
1

Chao Sun
Software Engineer, Apple

Recent Parquet
Improvements
in Apache Spark

Short Intro

- Software Engineer at Apple
- Working on Spark, Hadoop, Parquet, Iceberg, Arrow and related

technologies
- Mostly focusing on improving Spark SQL performance

- Committer to Spark, Hadoop, Hive and Arrow

2

Motivation

- Parquet is a very popular file format, used by Spark and many other
projects

- File scan is an expensive operation within a typical Spark query
- Therefore, if we can improve scan performance, we are able to reduce

query end-to-end time and improve its efficiency, saving $$$

3

Outline

• Short introduction on Apache Parquet
• Complex type support for vectorized Parquet reader
• Parquet column index support in Spark
• Future work

4

Outline

• Short introduction on Apache Parquet
• Complex type support for vectorized Parquet reader
• Parquet column index support in Spark
• Future work

5

Introduction on Apache Parquet

- What is Parquet:
- A columnar format with complex types (e.g., struct, list, map) as first class citizens
- Inspired by the Dremel paper from Google

- A single format specification, with different implementations
- In different projects: Spark, Trino/Presto, Iceberg, Impala, Hive, etc
- In different languages: Java, C++, Rust, Go, etc

- Widely used in the industry

6

https://research.google/pubs/pub36632/

Parquet: Glossary

7

• Row Group
• Consists of one or more column chunks,

one for each column in the file schema
• 128mb by default

• Column Chunk
• A chunk of data for a column
• Consists of one or more pages
• Also contains statistics for the column

• Page
• Basic unit for compression and encoding
• 2 types of pages: dictionary and data
• 1mb by default

Illustration of Parquet format

Parquet File

Row Group 0

Column Chunk 0

Page 0

Page 1

…

Page n

Column Chunk 1

Page 0

Page 1

…

Page n

Column Chunk 2

Page 0

Page 1

…

Page n

Parquet: Data Page

8

Repetition levels
- Represent the start of a new record

Definition levels
- Represent null-ness of values

Values
- Actual non-null values of data

Data Page

Repetition Levels

0

0

0

0

0

0

Definition Levels

0

0

0

0

0

0

Values

A

B

C

D

E

F

Parquet: Data Page

9

- Column type: string

- Represents: [A, B, null, null, C, D]

- For this particular schema:
- Definition level == 1 means the value is

not-null, while 0 means the value is null
- The 3rd and 4th elements are null, since the

corresponding definition level is 0

Data Page

Repetition Levels

0

0

0

0

0

0

Definition Levels

1

1

0

0

1

1

Values

A

B

C

D

Parquet: Data Page

10

- Column type: list<string>

- Represents: [[A, B, null], [null, C, D]]

- For this particular schema:
- Definition level == 1 means the value is not-null, while 0

means the value is null
- The 3rd and 4th elements are null, since the

corresponding definition level is 0
- Repetition level == 1 indicates the start of a new list

Data Page

Repetition Levels

0

1

1

0

1

1

Definition Levels

1

1

0

0

1

1

Values

A

B

C

D

Outline

• Short introduction on Apache Parquet
• Complex type support for vectorized Parquet reader
• Parquet column index support in Spark
• Future work

11

Background
- Complex Type:

- Struct, e.g: struct<f1: int, f2: string>
- List, e.g.: list<string>
- Map, e.g: map<int, string>

Two types of Parquet readers in Spark

- Non-vectorized reader (fallback)
- Uses reader implementation from Parquet Java project (aka parquet-mr)
- Support all types (including complex types)

- Vectorized reader (default)
- Re-written from scratch in Spark
- Support primitive types (e.g., int/float/string/decimal/timestamp/etc)
- Scan data in batches (hence called vectorized)

12

Non-Vectorized Parquet Reader

13

while (scan.hasNext()) {
 val row = scan.next()
 // compute
}

Steps (for each column)

Data Page

Repetition Levels

0

0

0

0

0

0

Definition Levels

1

1

0

0

1

1

Values

A

B

C

D 1. Read the next repetition level
2. Read the next definition level
3. If value is not null, read the next value
4. Assemble into Spark record and pass

to computation (e.g., filter, join,
aggregation, sort)

Vectorized Parquet Reader

14

Steps (for each column)

Data Page

Repetition Levels

0

0

0

0

0

0

Definition Levels

1

1

0

0

1

1

Values

A

B

C

D 1. Read the next batch of repetition level
2. Read the next batch of definition level
3. If value is not null, read the next batch

of values
4. Assemble into columnar batch and

pass to computation

while (scan.hasNext()) {
 val batch = scan.next()
 // compute
}

Advantages of Vectorized Approach

- Much better memory locality and cache utilization
- Uses memcpy when reading batches of values
- Encoding specific optimizations

15

Perf: vectorized vs non-vectorized

16

- Between 10-20x improvements for
primitive types

- Improvements are more significant for
string type when there is high
cardinality of nulls

Micro benchmark result

High Level Idea

- Annotation maximum repetition and definition level when converting
Parquet schema to Spark schema
- Also need to handle legacy formats for list and map

- Read & materialize repetition levels, definition levels and values.
- Optimization: if repetition or definition levels are not needed, materialization is

skipped

- Assemble columnar batch recursively, starting from leaf schema nodes

17

https://github.com/apache/parquet-format/blob/master/LogicalTypes.md#backward-compatibility-rules

