#### DATA+AI SUMMIT 2022

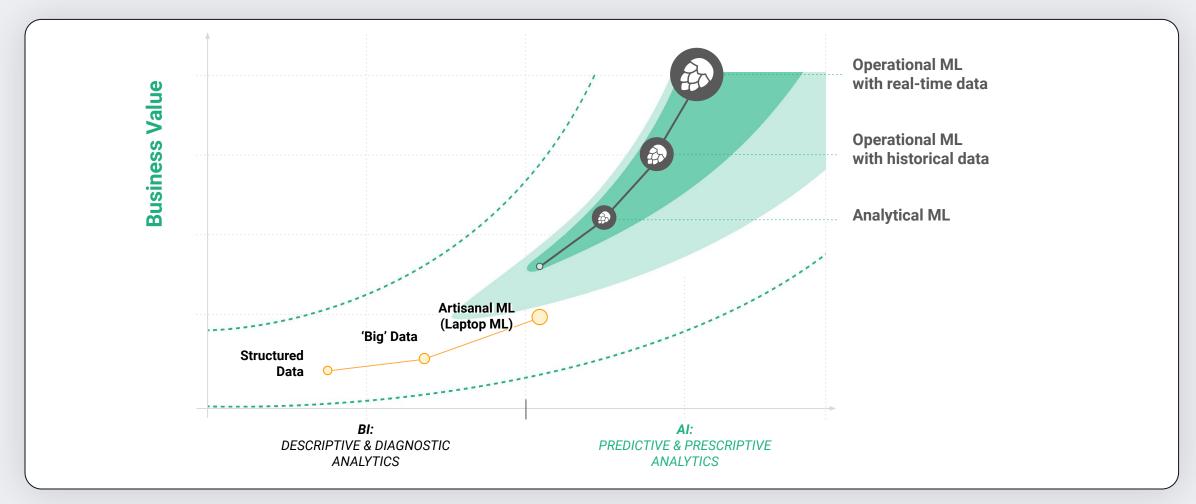
## Real-Time Search and Recommendation at Scale using Embeddings and Hopsworks

ORGANIZED BY Sdatabricks

**Jim Dowling** CEO, Hopsworks

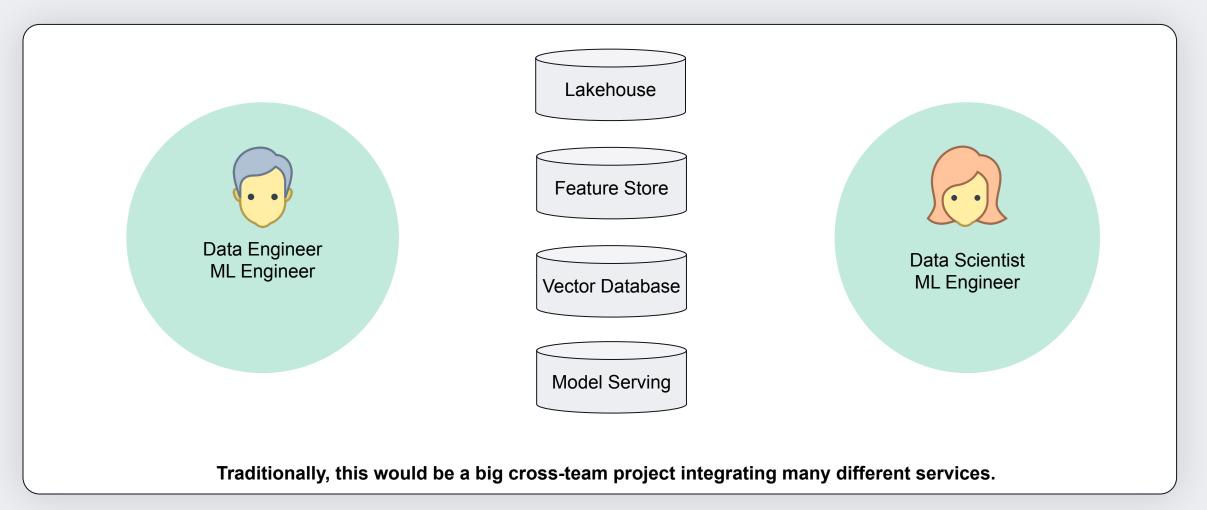
## The Road to Value with Data and Al

Personalized Search/Recommendations is at the Highest level



# How can a Data Scientist build it in Python?

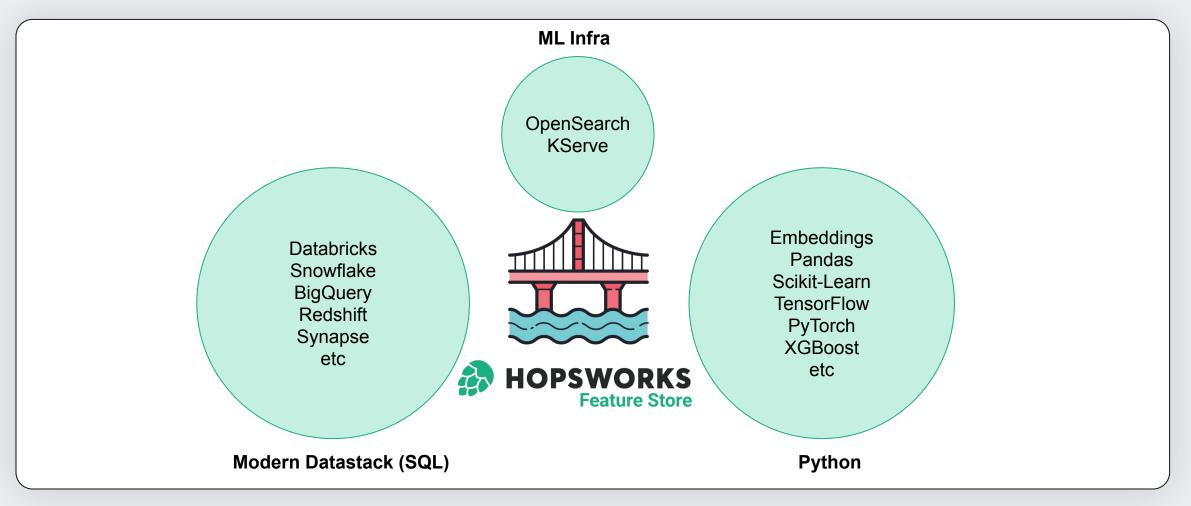
Python Only for Retrieval and Ranking





## Hopsworks

### Python-Centric: Feature Store, KServe, Vector DB all-in-one



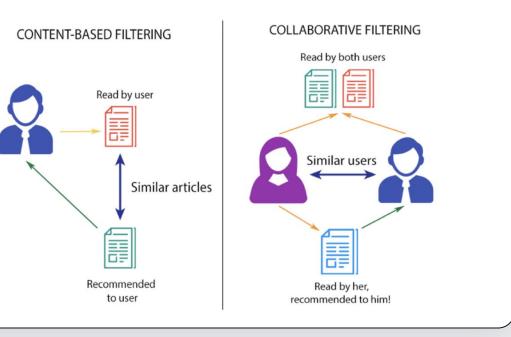


# **Classes of Recommender System**

Where do the recommendations come from?

