

Recent Parquet Improvements in Apache Spark

Chao Sun Software Engineer, Apple

ORGANIZED BY 🗟 databricks

Short Intro

- Software Engineer at Apple
- Working on Spark, Hadoop, Parquet, Iceberg, Arrow and related technologies
 - Mostly focusing on improving Spark SQL performance
- Committer to Spark, Hadoop, Hive and Arrow

Motivation

- Parquet is a very popular file format, used by Spark and many other projects
- File scan is an expensive operation within a typical Spark query
- Therefore, if we can improve scan performance, we are able to reduce query end-to-end time and improve its efficiency, saving \$\$\$

Outline

- Short introduction on Apache Parquet
- Complex type support for vectorized Parquet reader
- Parquet column index support in Spark
- Future work

Outline

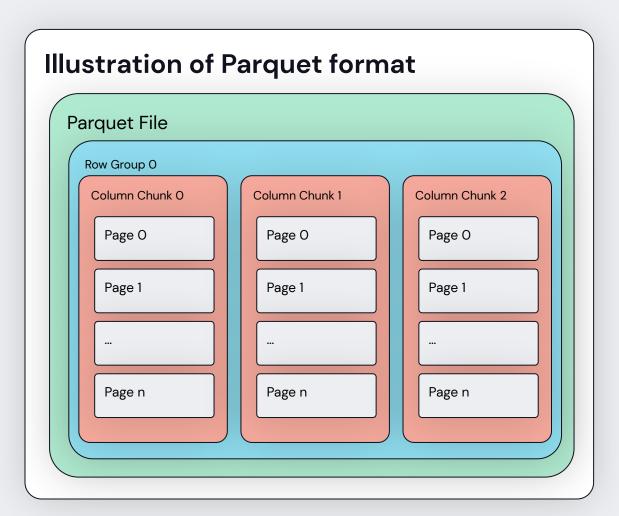
- Short introduction on Apache Parquet
- Complex type support for vectorized Parquet reader
- Parquet column index support in Spark
- Future work

Introduction on Apache Parquet

- What is Parquet:
 - A columnar format with complex types (e.g., struct, list, map) as first class citizens
 - Inspired by the <u>Dremel paper</u> from Google
- A single format specification, with different implementations
 - In different projects: Spark, Trino/Presto, Iceberg, Impala, Hive, etc
 - In different languages: Java, C++, Rust, Go, etc
- Widely used in the industry

Parquet: Glossary

- Row Group
 - Consists of one or more **column chunks**, one for each column in the file schema
 - 128mb by default
- Column Chunk
 - A chunk of data for a column
 - Consists of one or more pages
 - Also contains statistics for the column
- Page
 - Basic unit for compression and encoding
 - 2 types of pages: *dictionary* and *data*
 - 1mb by default



