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$whoami
• Lead Developer Advocate, Anyscale & Ray Team
• Sr. Developer Advocate, Databricks, Apache Spark/MLflow Team
• Led Developer Advocacy, Hortonworks
• Held Software Engineering  positions:

• Sun Microsystems
• Netscape
• @Home
• Loudcloud/Opsware
• Verisign
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Anyscale

Who are we:  Original Creators of Ray

What we do: Provide cloud-managed service for Ray

Why do it: Make distributed computing easy and simple

 Scale AI/ML workloads 
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Overview
• Why & What Ray & Ray Ecosystem
• Ray Architecture & Components
• Ray Core APIs
• Ray Native ML Libraries 

• Ray Tune
• Demo

• Scaling ML workloads (train, tune, inference)
• Q & A
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Python is the 
language of 
DS/ML

Distributed 
Computing is 
a necessity

Why Ray 

Machine 
Learning is 
Pervasive 
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AI/ML in industries … 
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Proliferated & Incorporated across Industries



Blessings of scale …. 
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Compute demand - supply problem
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35x every 18 months

GPT-3

CPU

GPU*

TPU*

Source: https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/


Specialized hardware is not enough
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35x every 18 months

GPT-3

CPU

GPU*
TPU*

https://openai.com/blog/ai-and-compu
te/

No way out but to 
distribute!

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/


🐍  Python data science/ML 
ecosystem dominating
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Origins of Ray 
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What is Ray? 

● A general-purpose library for distributed computing 
● An ecosystem of native libraries to scale ML workloads
● Runs anywhere: laptop, public cloud, K8s, on-premise

A layered cake of functionality & capabilities for scaling ML 
workloads
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The Layered Cake and Ecosystem

13

Datasets 
Workflows 

Run 
anywhere

Universal 
framework 
for 
distributed 
computing

Library + 
app 
ecosystem



Libraries for scaling ML workloads
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Ray Core / 
Datasets

Model 
Serving

Data
Processing Training Serving

Ray Core + 
Datasets

Reinforcement
Learning

Hyper.
Tuning

Ray Train
Built-in
“batteries 
included”
libraries

Only use the libraries you need!



Ray AIR in Ray 2.0
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Who Using Ray?
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Ray Architecture 
and Components



Anatomy of a Ray cluster
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… …

Head Node Worker Node #1 Worker Node #N. . .

Unique to 
Ray



Anatomy of a Ray cluster
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● Executes 
actor/task
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Ray Distributed 
Design Patterns and 
APIs



Ray Design Patterns 

• Functions as 
stateless units 
of execution

• Functions 
distributed 
across a cluster 
as task 

Ray Parallel 
Tasks
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• Stateful service 
on a cluster

• Enables 
message 
passing and 
maintains state

Ray Actors 

• Distributed 
immutable 
objects 

• Fetched when 
available

• Enable 
asynchronous 
execution 

Ray Objects as 
Futures 



Python → Ray Basic Patterns
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Function    

Class               

Object

Task

Actor

Distributed 
(immutable) Object

Node

Node

Node



Function → Task Class → Actor
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@ray.remote(num_gpus=1)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)



Task API

24

@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

Return id1 (future) immediately, 
before read_array() finishes



Task API
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@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime



Task API
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@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

Node 2

file1 file2

 Node 1 Node 2

read_array

id1

read_array

id2

add

id

Node 3

ray.get() block 
until result available



Distributed Immutable object store
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Worker
 process 

Worker
 process ….

X Y Z

Spill over to external 
storage



Distributed object store
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@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

id_X

Node 2

f()

X

id_X

Only X’s id (id_X) is 
returned, not X’s value

.. ..