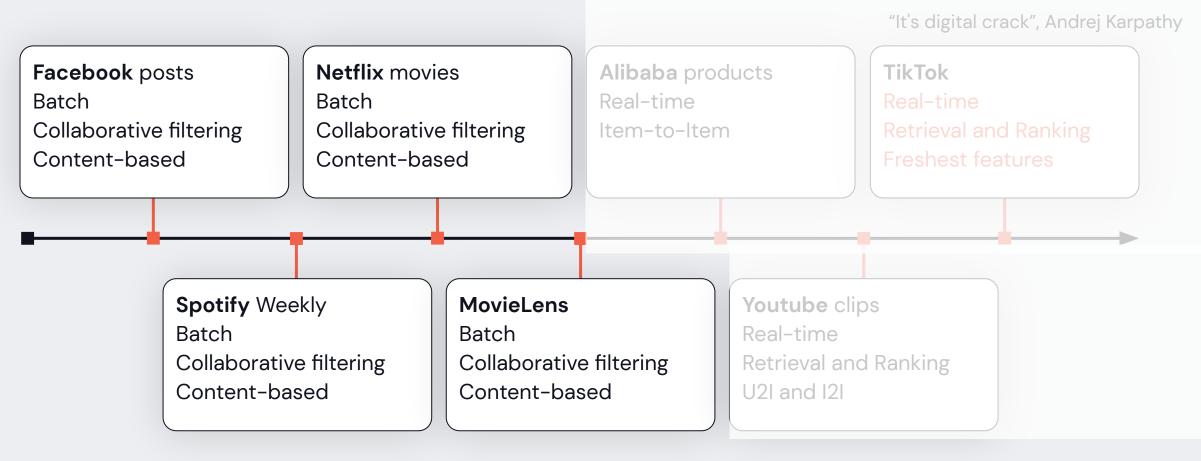
#### Multi-purpose

- 1. Collaboration-based recommendations are based on user behavior.
- 2. Content-based recommendations are based on item metadata.
- 3. Item-to-item (i2i) recommendations
  - given an item, recommend similar items
- 4. In user-to-item (u2i), given a user, we recommend items
- 5. i2i and u2i recommendations are dominant for user-centric websites



# Well known online recommender services

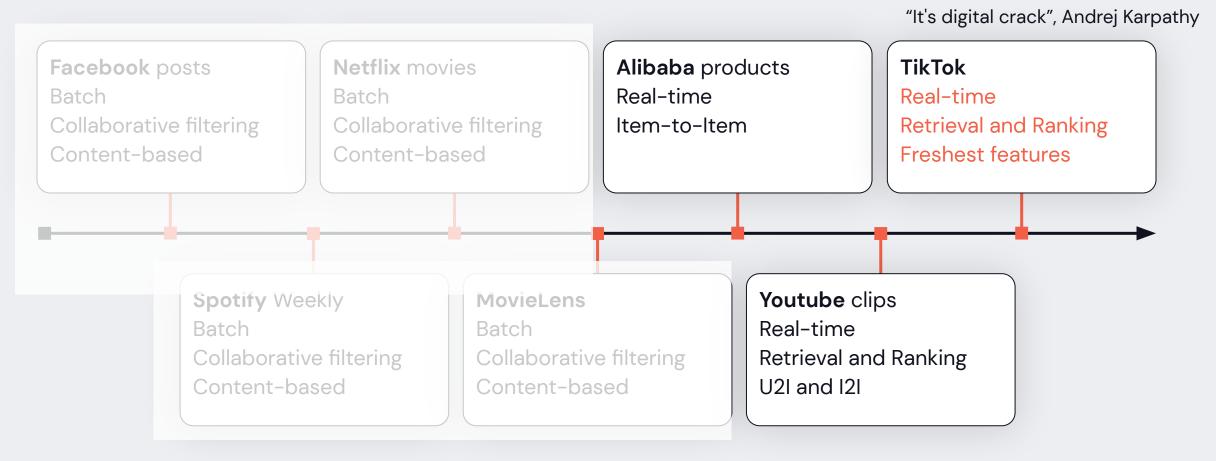
#### Batch Recommender Systems





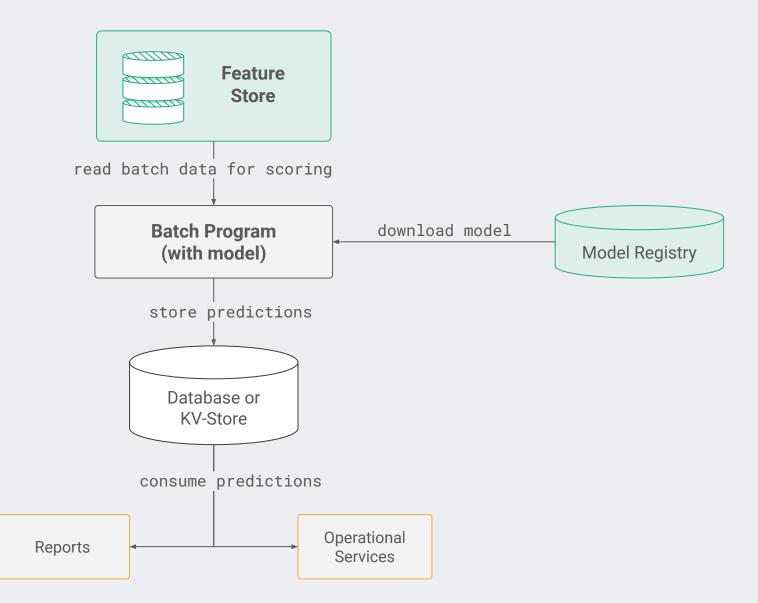
# Well known online recommender services

