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Short Intro

- Software Engineer at Apple
- Working on Spark, Hadoop, Parquet, Iceberg, Arrow and related 

technologies
- Mostly focusing on improving Spark SQL performance

- Committer to Spark, Hadoop, Hive and Arrow
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Motivation

- Parquet is a very popular file format, used by Spark and many other 
projects

- File scan is an expensive operation within a typical Spark query
- Therefore, if we can improve scan performance, we are able to reduce 

query end-to-end time and improve its efficiency, saving $$$
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Outline

• Short introduction on Apache Parquet
• Complex type support for vectorized Parquet reader
• Parquet column index support in Spark
• Future work
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Introduction on Apache Parquet

- What is Parquet:
- A columnar format with complex types (e.g., struct, list, map) as first class citizens
- Inspired by the Dremel paper from Google

- A single format specification, with different implementations
- In different projects: Spark, Trino/Presto, Iceberg, Impala, Hive, etc
- In different languages: Java, C++, Rust, Go, etc

- Widely used in the industry
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https://research.google/pubs/pub36632/


Parquet: Glossary
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• Row Group
• Consists of one or more column chunks, 

one for each column in the file schema
• 128mb by default

• Column Chunk
• A chunk of data for a column
• Consists of one or more pages
• Also contains statistics for the column

• Page
• Basic unit for compression and encoding
• 2 types of pages: dictionary and data
• 1mb by default

Illustration of Parquet format
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Parquet: Data Page
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Repetition levels
- Represent the start of a new record

Definition levels
- Represent null-ness of values

Values
- Actual non-null values of data
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Parquet: Data Page
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- Column type: string

- Represents: [A, B, null, null, C, D]

- For this particular schema:
- Definition level == 1 means the value is 

not-null, while 0 means the value is null
- The 3rd and 4th elements are null, since the 

corresponding definition level is 0
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Parquet: Data Page

10

- Column type: list<string>

- Represents: [[A, B, null], [null, C, D]]

- For this particular schema:
- Definition level == 1 means the value is not-null, while 0 

means the value is null
- The 3rd and 4th elements are null, since the 

corresponding definition level is 0
- Repetition level == 1 indicates the start of a new list
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Background
- Complex Type:

- Struct, e.g: struct<f1: int, f2: string>
- List, e.g.: list<string>
- Map, e.g: map<int, string>

Two types of Parquet readers in Spark

- Non-vectorized reader (fallback)
- Uses reader implementation from Parquet Java project (aka parquet-mr)
- Support all types (including complex types)

- Vectorized reader (default)
- Re-written from scratch in Spark
- Support primitive types (e.g., int/float/string/decimal/timestamp/etc)
- Scan data in batches (hence called vectorized)
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Non-Vectorized Parquet Reader
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while (scan.hasNext()) {
  val row = scan.next()
  // compute
}

Steps (for each column)
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D 1. Read the next repetition level
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3. If value is not null, read the next value
4. Assemble into Spark record and pass 

to computation (e.g., filter, join, 
aggregation, sort)



Vectorized Parquet Reader
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Steps (for each column)

Data Page

Repetition Levels
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1
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A

B

C

D 1. Read the next batch of repetition level
2. Read the next batch of definition level
3. If value is not null, read the next batch 

of values
4. Assemble into columnar batch and 

pass to computation

while (scan.hasNext()) {
  val batch = scan.next()
  // compute
}



Advantages of Vectorized Approach

- Much better memory locality and cache utilization
- Uses memcpy when reading batches of values
- Encoding specific optimizations 
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Perf: vectorized vs non-vectorized
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- Between 10-20x improvements for 
primitive types

- Improvements are more significant for 
string type when there is high 
cardinality of nulls

Micro benchmark result



High Level Idea

- Annotation maximum repetition and definition level when converting 
Parquet schema to Spark schema
- Also need to handle legacy formats for list and map