Parquet: Data Page

Data Page

Repetition Levels	Definition Levels	Values
0	0	A
0	0	В
0	0	С
0	0	D
0	0	E
0	0	F

Repetition levels

- Represent the start of a new record

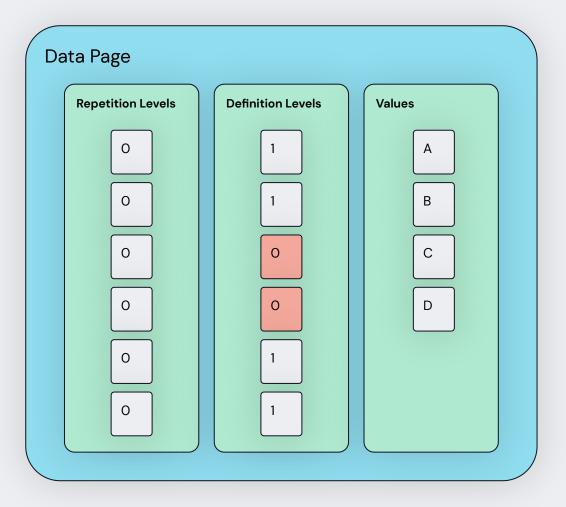
Definition levels

- Represent null-ness of values

Values

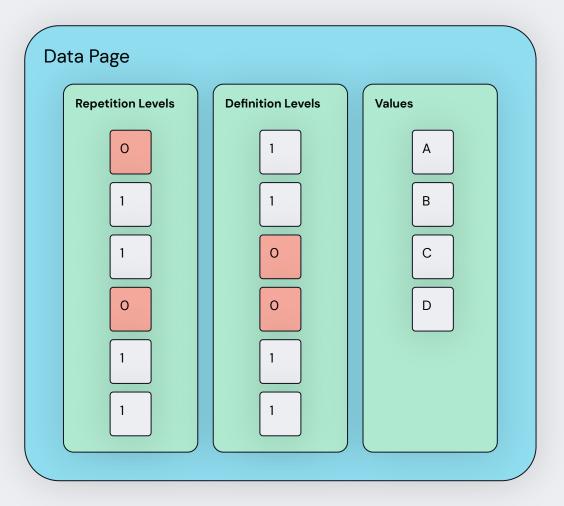
- Actual non-null values of data

Parquet: Data Page



- Column type: **string**
- Represents: [A, B, null, null, C, D]
- For this particular schema:
 - Definition level == 1 means the value is not-null, while 0 means the value is null
- The 3rd and 4th elements are null, since the corresponding definition level is 0

Parquet: Data Page



- Column type: list<string>
- Represents: [[A, B, null], [null, C, D]]
- For this particular schema:
- Definition level == 1 means the value is not-null, while 0 means the value is null
- The 3rd and 4th elements are null, since the corresponding definition level is 0
- **Repetition level == 1** indicates the start of a new list

Outline

- Short introduction on Apache Parquet
- Complex type support for vectorized Parquet reader
- Parquet column index support in Spark
- Future work

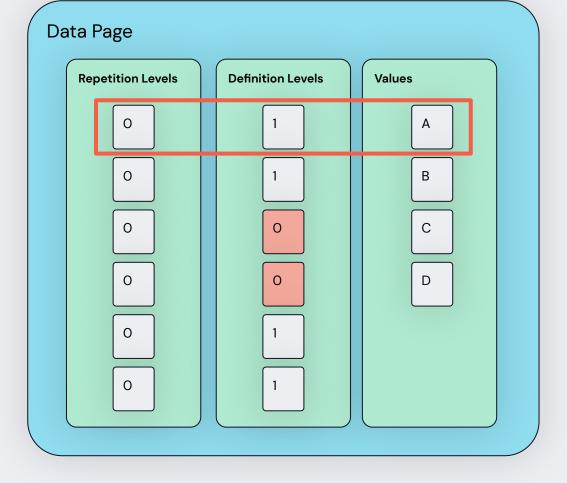
Background

- Complex Type:
 - Struct, e.g: struct<f1: int, f2: string>
 - List, e.g.: list<string>
 - Map, e.g: map<int, string>

Two types of Parquet readers in Spark

- Non-vectorized reader (fallback)
 - Uses reader implementation from Parquet Java project (aka **parquet-mr**)
 - Support all types (including complex types)
- Vectorized reader (default)
 - Re-written from scratch in Spark
 - Support primitive types (e.g., int/float/string/decimal/timestamp/etc)
 - Scan data in batches (hence called *vectorized*)

Non-Vectorized Parquet Reader

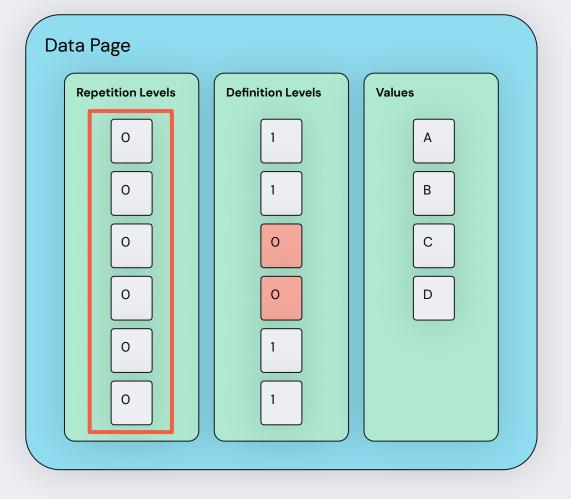


```
while (scan.hasNext()) {
   val row = scan.next()
   // compute
}
```

Steps (for each column)

- 1. Read the next repetition level
- 2. Read the next definition level
- 3. If value is not null, read the next value
- 4. Assemble into Spark record and pass to computation (e.g., filter, join, aggregation, sort)

Vectorized Parquet Reader



```
while (scan.hasNext()) {
   val batch = scan.next()
   // compute
}
```

Steps (for each column)