#### Real-time Recommenders



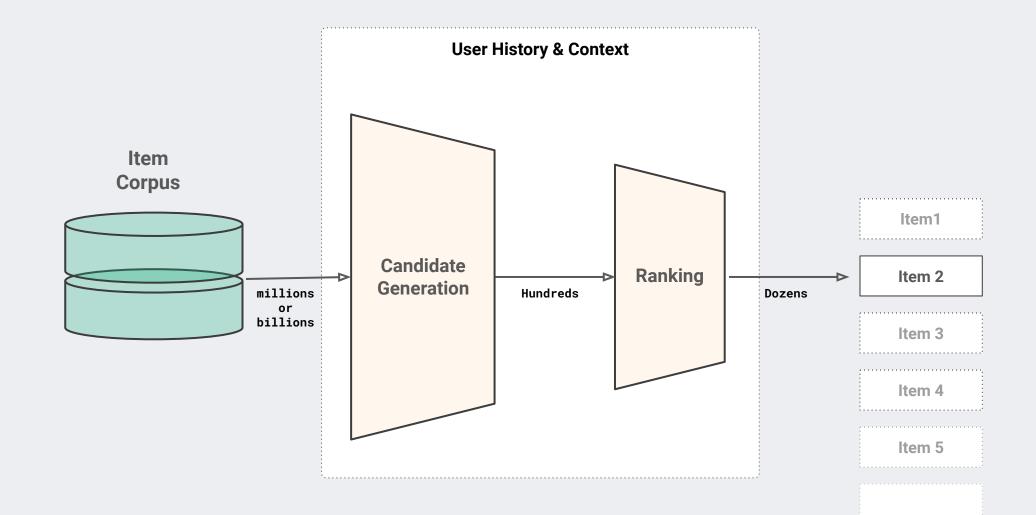


## **Batch Recommender Service**



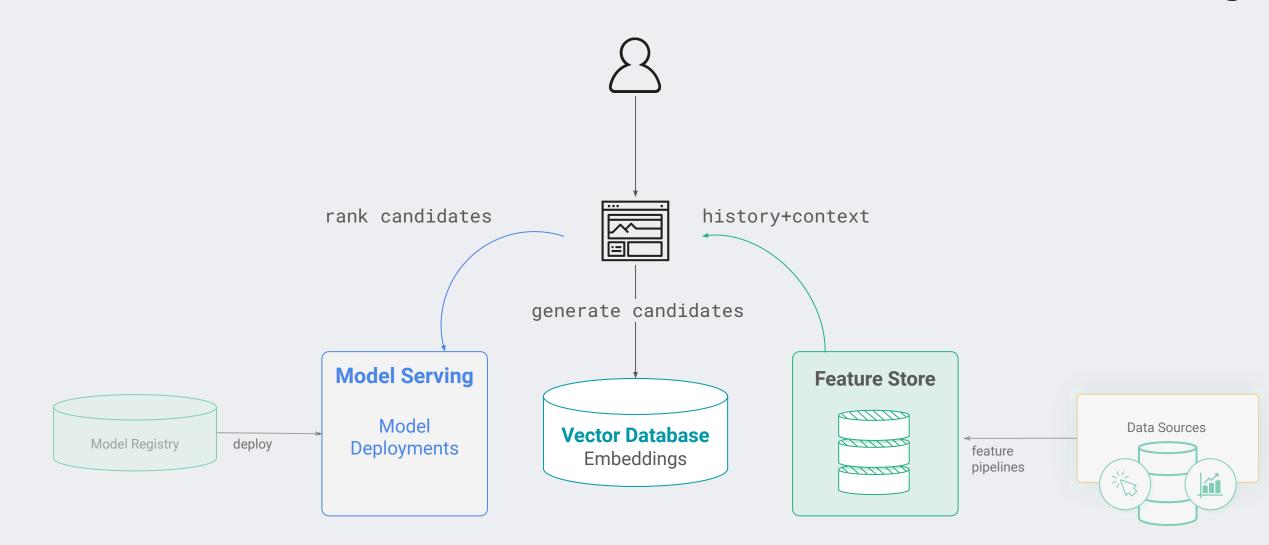


## **Real-time Recommender Service**





### Real-time Recommender Service - Retrieval and Ranking



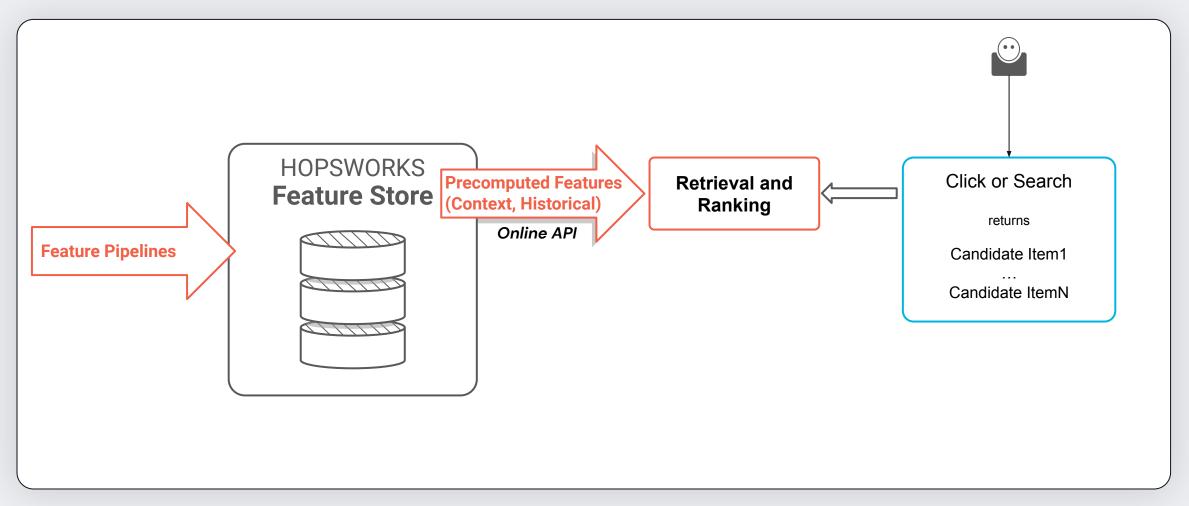
# **Retrieval/Ranking Arch for Recommendations**

Embeddings, Retrieval, Filtering, Ranking

| User/Query &                                                                                                                                                                       | Retrieval                                                                                               | Filtering →                                                                                                                                                                            | Ranking                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Jointly train with<br>two-tower model:<br>User/query embedding<br>Item embedding models<br>Built Approx Nearest<br>Neighbor (ANN) Index<br>with items and item<br>embedding model. | Retrieve candidate items<br>based on the user<br>embedding from the<br>ANN Index -<br>similarity search | <ul> <li>Remove candidate items for various reasons:</li> <li>underage user</li> <li>item sold out</li> <li>item bought before</li> <li>item not available in user's region</li> </ul> | With a ranking model,<br>score all the candidate<br>items with both user and<br>item features, ensuring,<br>candidate diversity. |

