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Real-Time Search and 
Recommendation at 
Scale using Embeddings 
and Hopsworks



The Road to Value with Data and AI
Personalized Search/Recommendations is at the Highest level
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Analytical ML

Operational ML
with historical data

Operational ML
with real-time data 

BI: 
DESCRIPTIVE & DIAGNOSTIC

ANALYTICS

AI: 
PREDICTIVE & PRESCRIPTIVE

ANALYTICS

Artisanal ML
(Laptop ML)

Structured 
Data

‘Big’ Data



How can a Data Scientist build it in Python?
Python Only for Retrieval and Ranking
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Data Scientist
ML Engineer

Data Engineer
ML Engineer

Traditionally, this would be a big cross-team project integrating many different services.

Feature Store

Vector Database

Lakehouse

Model Serving



Hopsworks 
Python-Centric: Feature Store, KServe, Vector DB all-in-one
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Embeddings
Pandas

Scikit-Learn
TensorFlow

PyTorch
XGBoost

etc

Databricks
Snowflake
BigQuery
Redshift
Synapse

etc

Feature Store

PythonModern Datastack (SQL)

OpenSearch
KServe

ML Infra



Classes of Recommender System
Where do the recommendations come from?

1. Collaboration-based recommendations are based on user behavior. 

2. Content-based recommendations are based on item metadata.

3. Item-to-item (i2i) recommendations 

- given an item, recommend similar items

4. In user-to-item (u2i), given a user, 

we recommend items

5. i2i and u2i recommendations are 

dominant for user-centric websites

Multi-purpose
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Well known online recommender services
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Batch Recommender Systems

Facebook posts 
Batch
Collaborative filtering
Content-based

Netflix movies 
Batch
Collaborative filtering
Content-based

Alibaba products
Real-time
Item-to-Item

TikTok
Real-time
Retrieval and Ranking
Freshest features

Spotify Weekly
Batch
Collaborative filtering
Content-based

MovieLens
Batch
Collaborative filtering
Content-based

Youtube clips
Real-time
Retrieval and Ranking
U2I and I2I

“It's digital crack”, Andrej Karpathy



Well known online recommender services
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Real-time Recommenders

Facebook posts 
Batch
Collaborative filtering
Content-based

Netflix movies 
Batch
Collaborative filtering
Content-based

Alibaba products
Real-time
Item-to-Item

TikTok
Real-time
Retrieval and Ranking
Freshest features

Spotify Weekly
Batch
Collaborative filtering
Content-based

MovieLens
Batch
Collaborative filtering
Content-based

Youtube clips
Real-time
Retrieval and Ranking
U2I and I2I

“It's digital crack”, Andrej Karpathy



Batch Recommender Service
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Database or 
KV-Store

Batch Program
(with model) Model Registry

download model

Operational 
ServicesReports

consume predictions

store predictions

read batch data for scoring

Feature 
Store



Real-time Recommender Service
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User History & Context

Item 2
millions

or
billions

Hundreds Dozens

Candidate
Generation

Ranking

Item1

Item 3

Item 4

Item 5

Item
Corpus



Real-time Recommender  Service - Retrieval and Ranking

10

Feature Store

history+context

Model Serving

Model
Deployments

rank candidates

 
 
 

 
 
 

Data Sources
Model Registry feature

pipelines

deploy Vector Database
Embeddings

generate candidates



Retrieval/Ranking Arch for Recommendations  
Embeddings, Retrieval, Filtering, Ranking

Jointly train with 
two-tower model: 
User/query embedding 
Item embedding models

Built Approx Nearest 
Neighbor (ANN) Index 
with items and item 
embedding model.
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User/Query & 
Item Embeddings

With a ranking model, 
score all the candidate 
items with both user and 
item features, ensuring, 
candidate diversity.