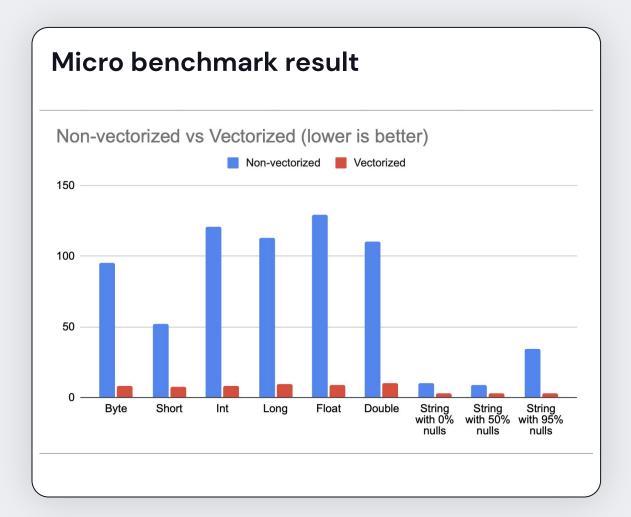
- 1. Read the next batch of repetition level
- 2. Read the next batch of definition level
- 3. If value is not null, read the next batch of values
- 4. Assemble into columnar batch and pass to computation

Advantages of Vectorized Approach

- Much better memory locality and cache utilization
- Uses memcpy when reading batches of values
- Encoding specific optimizations

Perf: vectorized vs non-vectorized

- Between 10–20x improvements for primitive types
- Improvements are more significant for string type when there is high cardinality of nulls

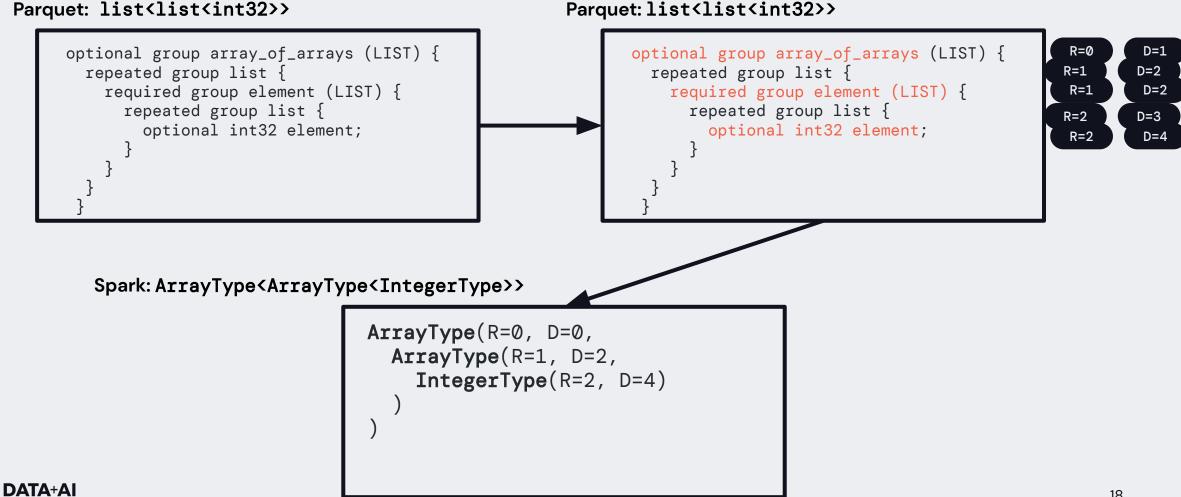


High Level Idea

- Annotation maximum repetition and definition level when converting Parquet schema to Spark schema
 - Also need to handle <u>legacy formats</u> for list and map
- Read & materialize repetition levels, definition levels and values.
 - Optimization: if repetition or definition levels are not needed, materialization is skipped
- Assemble columnar batch recursively, starting from leaf schema nodes

Parquet Schema Conversion

SUMMIT 2022



SPARK-34863: Complex type support

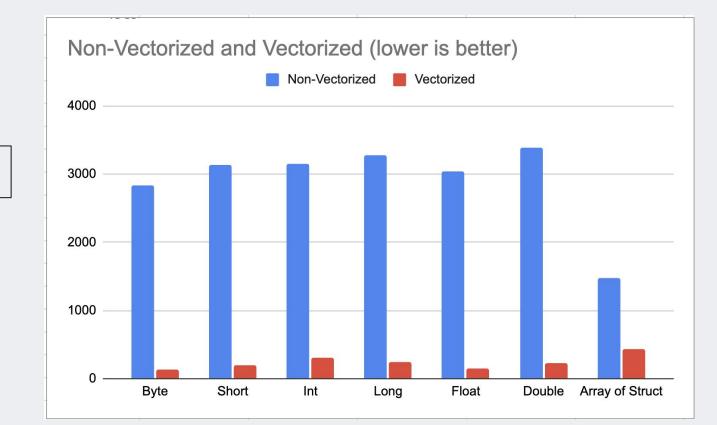
- Added support for reading Parquet data of complex types, e.g., list, map, struct.
- Added a config spark.sql.parquet.enableNestedColumnVectorizedReader to turn on or off the feature
 - Turned off by default in Spark 3.3
- Shipped in Spark 3.3

Complex Type – Performance

 10–20x improvements when reading struct fields

SELECT s.f FROM tbl ...

