DATA+AI SUMMIT 2022

Scaling ML/Al Workloads with Ray Ecosystem

Jules S. Damji @2twitme Lead Developer Advocate, Anyscale, Ray Team

ORGANIZED BY 😂 databricks

\$whoami

- Lead Developer Advocate, Anyscale & Ray Team
- Sr. Developer Advocate, Databricks, Apache Spark/MLflow Team
- Led Developer Advocacy, Hortonworks
- Held Software Engineering positions:
 - Sun Microsystems
 - Netscape
 - @Home
 - Loudcloud/Opsware
 - Verisign

Who are we: Original Creators of Ray

What we do: Provide cloud-managed service for Ray

Why do it: Make distributed computing easy and simple Scale AI/ML workloads

Overview

- Why & What Ray & Ray Ecosystem
- Ray Architecture & Components
- Ray Core APIs
- Ray Native ML Libraries
 - Ray Tune
- Demo
 - Scaling ML workloads (train, tune, inference)
- Q & A

Machine Learning is Pervasive Distributed Computing is a necessity Python is the language of DS/ML

AI/ML in industries ...

Blessings of scale

The blessings of scale

Sources: "Compute trends across three eras of machine learning", by J. Sevilla et al., arXiv, 2022; Our World in Data

Compute demand – supply problem

Specialized hardware is not enough

Python data science/ML ecosystem dominating

Origins of Ray 🌼

DATA+AI SUMMIT 2022

- A *general-purpose* library for distributed computing
- An ecosystem of *native libraries* to scale ML workloads
- Runs *anywhere:* laptop, public cloud, K8s, on-premise

A layered cake of functionality & capabilities for scaling ML workloads

The Layered Cake and Ecosystem

Libraries for scaling ML workloads

Ray AIR in Ray 2.0

Who Using Ray?

Ray Architecture and Components

Anatomy of a Ray cluster

Anatomy of a Ray cluster

Ray Distributed Design Patterns and APIs

Ray Design Patterns

Ray Parallel Tasks

- Functions as stateless units of execution
- Functions distributed across a cluster as task

Ray Objects as Futures

- Distributed immutable objects
- Fetched when available
- Enable asynchronous execution

Ray Actors

- Stateful service on a cluster
- Enables message passing and maintains state

Python → Ray Basic Patterns

$\textbf{Function} \rightarrow \textbf{Task}$

$Class \rightarrow Actor$

```
@ray.remote
def read_array(file):
    # read ndarray "a"
    # from "file"
    return a
```

```
@ray.remote
def add(a, b):
    return np.add(a, b)
```

```
id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)
```

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

Task API

```
@ray.remote
def read_array(file):
    # read ndarray "a"
    # from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)
```


Task API

```
@ray.remote
def read_array(file):
    # read ndarray "a"
    # from "file"
    return a
@ray.remote
def add(a, b):
    return np.add(a, b)
id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
```

sum = ray.get(id)

Task API

Distributed Immutable object store

Distributed object store

Distributed object store

How Raylet schedules Tasks

uses gRPC as a unified communication layer for both local and remote procedure calls.

How Raylet schedules Tasks

Scaling to Multiple Nodes

- 1. The driver asks Raylet 1 for a worker to execute double. It has no free workers, but Raylet 1 knows Raylet 2 has free resources, and redirects the request to Raylet 2.
- 2. The driver sends ExecuteTask to the remote Python worker leased from Raylet 2 over gRPC.

Tasks are sent to remote workers if there are no local resources available, transparently scaling Ray applications out to multiple nodes.

Ray Native Library: Ray Tune

Ray Tune for distributed HPO

Why use Ray tune?