# Feature Store and Retrieval/Ranking

Context and History for Real-time Models





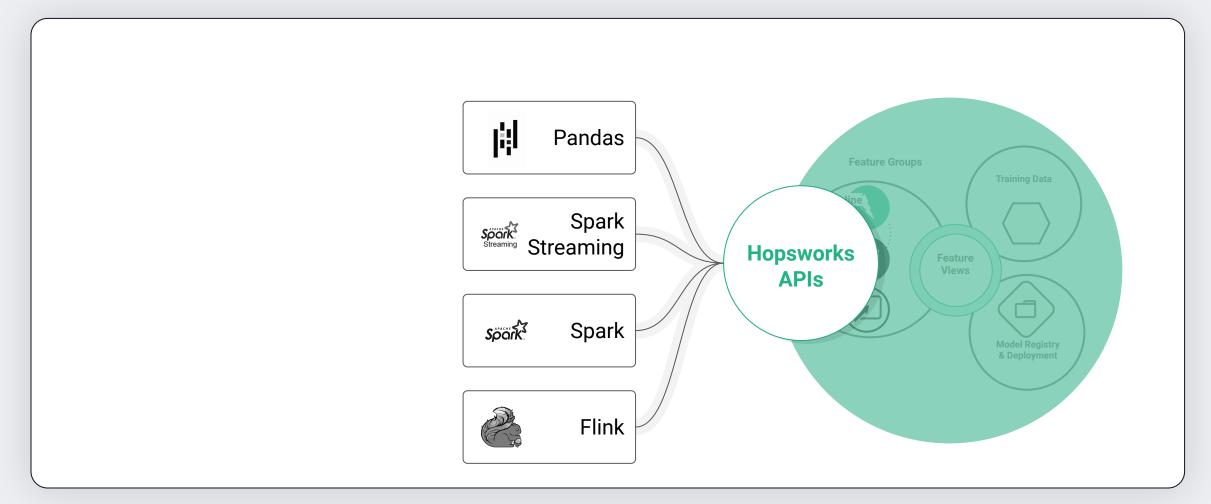
## Inside the Feature Store

Write to Feature Groups, Read from Feature Views



## Writing to Feature Groups

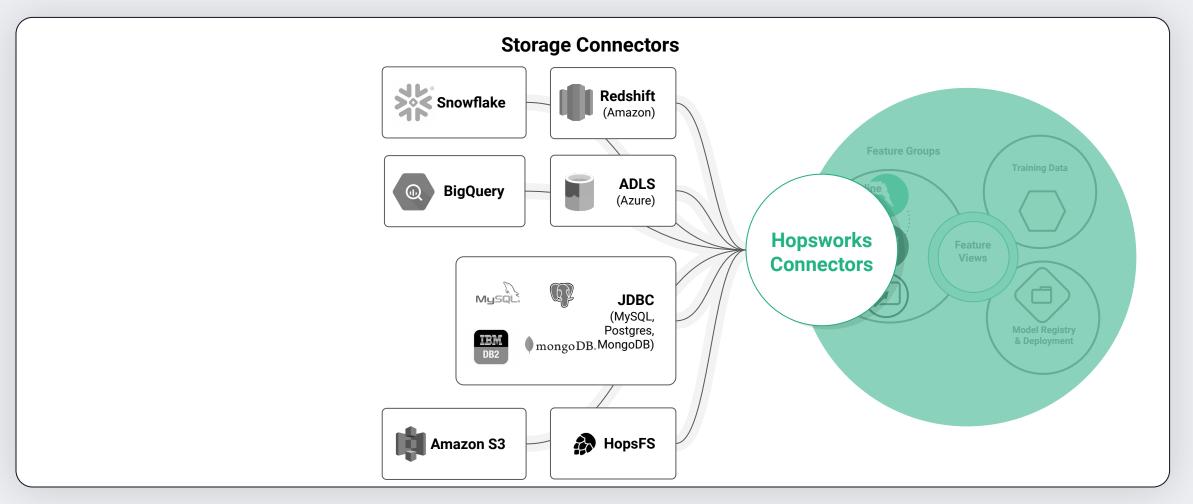
### APIs for writing data into Feature Groups