Ranking

Remove candidate items 
for various reasons:

• underage user 
• item sold out
• item bought before
• item not available in 

user’s region

Filtering

Retrieve candidate items 
based on the user 
embedding from the 
ANN Index - 
similarity search

Retrieval



Feature Store and Retrieval/Ranking
Context and History for Real-time Models
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Feature Store
HOPSWORKS

Precomputed Features
(Context, Historical)

Retrieval and 
Ranking

Click or Search

Online API
returns

Candidate Item1
…

Candidate ItemN

Feature Pipelines



Inside the Feature Store 
Write to Feature Groups, Read from Feature Views
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Feature Groups

Web logs

Users

Items

Transactions

Data
Warehouse

Feature Views

Ranking

User/Item Pairs

Items

Feature Store

Online API

Offline API

Serve

Train



Writing to Feature Groups
APIs for writing data into Feature Groups

14

Online

Offline

External 

Training Data

Model Registry 
& Deployment

Projects

Feature Groups

Feature
Views

Online

Offline

External 

Spark

Spark
Streaming

Flink

Hopsworks
APIs

Pandas



External Feature Groups
Mount tables from external data sources into Feature Store
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Online

Offline

External 

Training Data

Model Registry 
& Deployment

Projects

Feature Groups

Feature
Views

Online

Offline

External 

Snowflake

Amazon S3

JDBC
(MySQL, 

Postgres, 
MongoDB)

HopsFS

Hopsworks
Connectors

Storage Connectors

BigQuery ADLS
(Azure)

Redshift
(Amazon)



Feature/Prediction Logging
Needed to create training data
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Log user-item interactions as training data for our two-tower model and ranking model.

Retail Website

Search

Item 1

Item 2

Item 3

Item 4

Purchase 3

Click 2

Click 3

Score: 0Item 1

Score: 1Item 2

Score: 5Item 3

Score: 0Item 4

Features

Features

Features

Features



Offline Infrastructure
Collect user, item and transaction (clicks/searches) data
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Hopsworks
Feature 
Store

KServe

OpenSearch
(FAISS)

KServe

 

Kafka
transactions

Feature Engineering 
(Spark/Python/SQL)

Data Warehouse
user, item profiles

Historical transactions

 
User and Item 

Embedding Models.
Two Tower Training

Model Training

 Compute embeddings 
for items/users and 
add to ANN index

Spark App

 

Model Training

Ranking Model

deploy

deploy

build index



Network Architecture for Two-Tower Model 
User/query tower and item tower
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[Image from Yu et al]

Sigmoid, Dot Product, …

User and Item Embeddings 
are the  same length Item Embedding

Trainable (neural network) 
Encoder

Static item 
features

User/Query Embedding

Trainable (neural network) Encoder

Static user 
features

User Session 
History

User Click 
History

TensorFlow has the tensorflow-recommenders library to train two-tower embedding models.
Our training data, transactions.csv, consists of customer and article pairs. You need to provide only positive pairs, where the 
customer purchased an article. Training produces 2 models: an item encoder model and a user encoder model.

The dot product of a user embedding and item 
embedding pair that interacted is high and the 
dot product of a non interacting pair is close to 0

https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_4.pdf


Ranking Model
Model should predict best order with user/item features
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Each instance (user-item pair) 
is represented with a list of 
features, retrieved from the 
feature store.

Training data is the user-item 
features and the label is the 
relevance ratings.

Ranking models should be fast 
- low latency to rank 100s of 
candidates, so decision trees 
are popular.



Training Models 

20

Feature Views

Ranking

Retrieval

Feature Store

Training Data

retrieval.csv ranking.csv

Ranking
User/Query
Embedding

Item
Embedding

Model Registry

Models



Hopsworks Retrieval and Ranking
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Feature Store
HOPSWORKS

Feature Pipeline

Precomputed Features
(Context, Historical)

Training Data

Retrieval and 
Ranking

Recommendations
(Click or Search)

Online API

Offline API

Model 
Registry

OpenSearch

KServe



a. User Query

1. Enrich Query with 
User History, Profile, and 
Context

Hopsworks
Feature Store

OpenSearch

2. Compute 
User/Query 
Embedding

3. Retrieve Candidates

4. Enrich Candidates 
using Feature Store

5. Score Candidates 
with Ranking Model

KServe

Query,
Req-ID

Ranked
Results

<ReqID,
outcome>

Feature Loggingb. Item Selected
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Hopsworks Ranking and Retrieval



Benchmarking
Retrieval and Ranking at Scale with Spotify
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Goal:
Support Spotify Personalized Search in a Retrieval and 
Ranking Architecture.
Benchmark the highest throughput, lowest latency 
key-value stores to identify one that could scale to handle 
millions of concurrent lookups per second on Spotify’s 
workloads. 

Systems: 
Aerospike and RonDB were identified as the only systems 
capable of meeting the triple goals of High Throughput, 
Low Latency, and High Availability. Other databases such 
as Redis, Cassandra, BigTable were not considered for 
availability or latency or throughput reasons.

