
Scaling ML/AI
Workloads with
Ray Ecosystem
Jules S. Damji @2twitme
Lead Developer Advocate,
Anyscale, Ray Team

1

$whoami
• Lead Developer Advocate, Anyscale & Ray Team
• Sr. Developer Advocate, Databricks, Apache Spark/MLflow Team
• Led Developer Advocacy, Hortonworks
• Held Software Engineering positions:

• Sun Microsystems
• Netscape
• @Home
• Loudcloud/Opsware
• Verisign

2

Anyscale

Who are we: Original Creators of Ray

What we do: Provide cloud-managed service for Ray

Why do it: Make distributed computing easy and simple

 Scale AI/ML workloads

3

Overview
• Why & What Ray & Ray Ecosystem
• Ray Architecture & Components
• Ray Core APIs
• Ray Native ML Libraries

• Ray Tune
• Demo

• Scaling ML workloads (train, tune, inference)
• Q & A

4

Python is the
language of
DS/ML

Distributed
Computing is
a necessity

Why Ray

Machine
Learning is
Pervasive

5

AI/ML in industries …

6

Proliferated & Incorporated across Industries

Blessings of scale ….

7

Compute demand - supply problem

8

35x every 18 months

GPT-3

CPU

GPU*

TPU*

Source: https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/

Specialized hardware is not enough

9

35x every 18 months

GPT-3

CPU

GPU*
TPU*

https://openai.com/blog/ai-and-compu
te/

No way out but to
distribute!

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/

🐍 Python data science/ML
ecosystem dominating

10

Origins of Ray

11

What is Ray?

● A general-purpose library for distributed computing
● An ecosystem of native libraries to scale ML workloads
● Runs anywhere: laptop, public cloud, K8s, on-premise

A layered cake of functionality & capabilities for scaling ML
workloads

12

The Layered Cake and Ecosystem

13

Datasets
Workflows

Run
anywhere

Universal
framework
for
distributed
computing

Library +
app
ecosystem

Libraries for scaling ML workloads

14

Ray Core /
Datasets

Model
Serving

Data
Processing Training Serving

Ray Core +
Datasets

Reinforcement
Learning

Hyper.
Tuning

Ray Train
Built-in
“batteries
included”
libraries

Only use the libraries you need!

Ray AIR in Ray 2.0

15

Who Using Ray?

16

17

Ray Architecture
and Components

Anatomy of a Ray cluster

18

 Driver Worker

Global Control Store
(GCS)

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

… …

Head Node Worker Node #1 Worker Node #N. . .

Unique to
Ray

Anatomy of a Ray cluster

19

● Executes
actor/task

20

Ray Distributed
Design Patterns and
APIs

Ray Design Patterns

• Functions as
stateless units
of execution

• Functions
distributed
across a cluster
as task

Ray Parallel
Tasks

21

• Stateful service
on a cluster

• Enables
message
passing and
maintains state

Ray Actors

• Distributed
immutable
objects

• Fetched when
available

• Enable
asynchronous
execution

Ray Objects as
Futures

Python → Ray Basic Patterns

22

Function

Class

Object

Task

Actor

Distributed
(immutable) Object

Node

Node

Node

Function → Task Class → Actor

23

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

Task API

24

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

Return id1 (future) immediately,
before read_array() finishes

Task API

25

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime

Task API

26

@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

Node 2

file1 file2

 Node 1 Node 2

read_array

id1

read_array

id2

add

id

Node 3

ray.get() block
until result available

Distributed Immutable object store

27

Worker
 process

Worker
 process ….

X Y Z

Spill over to external
storage

Distributed object store

28

@ray.remote
def f():
 …
 return X

@ray.remote
def g(a):
 …
 return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

id_X

Node 2

f()

X

id_X

Only X’s id (id_X) is
returned, not X’s value

.. ..

Shared
object store

Distributed object store

29

@ray.remote
def f():
 …
 return X

@ray.remote
def g(a):
 …
 return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

g(id_X)

X

id_X

id_X

Node 2

Y

id_Y

id_Y

g(id_X) is scheduled on same node, so X is never transferred

…

Shared object
store

How Raylet schedules Tasks

30

How Raylet schedules Tasks

31

Scaling to Multiple Nodes

32

Ray Native Library:
Ray Tune

Ray Tune for distributed HPO

33

• Efficient algorithms for
parallel trials

• Effective orchestration
of distributed trials

• Easy APIs
• Interoperable with Ray

Train and Ray Datasets

Why use Ray tune?
Cutting edge
optimization
algorithms

Minimal code changes
to work in distributed

settings

Compatible with ML
ecosystem

Ray Tune supports SOTA
Search Algorithms Trial Schedulers

34

What are hyperparameters?