Shared 
object store



Distributed object store
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@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

g(id_X)

X

id_X

id_X

Node 2

Y

id_Y

id_Y

g(id_X) is scheduled on same node, so X is never transferred

…

Shared object 
store



How Raylet schedules Tasks
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How Raylet schedules Tasks
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Scaling to Multiple Nodes
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Ray Native Library: 
Ray Tune



Ray Tune for distributed HPO
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• Efficient algorithms for 
parallel trials

• Effective orchestration 
of distributed trials

• Easy APIs
• Interoperable with Ray 

Train and Ray Datasets

Why use Ray tune?
Cutting edge 
optimization 
algorithms

Minimal code changes 
to work in distributed 

settings

Compatible with ML 
ecosystem



Ray Tune supports SOTA
Search Algorithms Trial Schedulers
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What are hyperparameters?
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Hyperparameters

Model 
parameters

● Model type and architecture
● Learning and training related 

parameters
● Number of trees, depth etc

Set before training

Learn during training



What are hyperparameters 
A concrete example for NN
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Hyperparameter tuning
“choosing a set of optimal hyperparameters for a learning algorithm”

How many layers? What kinds of layers? Learning rate schedule?
Every number here is a hyperparameter!

Example: what network structure is best for your binary classification problem?



Challenges of HPO 

• Time consuming
• Costly over time

• Uses resources 
(CPU/GPU)

• Fault-tolerance and 
elasticity
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$$$



Ray Tune HPO algorithms
Host of algorithms Three strategies

● Over 15+ algorithms 
natively provided or 
integrated

● Easy to swap out 
different algorithms with 
minimal code change
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1.  Exhaustive search
2.  Bayesian optimization

3.  Advanced scheduling 



1. Exhaustive Search
● Easily parallelizable and easy to use
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2. Bayesian Optimization

• Uses results from previous 
combinations for the next trial

• Inherently sequential 
• Popular libraries support :

• Hyperopt
• Optuna
• Scikit-optimize
• Nevergrad
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https://www.wikiwand.com/en/Hyperparameter_optimization

https://www.wikiwand.com/en/Hyperparameter_optimization


3. Advanced Scheduling
Early Stopping 

• Fan out parallel trials and 
observe

• Use intermediate results 
(epochs, tree sample) to 
prune underperforming trials

• Median stopping, 
ASHA/Hyperband
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Ray Tune – Distribute HPO Example
Architecture and components
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Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO 
algorithm

from ray import tune

def train_func(config):
    model = ConvNet(config)
    for i in range(epochs):
        current_loss = model.train()
        tune.report(loss=current_loss)
 
tune.run(
    train_func,
    config={“alpha”: tune.uniform(0.001, 
0.1)},
    num_samples=100,
    scheduler=“asha”,
    search_alg=”optuna”)
 
 

Easily specify 
hyperparameter 
ranges to search 
over

Easily define 
your training 
function

Just use 
tun.run(..)



Ray Tune – Distributed HPO
Architecture and components
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Worker Node

Worker Node

Each actor performs one set of hyperparameter combination 
evaluation (a trial)

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Launch Launch

Launch



Ray Tune – Distributed HPO
Architecture and components
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Worker Node

Worker Node
Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

WorkerProcess
Actor: Runs train_func

Report metrics Report metrics

Report metrics

Orchestrator keeps track of all the trials’ progress and metrics. 



Ray Tune – Distributed HPO
Architecture and components
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Worker Node

Worker Node
Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Early stop Continue

Continue

Based on the metrics, the orchestrator may 
stop/pause/mutate trials or launch new trials when 
resources are available.



Ray Tune – Distributed HPO
Architecture and components

46

Worker Node

Worker Node

Resources are repurposed to explore new trials.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Launch a new trial



Ray Tune – Distributed HPO
Architecture and components
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Worker Node

Worker NodeHead Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Trials are 
checkpointed to cloud 
storage

Orchestrator also manages checkpoint state.

Checkpoint



Ray Tune – Distributed HPO
Architecture and components
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Worker Node

Worker Node

Some worker process crashes.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func



Ray Tune – Distributed HPO
Architecture and components
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Worker Node

Worker Node

New actor comes up fresh and the 
crashed trial is restored from remote 
checkpoint.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Load checkpoint from 
cloud storage

restore



Takeaways 

● Distributed computing is a necessity & norm
● Ray’s vision: make distributed programming 

simple
○ Don’t have to be distributed systems 

expert. Just use @ray.remote :)
● Scale your ML workloads with Ray Libraries
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ray.io/community

http://ray.io/community


Thank you!
 Let’s stay in touch:

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

52

@2twitme

https://www.linkedin.com/in/dmatrix/
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  Demo: Scaling ML workloads



https://docs.google.com/file/d/1QetZezw5nOMMnpmbpQNCnl__ytSd7oAt/preview