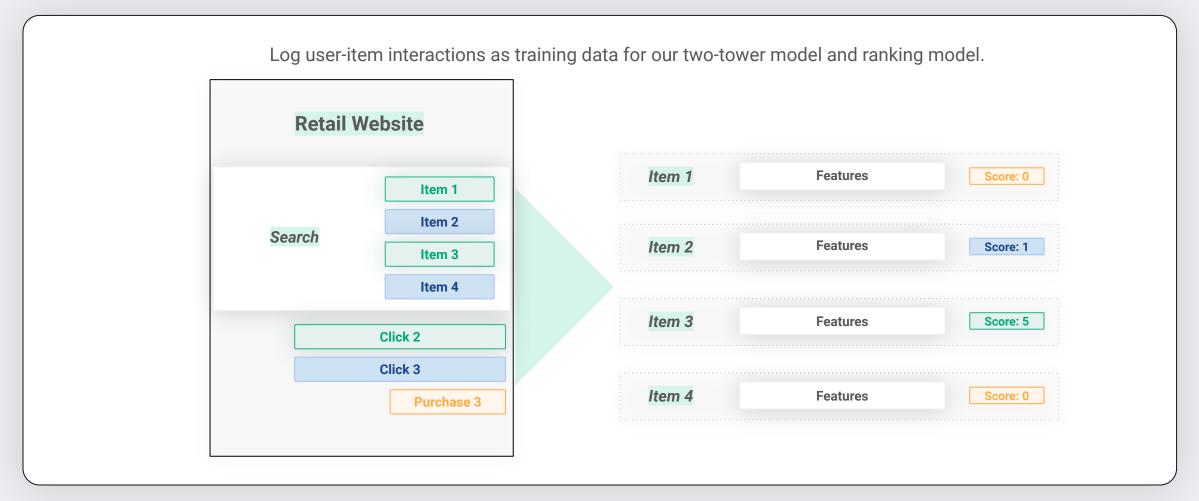
## **External Feature Groups**

Mount tables from external data sources into Feature Store



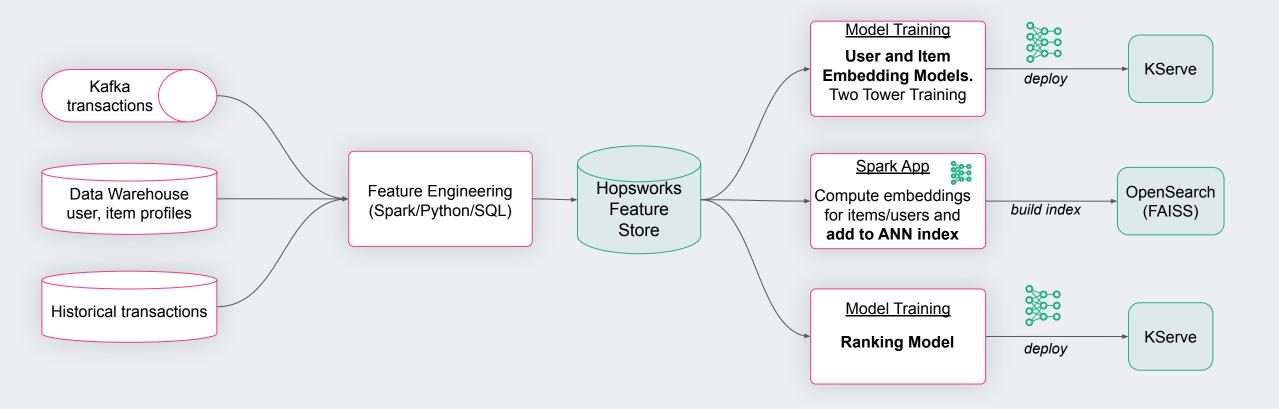
# Feature/Prediction Logging

### Needed to create training data



## **Offline Infrastructure**

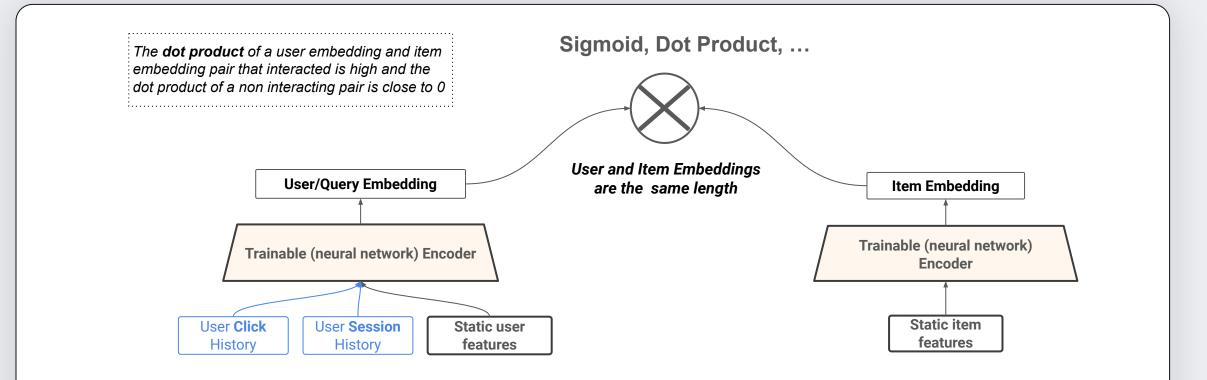
Collect user, item and transaction (clicks/searches) data





# Network Architecture for Two-Tower Model

#### User/query tower and item tower



TensorFlow has the tensorflow-recommenders library to train two-tower embedding models.

Our training data, transactions.csv, consists of customer and article pairs. You need to provide only positive pairs, where the customer purchased an article. Training produces 2 models: an item encoder model and a user encoder model.



#### Image from Yu et al

# **Ranking Model**

Model should predict best order with user/item features

Input: a set of instances

 $X = \{x_1, x_2, \dots, x_n\}$ 

Output: a rank list of these instances

 $\hat{Y} = \{x_{r_1}, x_{r_2}, \dots, x_{r_n}\}$ 

Ground truth: a correct ranking of these instances

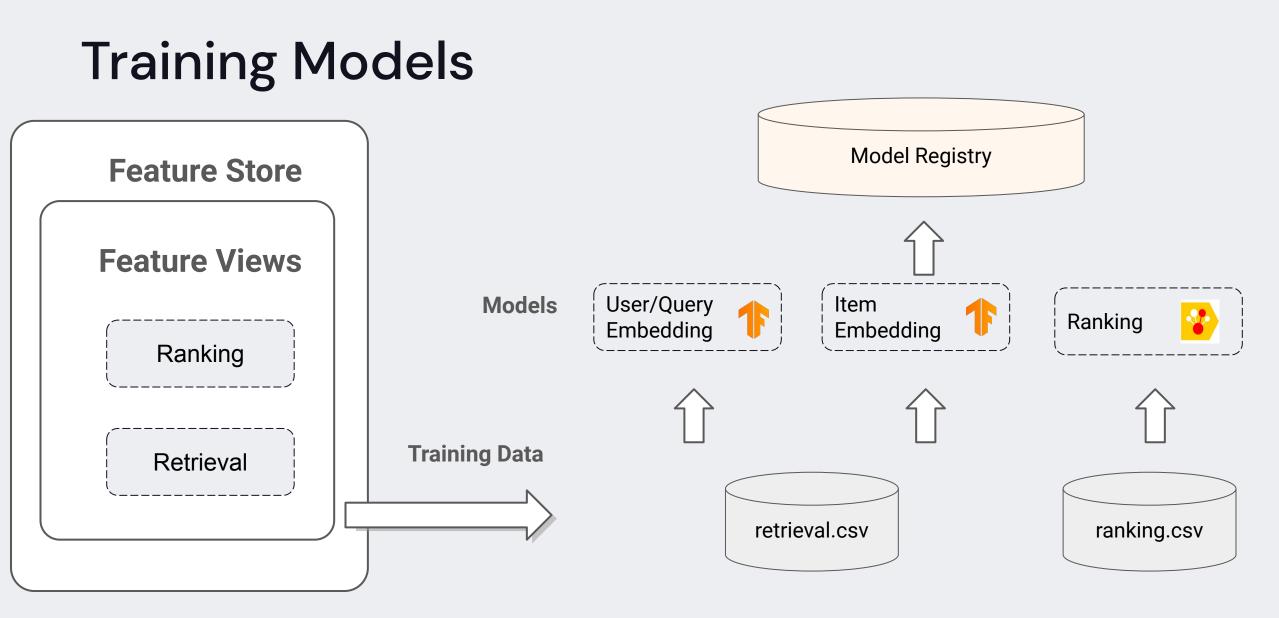
 $Y = \{x_{y_1}, x_{y_2}, \ldots, x_{y_n}\}$ 

Each instance (user-item pair) is represented with a list of features, retrieved from the feature store.

Training data is the user-item features and the label is the relevance ratings.

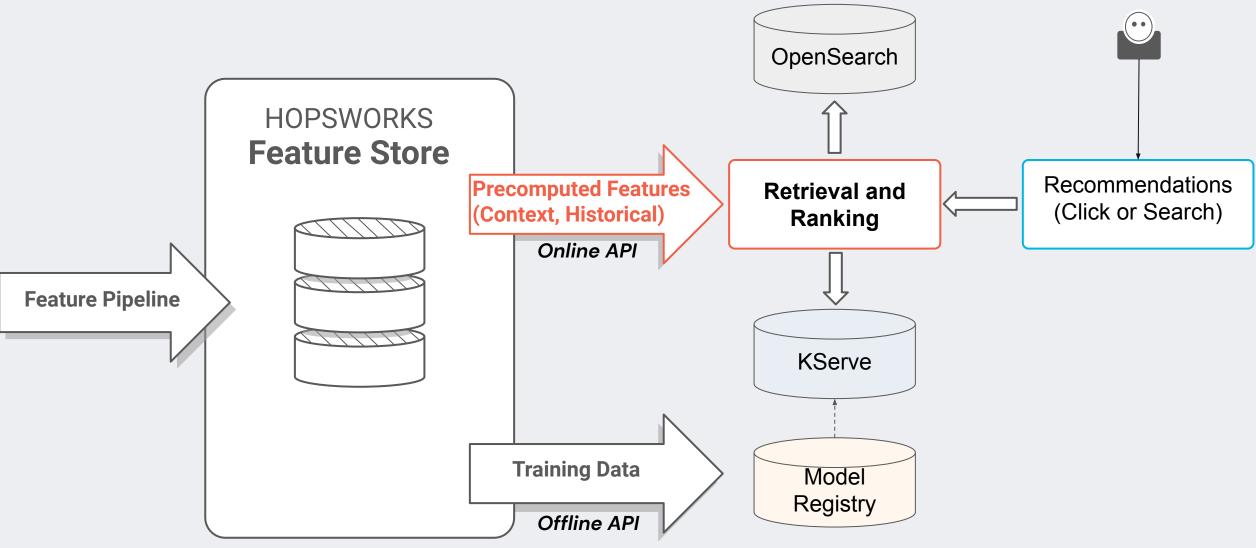
Ranking models should be fast - low latency to rank 100s of candidates, so decision trees are popular.