35

Hyperparameters

Model
parameters

● Model type and architecture
● Learning and training related

parameters
● Number of trees, depth etc

Set before training

Learn during training

What are hyperparameters
A concrete example for NN

36

Hyperparameter tuning
“choosing a set of optimal hyperparameters for a learning algorithm”

How many layers? What kinds of layers? Learning rate schedule?
Every number here is a hyperparameter!

Example: what network structure is best for your binary classification problem?

Challenges of HPO

• Time consuming
• Costly over time

• Uses resources
(CPU/GPU)

• Fault-tolerance and
elasticity

37

$$$

Ray Tune HPO algorithms
Host of algorithms Three strategies

● Over 15+ algorithms
natively provided or
integrated

● Easy to swap out
different algorithms with
minimal code change

38

1. Exhaustive search
2. Bayesian optimization

3. Advanced scheduling

1. Exhaustive Search
● Easily parallelizable and easy to use

39

2. Bayesian Optimization

• Uses results from previous
combinations for the next trial

• Inherently sequential
• Popular libraries support :

• Hyperopt
• Optuna
• Scikit-optimize
• Nevergrad

40

https://www.wikiwand.com/en/Hyperparameter_optimization

https://www.wikiwand.com/en/Hyperparameter_optimization

3. Advanced Scheduling
Early Stopping

• Fan out parallel trials and
observe

• Use intermediate results
(epochs, tree sample) to
prune underperforming trials

• Median stopping,
ASHA/Hyperband

41

Ray Tune – Distribute HPO Example
Architecture and components

42

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO
algorithm

from ray import tune

def train_func(config):
 model = ConvNet(config)
 for i in range(epochs):
 current_loss = model.train()
 tune.report(loss=current_loss)

tune.run(
 train_func,
 config={“alpha”: tune.uniform(0.001,
0.1)},
 num_samples=100,
 scheduler=“asha”,
 search_alg=”optuna”)

Easily specify
hyperparameter
ranges to search
over

Easily define
your training
function

Just use
tun.run(..)

Ray Tune – Distributed HPO
Architecture and components

43

Worker Node

Worker Node

Each actor performs one set of hyperparameter combination
evaluation (a trial)

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Launch Launch

Launch

Ray Tune – Distributed HPO
Architecture and components

44

Worker Node

Worker Node
Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

Report metrics Report metrics

Report metrics

Orchestrator keeps track of all the trials’ progress and metrics.

Ray Tune – Distributed HPO
Architecture and components

45

Worker Node

Worker Node
Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Early stop Continue

Continue

Based on the metrics, the orchestrator may
stop/pause/mutate trials or launch new trials when
resources are available.

Ray Tune – Distributed HPO
Architecture and components

46

Worker Node

Worker Node

Resources are repurposed to explore new trials.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Launch a new trial

Ray Tune – Distributed HPO
Architecture and components

47

Worker Node

Worker NodeHead Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Trials are
checkpointed to cloud
storage

Orchestrator also manages checkpoint state.

Checkpoint

Ray Tune – Distributed HPO
Architecture and components

48

Worker Node

Worker Node

Some worker process crashes.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Ray Tune – Distributed HPO
Architecture and components

49

Worker Node

Worker Node

New actor comes up fresh and the
crashed trial is restored from remote
checkpoint.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Load checkpoint from
cloud storage

restore

Takeaways

● Distributed computing is a necessity & norm
● Ray’s vision: make distributed programming

simple
○ Don’t have to be distributed systems

expert. Just use @ray.remote :)
● Scale your ML workloads with Ray Libraries

50

ray.io/community

http://ray.io/community

Thank you!
 Let’s stay in touch:

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

52

@2twitme

https://www.linkedin.com/in/dmatrix/

53

 Demo: Scaling ML workloads

https://docs.google.com/file/d/1QetZezw5nOMMnpmbpQNCnl__ytSd7oAt/preview