- Efficient algorithms for parallel trials
- Effective orchestration of distributed trials
- Easy APIs
- Interoperable with Ray Train and Ray Datasets

Ray Tune supports SOTA

Search Algorithms

Trial Schedulers

Search Algo	rithms (tune.su	iggest)	
Tune's Search Algorithms are wr Each library has a specific way o	appers around open-source optimization f defining the search space - please refe	on libraries for efficient r to their documentatio	hyperparameter selection. n for more details.
You can utilize these search algo	orithms as follows:		
<pre>from ray.tune.suggest.hy tune.run(my_function, si </pre>	yperopt import HyperOptSearch earch_alg=HyperOptSearch())		
Summary	Summary	Website	Code Example
Random search/grid search	Random search/grid search		tune_basic_example
AxSearch	Bayesian/Bandit Optimization	[Ax]	ax_example
BlendSearch	Blended Search	[Bs]	blendsearch_example
CFO	Cost-Frugal hyperparameter Optimization	[Cfo]	cfo_example
DragonflySearch	Scalable Bayesian Optimization	[Dragonfly]	dragonfly_example
SkoptSearch	Bayesian Optimization	[Scikit-Optimize]	skopt_example
HyperOptSearch	Tree-Parzen Estimators	[HyperOpt]	hyperopt_example
BayesOptSearch	Bayesian Optimization	[BayesianOptimization]bayesopt_example	
TuneBOHB	Bayesian Opt/HyperBand	[BOHB]	bohb_example
NevergradSearch	Gradient-free Optimization	[Nevergrad]	nevergrad_example
OptunaSearch	Optuna search algorithms	[Optuna]	optuna_example
ZOOptSearch	Zeroth-order Optimization	[ZOOpt]	zoopt_example
SigOptSearch	Closed source	[SigOpt]	sigopt_example
HEBOSearch	Heteroscedastic Evolutionary Bayesian Optimization	[HEBO]	hebo_example

Trial Schedulers (tune.schedulers)

In Tune, some hyperparameter optimization algorithms are written as "scheduling algorithms". These Trial Schedulers can early terminate bad trials, pause trials, clone trials, and alter hyperparameters of a running trial.

All Trial Schedulers take in a metric, which is a value returned in the result dict of your Trainable and is maximized or minimized according to mode.

tune.run(... , scheduler=Scheduler(metric="accuracy", mode="max"))

Summary

Tune includes distributed implementations of early stopping algorithms such as Median Stopping Rule, HyperBand, and ASHA. Tune also includes a distributed implementation of <u>Population Based Training (PBT</u>) and Population Based Bandits (PB2).

💡 Tip

The easiest scheduler to start with is the ASHAScheduler which will aggressively terminate low-performing trials.

When using schedulers, you may face compatibility issues, as shown in the below compatibility matrix. Certain schedulers cannot be used with Search Algorithms, and certain schedulers are require checkpointing to be implemented.

Schedulers can dynamically change trial resource requirements during tuning. This is currently implemented in ResourceChangingScheduler, which can wrap around any other scheduler.

Scheduler	Need Checkpointing?	SearchAlg Compatible?	Example
ASHA	No	Yes	Link
Median Stopping Rule	No	Yes	Link
HyperBand	Yes	Yes	Link
ВОНВ	Yes	Only TuneBOHB	Link
Population Based Training	Yes	Not Compatible	Link
Population Based Bandits	Yes	Not Compatible	Basic Example, PPO example

What are hyperparameters?

What are hyperparameters

A concrete example for NN

Hyperparameter tuning

"choosing a set of optimal hyperparameters for a learning algorithm"

Example: what network structure is best for your binary classification problem?

How many layers? What kinds of layers? Learning rate schedule? Every number here is a hyperparameter!