- Read & materialize repetition levels, definition levels and values.
- Optimization: if repetition or definition levels are not needed, materialization is 

skipped

- Assemble columnar batch recursively, starting from leaf schema nodes
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https://github.com/apache/parquet-format/blob/master/LogicalTypes.md#backward-compatibility-rules


Parquet Schema Conversion
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   optional group array_of_arrays (LIST) {
     repeated group list {
       required group element (LIST) {
         repeated group list {
           optional int32 element;
         }
       }
     }
    }

  

Parquet: list<list<int32>>

   optional group array_of_arrays (LIST) {
     repeated group list {
       required group element (LIST) {
         repeated group list {
           optional int32 element;
         }
       }
     }
    }

  

Parquet: list<list<int32>>

R=0 D=1
R=1 D=2
R=1 D=2

R=2 D=3
R=2 D=4

  ArrayType(R=0, D=0,
    ArrayType(R=1, D=2, 
      IntegerType(R=2, D=4)
    )
  )

  

Spark: ArrayType<ArrayType<IntegerType>>



SPARK-34863: Complex type support

- Added support for reading Parquet data of complex types, e.g., list, map, 
struct.

- Added a config spark.sql.parquet.enableNestedColumnVectorizedReader to turn on 
or off the feature
- Turned off by default in Spark 3.3

- Shipped in Spark 3.3
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Complex Type - Performance

- 10-20x improvements when 
reading struct fields

- 3.5x improvements when 
reading array of structs
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SELECT s.f FROM tbl …



Perf: vectorized vs non-vectorized
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- w/ and w/o vectorization
- Average speed-up: 2x
- Expect the same amount of 

improvement when reading fields from 
struct type, if Spark supports complex 
types

TPC-DS (SF=1, Spark 3.1.2) TPC-DS result
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Parquet Predicate Pushdown

Existing filter mechanisms

- Statistics
- i.e., min/max stats

- Dictionary
- When dictionary encoding is used, apply equality check on dictionary values

- Bloom filter (since parquet-1.12)
- Apply equality checks on bloom filter per column chunk

All of these skip data on row group level
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Column Index

Skip data pages using page level min/max statistics

- Saves CPU and IO when data pages can be completely skipped
- Most effective when data is sorted, or with low selectivity filters
- Introduced in Parquet 1.11
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Column Index Filtering
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Column Index Filtering
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SELECT * FROM tbl WHERE c1 > 3 AND c2 < ‘f’ 



Column Index Filtering
- FirstRowIndex (FRI): the first row index of a page
- RowRange: the range of rows that are selected
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Column Index Support in Spark

- Process FirstRowIndex and RowRanges to skip Parquet records
- Add new logic to skip reading values

- For instance, with PLAIN encoding, we can simply advance the cursor into the byte 
buffer by N positions

- Process RowRanges by comparing with the current batch of rows
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Current Batch

Row Range

3 cases

- RowRange before batch

- RowRange after batch

- RowRange overlap with batch



Column Index - Performance

- Selecting a single row in 15M 
rows: 10-26x improvements 
depending on data type

- More benchmark results can be 
found in this blog post
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https://blog.cloudera.com/speeding-up-select-queries-with-parquet-page-indexes/
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Future Work

SPARK-36529: Decoupling IO and CPU during Parquet scan

- Spark currently process Parquet row groups sequentially: first download 
all row group data, then decompress & decoding page by page

- In progress via PARQUET-2149 and HADOOP-11867

SPARK-36527: Lazy materialization

- Evaluate filters first, followed by materializing data
- Similar to column index, but more general
- Can apply to old Parquet files written without column index
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https://issues.apache.org/jira/browse/SPARK-36529
https://issues.apache.org/jira/browse/PARQUET-2149
https://issues.apache.org/jira/browse/HADOOP-11867
https://issues.apache.org/jira/browse/SPARK-36527


32

Thank you