Parquet Schema Conversion

18

 optional group array_of_arrays (LIST) {
 repeated group list {
 required group element (LIST) {
 repeated group list {
 optional int32 element;
 }
 }
 }
 }

Parquet: list<list<int32>>

 optional group array_of_arrays (LIST) {
 repeated group list {
 required group element (LIST) {
 repeated group list {
 optional int32 element;
 }
 }
 }
 }

Parquet: list<list<int32>>

R=0 D=1
R=1 D=2
R=1 D=2

R=2 D=3
R=2 D=4

 ArrayType(R=0, D=0,
 ArrayType(R=1, D=2,
 IntegerType(R=2, D=4)
)
)

Spark: ArrayType<ArrayType<IntegerType>>

SPARK-34863: Complex type support

- Added support for reading Parquet data of complex types, e.g., list, map,
struct.

- Added a config spark.sql.parquet.enableNestedColumnVectorizedReader to turn on
or off the feature
- Turned off by default in Spark 3.3

- Shipped in Spark 3.3

19

Complex Type - Performance

- 10-20x improvements when
reading struct fields

- 3.5x improvements when
reading array of structs

20

SELECT s.f FROM tbl …

Perf: vectorized vs non-vectorized

21

- w/ and w/o vectorization
- Average speed-up: 2x
- Expect the same amount of

improvement when reading fields from
struct type, if Spark supports complex
types

TPC-DS (SF=1, Spark 3.1.2) TPC-DS result

Outline

• Short introduction on Apache Parquet
• Complex type support for vectorized Parquet reader
• Parquet column index support in Spark
• Future work

22

Parquet Predicate Pushdown

Existing filter mechanisms

- Statistics
- i.e., min/max stats

- Dictionary
- When dictionary encoding is used, apply equality check on dictionary values

- Bloom filter (since parquet-1.12)
- Apply equality checks on bloom filter per column chunk

All of these skip data on row group level

23

Column Index

Skip data pages using page level min/max statistics

- Saves CPU and IO when data pages can be completely skipped
- Most effective when data is sorted, or with low selectivity filters
- Introduced in Parquet 1.11

24

Column Index Filtering

25

DataPage #1

0 1

DataPage #2

2 3

DataPage #3

4 5

DataPage #1

a b c

DataPage #2

d e

DataPage #3

f g h

c1

c2

Row Group

SELECT * FROM tbl WHERE c1 > 3 AND c2 < ‘f’

DataPage #4 DataPage #5

6 7 8 9

c1 > 3: select rows in [4, 9]
c2 < ‘f’: select rows in [0, 4]
Final selection: row 4

i j

Column Index Filtering

26

DataPage #1

0 1

DataPage #2

2 3

DataPage #3

4 5

DataPage #1

a b c

c1

c2

Row Group

DataPage #4 DataPage #5

6 7 8 9

c1 > 3: select rows in [4, 9]
c2 < ‘f’: select rows in [0, 4]
Final selection: row 4

Other filter mechanisms have to read the entire row group

DataPage #2

d e

DataPage #3

f g h i j

SELECT * FROM tbl WHERE c1 > 3 AND c2 < ‘f’

Column Index Filtering
- FirstRowIndex (FRI): the first row index of a page
- RowRange: the range of rows that are selected

27

DataPage #1

0 1

DataPage #2

2 3

DataPage #3

4 5

DataPage #1

a b c

DataPage #2

d e

c1

c2

Row Group

DataPage #4 DataPage #5

6 7 8 9

FRI=0 FRI=2 FRI=4 FRI=6 FRI=8

FRI=0 FRI=3 FRI=6

RowRanges = (4, 4]

DataPage #3

f g h i j

Column Index Support in Spark

- Process FirstRowIndex and RowRanges to skip Parquet records
- Add new logic to skip reading values

- For instance, with PLAIN encoding, we can simply advance the cursor into the byte
buffer by N positions

- Process RowRanges by comparing with the current batch of rows

28

Current Batch

Row Range

3 cases

- RowRange before batch

- RowRange after batch

- RowRange overlap with batch

Column Index - Performance

- Selecting a single row in 15M
rows: 10-26x improvements
depending on data type

- More benchmark results can be
found in this blog post

29

https://blog.cloudera.com/speeding-up-select-queries-with-parquet-page-indexes/

Outline

• Short introduction on Apache Parquet
• Complex type support for vectorized Parquet reader
• Parquet column index support in Spark
• Future work

30

Future Work

SPARK-36529: Decoupling IO and CPU during Parquet scan

- Spark currently process Parquet row groups sequentially: first download
all row group data, then decompress & decoding page by page

- In progress via PARQUET-2149 and HADOOP-11867

SPARK-36527: Lazy materialization

- Evaluate filters first, followed by materializing data
- Similar to column index, but more general
- Can apply to old Parquet files written without column index

31

https://issues.apache.org/jira/browse/SPARK-36529
https://issues.apache.org/jira/browse/PARQUET-2149
https://issues.apache.org/jira/browse/HADOOP-11867
https://issues.apache.org/jira/browse/SPARK-36527

32

Thank you