Feature Store 

 
 
 

Ranking 
and 

Retrieval

Lookup Features

Feature Values

Feature Pipelines



Benchmarking
Experiment setup
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Hardware Benchmark Setup on GCP: RonDB (NDB) vs Aerospike. The Java Client 
nodes are the clients performing the reads/writes on the Data Nodes. When the 
cluster is provisioned with 8 RonDB (NDB) data nodes, it has 832GB of usable 
in-memory storage, when a replication factor of 2 is used.



Benchmarking
Throughput
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Throughput: higher is better. Each feature store operation was a batch of 250 key-value lookups, 
meaning with 8 clients for a 8-node RonDB cluster, there are >2m lookups/sec.

Average throughput of the clients in both 6 and 8 node setup of RonDB 
and Aerospike

N. of clients

RonDB 8 Nodes

RonDB 6 Nodes

Aerospike 6 nodes

Aerospike 8 nodes

1250

1000

750

500
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1 2 4 8
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Benchmarking
Latency
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Latency: lower is better. Each feature store operation was a batch of 250 key-value lookups. So, for 
RonDB, the P99 when performing 250 primary operations in a single transaction is under 30ms.

Average latency of the clients in both 6 node setup of RonDB and Aerospike

N. of clients

RonDB P75

RonDB P99 Aerospike P99

Aerospike P75
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20
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Benchmarking
Spotify Online Feature Store Comparison
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RonDB 35% Higher Throughput
RonDB 30% Better Latency

Based on Public Report  from Spotify
comparing Aerospike and RonDB (NDB Cluster) as Feature Stores

http://kth.diva-portal.org/smash/get/diva2:1556387/FULLTEXT01.pdf 

http://kth.diva-portal.org/smash/get/diva2:1556387/FULLTEXT01.pdf


DEMO
H&M Dataset from Kaggle
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create feature groups for articles, customers, transactions 

● articles.csv
● customers.csv
● transactions_train.csv 

create feature view for retrieval model (training data)

build opensearch KNN index with embeddings for all articles 

train two-tower model - user and article embedding models

create feature view for retrieval model (training data)

train ranking model

deploy models to KServe + glue code for Hopsworks, OpenSearch

https://github.com/logicalclocks/hopsworks-tutorials 

https://github.com/logicalclocks/hopsworks-tutorials


H&M Dataset from Kaggle - Demo
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Feature Groups

transactions.csv

Customers

Articles

Transactions

Feature Views

retrieval

Feature Store

Transaction = (customer_id, article_id, timestamp, channel)

1_feature_engineering.ipynb 2a_create_retrieval_feature_views.ipynb

articles.csv

customers.csv



H&M Dataset from Kaggle - Demo
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OpenSearch kNN
ANN Index

Python Program
with Item 
Embedding Model

Item Corpus

Encode all items

Insert all pairs
(ID, embedding) 

3_build_index.ipynb

Model Registry
Customer Embedding Model

Article Embedding Model

TensorFlow 
Two-Tower 
Training 

Training Data

Register User & Item 
Embedding Models

2b_train_retrieval_model.ipynb



H&M Dataset from Kaggle - Demo
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4a_create_ranking_feature_views.ipynb 4b_train_ranking_model.ipynb

Feature Groups

Customers

Articles

Transactions

Feature Views

Ranking

Feature Store

Transaction = (customer_id, article_id, timestamp, channel)

Model Registry
Ranking Model

TensorFlow Program
with Item 
Embedding Model

Register Ranking 
Model

Training 
Data



H&M Dataset from Kaggle - Demo
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Logs: Inputs, Predictions

predict
(https)

Predictor

devices

Kafka

Istio

Feature Store

 
 
 

Transformer

Metrics

5_create_deployment.ipynb

Transformer
Predictor

Ranking Model

User/Query Model1

2

3

4 2, 4

5

67



What’s next?
Data for AI Flywheel
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Feature
Store

Recommender
(Website, etc)

Models & 
Embeddings

Model
Training

Feature 
Pipeline

Feature
Store

Enterprise 
Data

logs

Online API Offline API



Now available at:

https://app.hopsworks.ai

Our Promise to you:

Free Forever

Build Prediction Services, not just Models
Hopsworks Serverless
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www.hopsworks.ai

Open & 
modular

Efficiency
At Scale

Compliance
Governance
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