Challenges of HPO

- Time consuming
- Costly over time
 - Uses resources (CPU/GPU)
- Fault-tolerance and elasticity

Ray Tune HPO algorithms

Host of algorithms

Three strategies

- Over 15+ algorithms natively provided or integrated
- Easy to swap out different algorithms with minimal code change

- 1. Exhaustive search
- 2. Bayesian optimization
- 3. Advanced scheduling

1. Exhaustive Search

• Easily parallelizable and easy to use

2. Bayesian Optimization

- Uses results from previous combinations for the next trial
- Inherently sequential
- Popular libraries support :
 - Hyperopt
 - Optuna
 - Scikit-optimize
 - Nevergrad

https://www.wikiwand.com/en/Hyperparameter_optimization

3. Advanced Scheduling

Early Stopping

- Fan out parallel trials and observe
- Use intermediate results (epochs, tree sample) to prune underperforming trials
- Median stopping, ASHA/Hyperband

Validation Metric (min)		
0	Resources per Trial	→ max

Ray Tune – Distribute HPO Example

Architecture and components

lead Node			Worker Node	e
DriverProcess		1	Worker Node	
<i>tune.run(train_func)</i> Orchestrator running HPO algorithm		Launch	<u>WorkerProcess</u> Actor: Runs train_func	<u>WorkerProcess</u> Actor: Runs train_func
<u>WorkerProcess</u> Actor: Runs train_func	<u>WorkerProcess</u> Actor: Runs train_func		<u>WorkerProcess</u> Actor: Runs train_func	<u>WorkerProcess</u> Actor: Runs train_func

evaluation (a trial)

		Worker Node
Head Node		Worker Node
DriverProcess		Worker Node
<i>tune.run(train_func)</i> Orchestrator running HPO algorithm Report metrics Report metrics	ort metrics	WorkerProcess Actor: Runs train_func WorkerProcess Actor: Runs train_func
WorkerProcess WorkerProcess Actor: Runs train_func Actor: Runs train_func		WorkerProcess Actor: Runs train_func WorkerProcess Actor: Runs train_func
Orchestrator keeps track of all the trials' progress and r	netrics.	

lead Node		Worker Node	
<u>DriverProcess</u>		Worker Node	
tune.run(train_func) Orchestrator running HPO algo	rithm	<u>WorkerProcess</u> Actor: Runs train_func	<u>WorkerProcess</u> Actor: Runs train_func
WorkerProcessWorkerActor: RunsActor: Rtrain_functrain_func	Process ouns unc	<u>WorkerProcess</u> Actor: Runs train_func	<u>WorkerProcess</u> Actor: Runs train_func

	Worker Node
Head Node	Worker Node
<u>DriverProcess</u>	Worker Node
<i>tune.run(train_func)</i> Orchestrator running HPO algorithm Launch a new trial	WorkerProcess Actor: Runs train_funcWorkerProcess Actor: Runs train_func
WorkerProcess Actor: Runs train_func WorkerProcess Actor: Runs train_func	WorkerProcess Actor: Runs train_func WorkerProcess Actor: Runs train_func
Resources are repurposed to explore new trials.	

			Worker No	ode	
lead Node			Worker Node		
DriverProcess		Wor	ker Node		
tune.run(train_fui Orchestrator runn	nc) hing HPO algorithm		<u>orkerProcess</u> tor: Runs iin_func	<u>WorkerProcess</u> Actor: Runs train_func	
<u>WorkerProcess</u> Actor: Runs train_func	<u>WorkerProcess</u> Actor: Runs train_func		o <u>rkerProcess</u> tor: Runs iin_f	<u>WorkerProcess</u> Actor: Runs train_func	
Some worker process c	rashes.		•		

Takeaways

- Distributed computing is a necessity & norm
- Ray's vision: make distributed programming simple
 - Don't have to be distributed systems expert. Just use @ray.remote :)
- Scale your ML workloads with Ray Libraries

Get involved and stay informed

Live and on-demand. Virtual and in-person. Ask questions and share learnings. File bugs and submit code. Whatever your preference, there are lots of ways to connect with the global Ray community, get involved with the project, and stay informed on the latest and greatest.

ray.io/community

DATA+AI SUMMIT 2022

Thank you!

Let's stay in touch:

https://www.linkedin.com/in/dmatrix/

ORGANIZED BY 😂 databricks

Demo: Scaling ML workloads