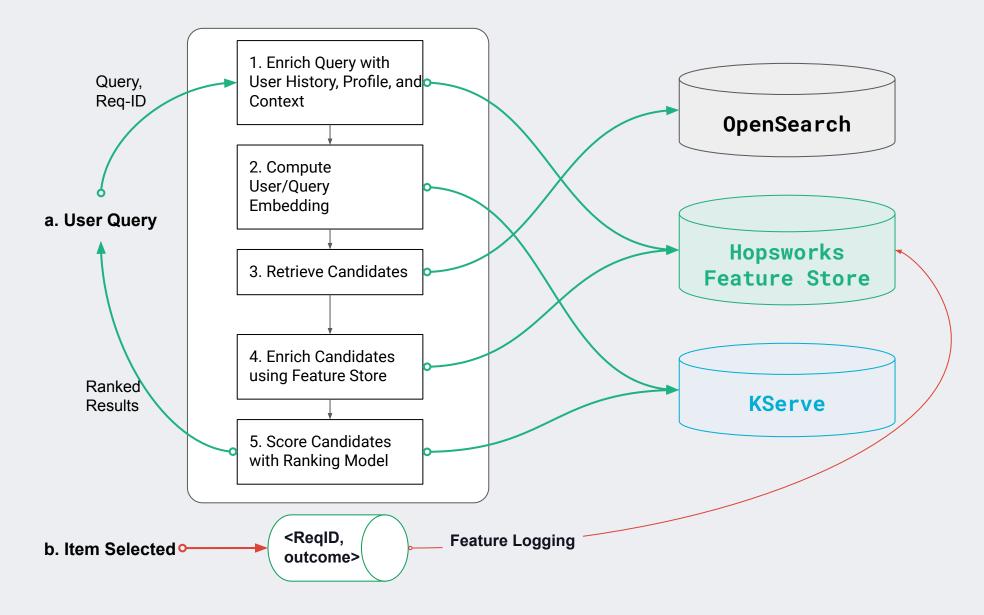


## Hopsworks Retrieval and Ranking





## Hopsworks Ranking and Retrieval





#### Retrieval and Ranking at Scale with Spotify

#### Goal:

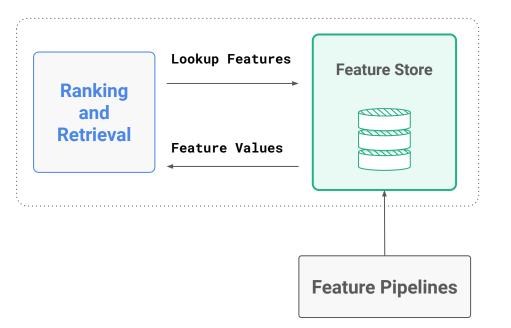
Support Spotify Personalized Search in a Retrieval and Ranking Architecture.

#### Benchmark the highest throughput, lowest latency

**key-value stores** to identify one that could scale to handle millions of concurrent lookups per second on Spotify's workloads.

#### Systems:

**Aerospike** and **RonDB** were identified as the only systems capable of meeting the triple goals of High Throughput, Low Latency, and High Availability. Other databases such as Redis, Cassandra, BigTable were not considered for availability or latency or throughput reasons.



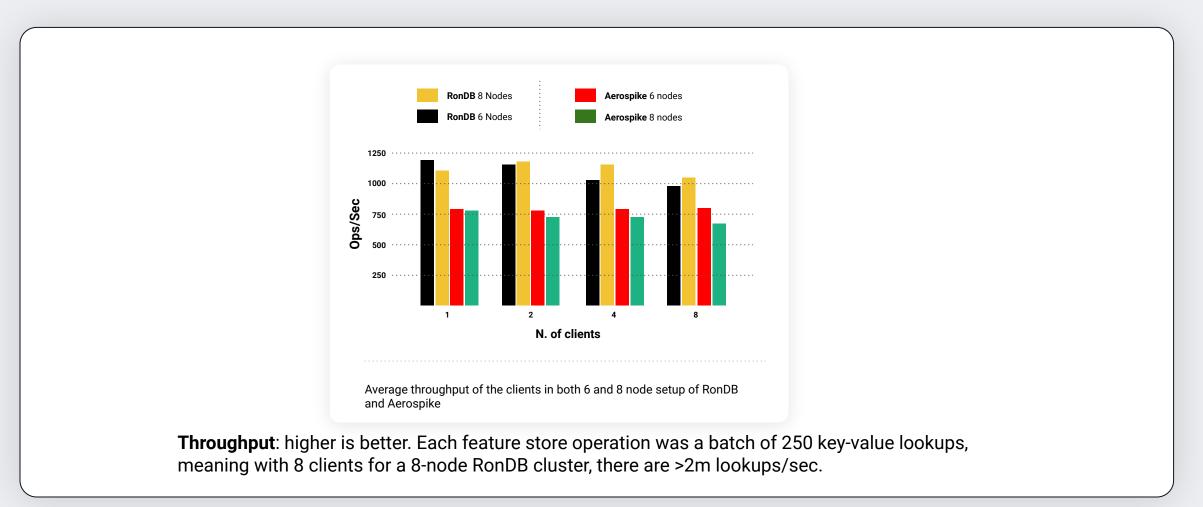
Experiment setup

| Node Type           | GCP Instance Type | Virtual CPUs | Memory | Disk Size | Disk Type |
|---------------------|-------------------|--------------|--------|-----------|-----------|
| MySQL Servers       | n1-standard-2     | 2            | 7.5GB  | 120GB     | pd-ssd    |
| NDB Management Node | e2-standard-16    | 16           | 64GB   | 120GB     | pd-ssd    |
| NDB Data Nodes      | n1-highmem-32     | 32           | 208GB  | 408GB     | pd-ssd    |
| Aerospike Nodes     | n1-highmem-32     | 32           | 208GB  | 408GB     | pd-ssd    |
| Java Client Nodes   | e2-standard-16    | 16           | 64GB   | 120GB     | pd-ssd    |

Hardware Benchmark Setup on GCP: RonDB (NDB) vs Aerospike. The Java Client nodes are the clients performing the reads/writes on the Data Nodes. When the cluster is provisioned with 8 RonDB (NDB) data nodes, it has 832GB of usable in-memory storage, when a replication factor of 2 is used.