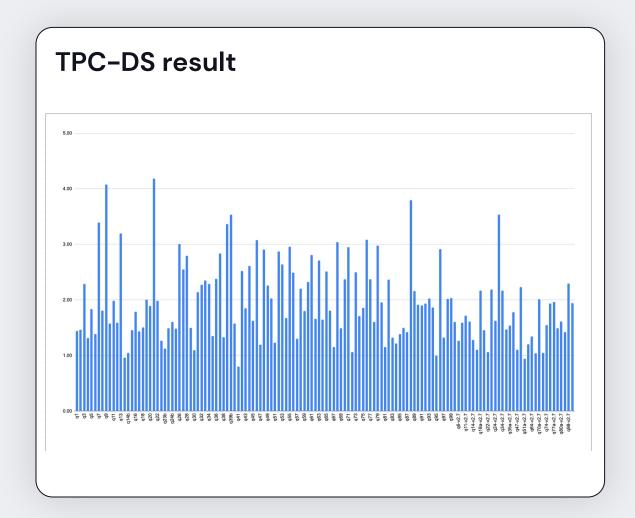
 3.5x improvements when reading array of structs



Perf: vectorized vs non-vectorized

TPC-DS (SF=1, Spark 3.1.2)

- w/ and w/o vectorization
- Average speed-up: 2x
- Expect the same amount of improvement when reading fields from struct type, if Spark supports complex types



Outline

- Short introduction on Apache Parquet
- Complex type support for vectorized Parquet reader
- Parquet column index support in Spark
- Future work

Parquet Predicate Pushdown

Existing filter mechanisms

- Statistics
 - i.e., min/max stats
- Dictionary
 - When dictionary encoding is used, apply equality check on dictionary values
- Bloom filter (since parquet-1.12)
 - Apply equality checks on bloom filter per column chunk

All of these skip data on **row group** level

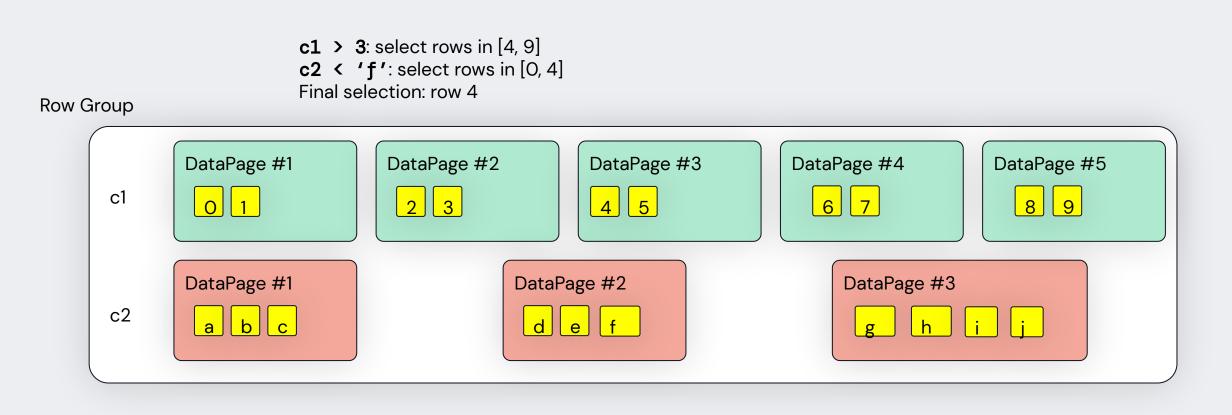
Column Index

Skip data pages using **page level** min/max statistics

- Saves CPU and IO when data pages can be completely skipped
- Most effective when data is sorted, or with low selectivity filters
- Introduced in Parquet 1.11

