatrix/

Demo: Scaling ML w

DATA+AI -
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8 Mnion-veTeqy I IOGIUI 2 aGR! LanyucalLIErasta com g ter fab

# xgboost_demo.ipynb

X

> m C

CAreeoy

2. Hyperparameter tuning

3. Inference

B lightgbm_ray
™ model.xgb

% #® xgboost_demo.ipynb

First, we try on a local node with a data set, time it, and then try on a Ray cluster with multiple nodes and multiple cores.

We should observe noticiable difference.

DATA+AI
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Machine

Python 3 (ipykemel) O



https://docs.google.com/file/d/1QetZezw5nOMMnpmbpQNCnl__ytSd7oAt/preview