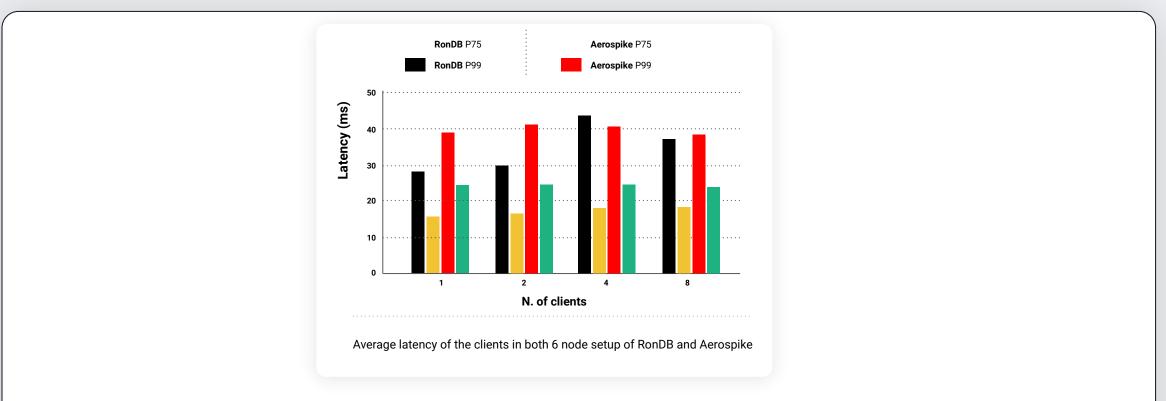


Throughput





#### Latency



**Latency**: lower is better. Each feature store operation was a batch of 250 key-value lookups. So, for RonDB, the P99 when performing 250 primary operations in a single transaction is under 30ms.



#### Spotify Online Feature Store Comparison

### RonDB **35% Higher Throughput** RonDB **30% Better Latency**

#### **Based on Public Report from Spotify** comparing Aerospike and RonDB (NDB Cluster) as Feature Stores

http://kth.diva-portal.org/smash/get/diva2:1556387/FULLTEXT01.pdf



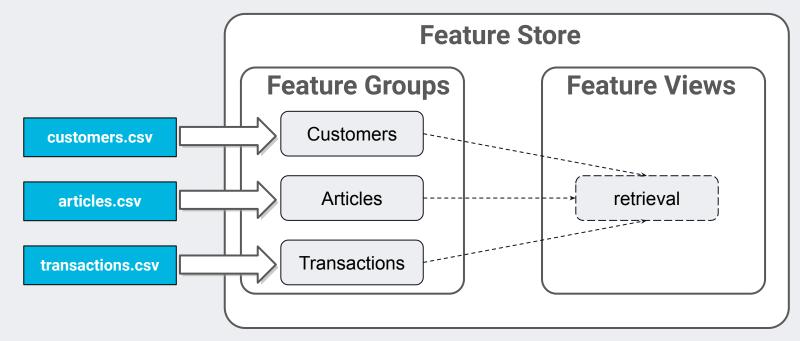
### DEMO H&M Dataset from Kaggle

- articles.csv
- customers.csv
- transactions\_train.csv

| 1_feature_engineering.ipynb       | create feature groups for articles, customers, transactions   |
|-----------------------------------|---------------------------------------------------------------|
| 2a_create_retrieval_dataset.ipynb | create feature view for retrieval model (training data)       |
| 2b_train_retrieval_model.ipynb    | train two-tower model - user and article embedding models     |
| 3_build_index.ipynb               | build opensearch KNN index with embeddings for all articles   |
| 4a_create_ranking_dataset.ipynb   | create feature view for retrieval model (training data)       |
| 4b_train_ranking_model.ipynb      | train ranking model                                           |
| 5_create_deployment.ipynb         | deploy models to KServe + glue code for Hopsworks, OpenSearch |



# H&M Dataset from Kaggle – Demo



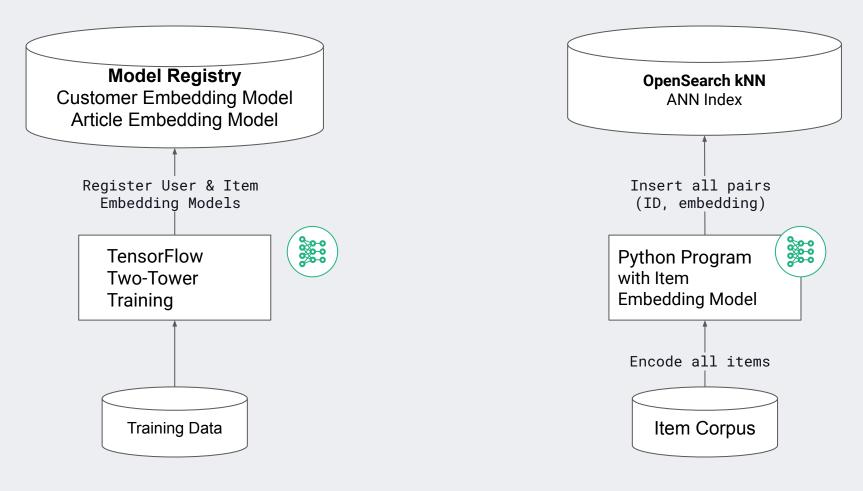
Transaction = (customer\_id, article\_id, timestamp, channel)