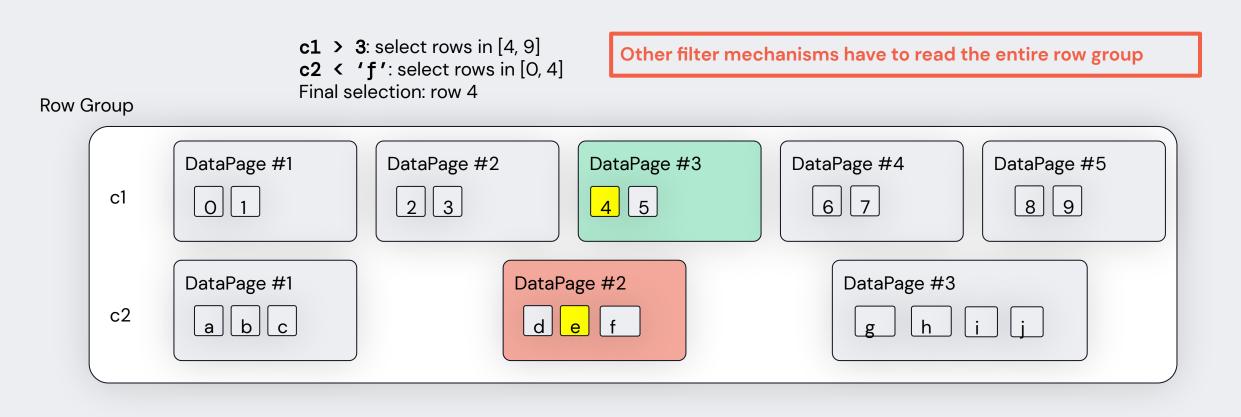
Column Index Filtering

SELECT * FROM tbl WHERE c1 > 3 AND c2 < 'f'



Column Index Filtering

SELECT * FROM tbl WHERE c1 > 3 AND c2 < 'f'



Column Index Filtering

- FirstRowIndex (FRI): the first row index of a page
- RowRange: the range of rows that are selected

```
Row Group FRI=0
                               FRI=2
                                                   FRI=4
                                                                      FRI=6
                                                                                          FRI=8
             DataPage #1
                                 DataPage #2
                                                    DataPage #3
                                                                       DataPage #4
                                                                                          DataPage #5
      c1
                                                                          6 7
                                                                                             8 9
                                  2 3
                                                    4 5
               0 1
             DataPage #1
                                                                            DataPage #3
                                             DataPage #2
      c2
               a b c
                                              d
                                                  е
                                                                              g
             FRI=Ø
                                             FRI=3
                                                                            FRI=6
```

```
RowRanges = (4, 4]
```

Column Index Support in Spark

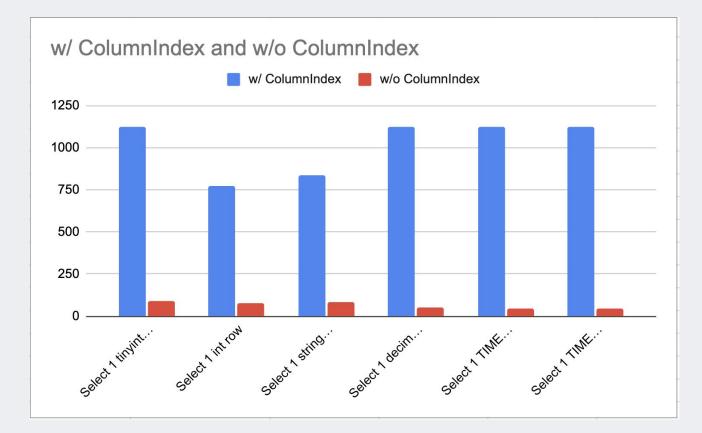
- Process FirstRowIndex and RowRanges to skip Parquet records
- Add new logic to skip reading values
 - For instance, with PLAIN encoding, we can simply advance the cursor into the byte buffer by N positions
- Process RowRanges by comparing with the current batch of rows

Current Batch		
	Row Range	

- RowRange **before** batch
- RowRange after batch
- RowRange **overlap** with batch

Column Index – Performance

- Selecting a single row in 15M rows: 10–26x improvements depending on data type
- More benchmark results can be found in this <u>blog post</u>



Outline

- Short introduction on Apache Parquet
- Complex type support for vectorized Parquet reader
- Parquet column index support in Spark
- Future work

Future Work

<u>SPARK-36529</u>: Decoupling IO and CPU during Parquet scan

- Spark currently process Parquet row groups sequentially: first download all row group data, then decompress & decoding page by page
- In progress via <u>PARQUET-2149</u> and <u>HADOOP-11867</u>

<u>SPARK-36527</u>: Lazy materialization

- Evaluate filters first, followed by materializing data
- Similar to column index, but more general
- Can apply to old Parquet files written without column index

DATA+AI SUMMIT 2022

Thank you