1\_feature\_engineering.ipynb

2a\_create\_retrieval\_feature\_views.ipynb



## H&M Dataset from Kaggle - Demo

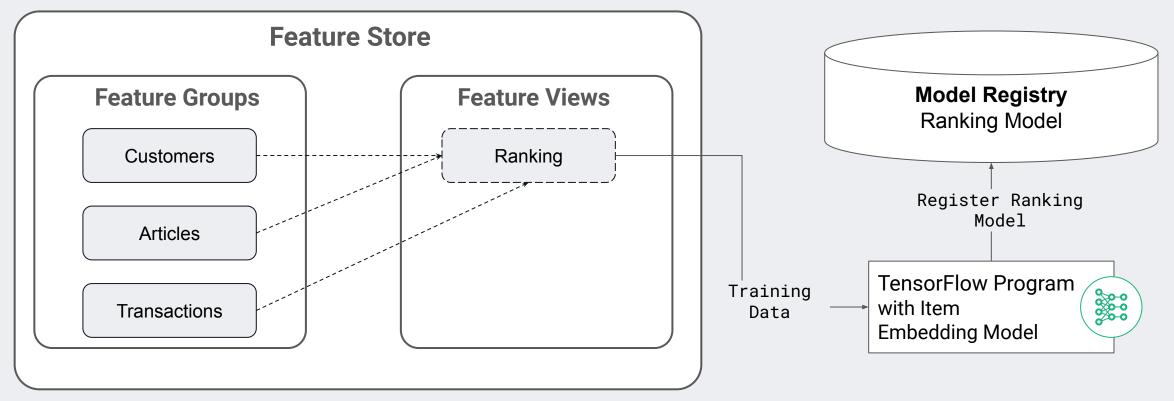


2b\_train\_retrieval\_model.ipynb

3\_build\_index.ipynb



# H&M Dataset from Kaggle – Demo



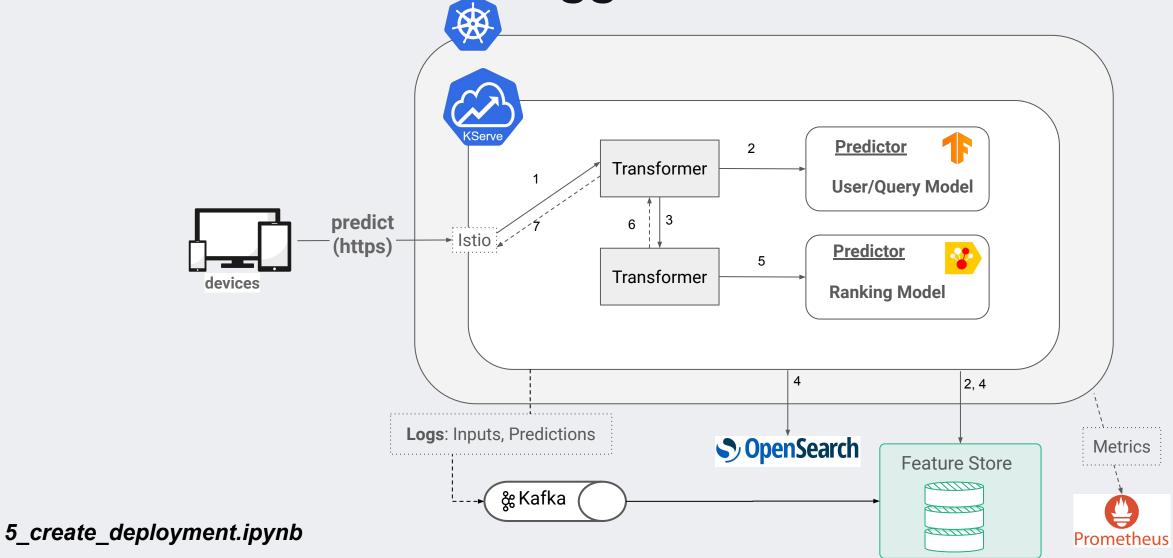
Transaction = (customer\_id, article\_id, timestamp, channel)

#### 4a\_create\_ranking\_feature\_views.ipynb

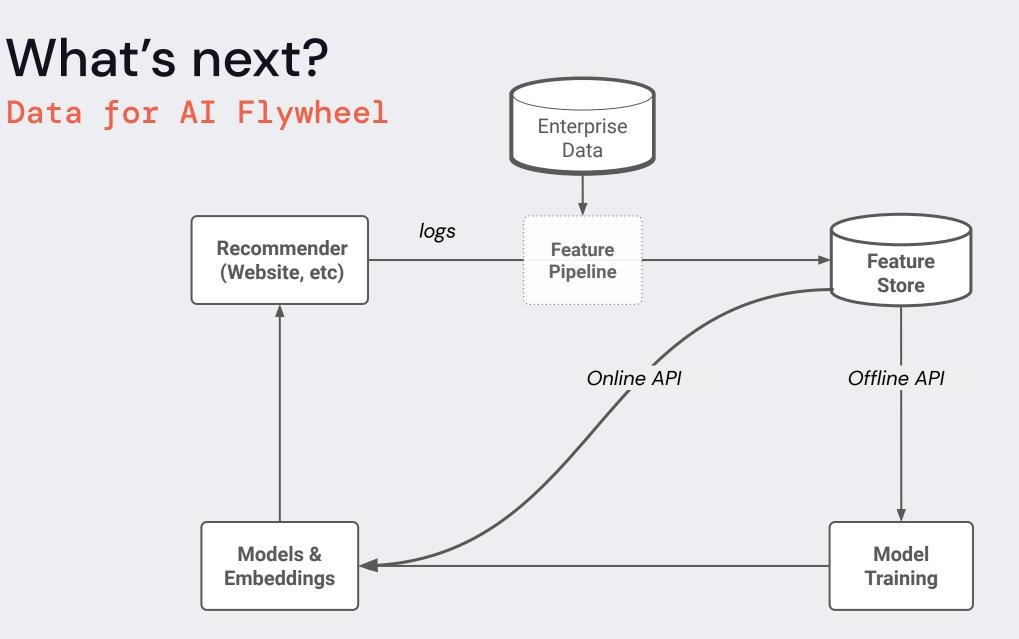
4b\_train\_ranking\_model.ipynb



# H&M Dataset from Kaggle – Demo



DATA+AI SUMMIT 2022





# **Build Prediction Services, not just Models**

Hopsworks Serverless

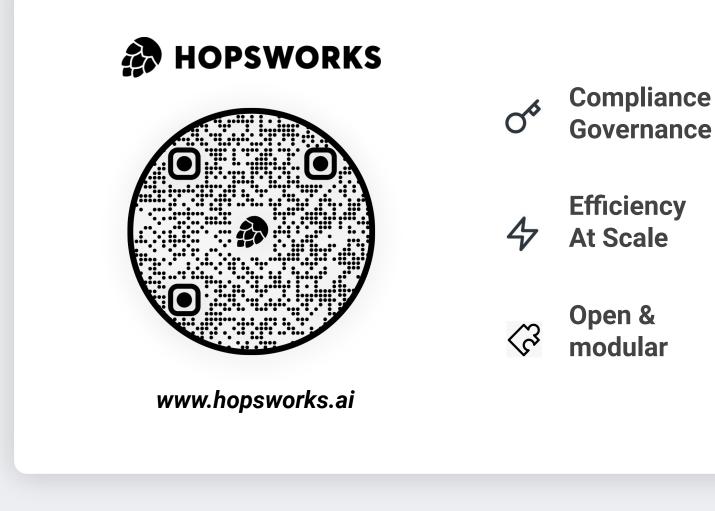
Now available at:

# https://app.hopsworks.ai

Our Promise to you:

## Free Forever









Hopsworks Feature Store

**OpenSearch k-NN (Embeddings Store)** 

**TFRanking tutorial** 

**Augmented Two-Tower Embedding Model** 

Ranking and Filtering by Zhang

