
1

Jim Dowling
CEO, Hopsworks

Real-Time Search and
Recommendation at
Scale using Embeddings
and Hopsworks

The Road to Value with Data and AI
Personalized Search/Recommendations is at the Highest level

2

Bu
si

ne
ss

 V
al

ue

Analytical ML

Operational ML
with historical data

Operational ML
with real-time data

BI:
DESCRIPTIVE & DIAGNOSTIC

ANALYTICS

AI:
PREDICTIVE & PRESCRIPTIVE

ANALYTICS

Artisanal ML
(Laptop ML)

Structured
Data

‘Big’ Data

How can a Data Scientist build it in Python?
Python Only for Retrieval and Ranking

3

Data Scientist
ML Engineer

Data Engineer
ML Engineer

Traditionally, this would be a big cross-team project integrating many different services.

Feature Store

Vector Database

Lakehouse

Model Serving

Hopsworks
Python-Centric: Feature Store, KServe, Vector DB all-in-one

4

Embeddings
Pandas

Scikit-Learn
TensorFlow

PyTorch
XGBoost

etc

Databricks
Snowflake
BigQuery
Redshift
Synapse

etc

Feature Store

PythonModern Datastack (SQL)

OpenSearch
KServe

ML Infra

Classes of Recommender System
Where do the recommendations come from?

1. Collaboration-based recommendations are based on user behavior.

2. Content-based recommendations are based on item metadata.

3. Item-to-item (i2i) recommendations

- given an item, recommend similar items

4. In user-to-item (u2i), given a user,

we recommend items

5. i2i and u2i recommendations are

dominant for user-centric websites

Multi-purpose

5

Well known online recommender services

6

Batch Recommender Systems

Facebook posts
Batch
Collaborative filtering
Content-based

Netflix movies
Batch
Collaborative filtering
Content-based

Alibaba products
Real-time
Item-to-Item

TikTok
Real-time
Retrieval and Ranking
Freshest features

Spotify Weekly
Batch
Collaborative filtering
Content-based

MovieLens
Batch
Collaborative filtering
Content-based

Youtube clips
Real-time
Retrieval and Ranking
U2I and I2I

“It's digital crack”, Andrej Karpathy

Well known online recommender services

7

Real-time Recommenders

Facebook posts
Batch
Collaborative filtering
Content-based

Netflix movies
Batch
Collaborative filtering
Content-based

Alibaba products
Real-time
Item-to-Item

TikTok
Real-time
Retrieval and Ranking
Freshest features

Spotify Weekly
Batch
Collaborative filtering
Content-based

MovieLens
Batch
Collaborative filtering
Content-based

Youtube clips
Real-time
Retrieval and Ranking
U2I and I2I

“It's digital crack”, Andrej Karpathy

Batch Recommender Service

8

Database or
KV-Store

Batch Program
(with model) Model Registry

download model

Operational
ServicesReports

consume predictions

store predictions

read batch data for scoring

Feature
Store

Real-time Recommender Service

9

User History & Context

Item 2
millions

or
billions

Hundreds Dozens

Candidate
Generation

Ranking

Item1

Item 3

Item 4

Item 5

Item
Corpus

Real-time Recommender Service - Retrieval and Ranking

10

Feature Store

history+context

Model Serving

Model
Deployments

rank candidates

Data Sources
Model Registry feature

pipelines

deploy Vector Database
Embeddings

generate candidates

Retrieval/Ranking Arch for Recommendations
Embeddings, Retrieval, Filtering, Ranking

Jointly train with
two-tower model:
User/query embedding
Item embedding models

Built Approx Nearest
Neighbor (ANN) Index
with items and item
embedding model.

11

User/Query &
Item Embeddings

With a ranking model,
score all the candidate
items with both user and
item features, ensuring,
candidate diversity.

Ranking

Remove candidate items
for various reasons:

• underage user
• item sold out
• item bought before
• item not available in

user’s region

Filtering

Retrieve candidate items
based on the user
embedding from the
ANN Index -
similarity search

Retrieval

Feature Store and Retrieval/Ranking
Context and History for Real-time Models

12

Feature Store
HOPSWORKS

Precomputed Features
(Context, Historical)

Retrieval and
Ranking

Click or Search

Online API
returns

Candidate Item1
…

Candidate ItemN

Feature Pipelines

Inside the Feature Store
Write to Feature Groups, Read from Feature Views

13

Feature Groups

Web logs

Users

Items

Transactions

Data
Warehouse

Feature Views

Ranking

User/Item Pairs

Items

Feature Store

Online API

Offline API

Serve

Train

Writing to Feature Groups
APIs for writing data into Feature Groups

14

Online

Offline

External

Training Data

Model Registry
& Deployment

Projects

Feature Groups

Feature
Views

Online

Offline

External

Spark

Spark
Streaming

Flink

Hopsworks
APIs

Pandas

External Feature Groups
Mount tables from external data sources into Feature Store

15

Online

Offline

External

Training Data

Model Registry
& Deployment

Projects

Feature Groups

Feature
Views

Online

Offline

External

Snowflake

Amazon S3

JDBC
(MySQL,

Postgres,
MongoDB)

HopsFS

Hopsworks
Connectors

Storage Connectors

BigQuery ADLS
(Azure)

Redshift
(Amazon)

Feature/Prediction Logging
Needed to create training data

16

Log user-item interactions as training data for our two-tower model and ranking model.

Retail Website

Search

Item 1

Item 2

Item 3

Item 4

Purchase 3

Click 2

Click 3

Score: 0Item 1

Score: 1Item 2

Score: 5Item 3

Score: 0Item 4

Features

Features

Features

Features

Offline Infrastructure
Collect user, item and transaction (clicks/searches) data

17

Hopsworks
Feature
Store

KServe

OpenSearch
(FAISS)

KServe

Kafka
transactions

Feature Engineering
(Spark/Python/SQL)

Data Warehouse
user, item profiles

Historical transactions

User and Item

Embedding Models.
Two Tower Training

Model Training

 Compute embeddings
for items/users and
add to ANN index

Spark App

Model Training

Ranking Model

deploy

deploy

build index

Network Architecture for Two-Tower Model
User/query tower and item tower

18
[Image from Yu et al]

Sigmoid, Dot Product, …

User and Item Embeddings
are the same length Item Embedding

Trainable (neural network)
Encoder

Static item
features

User/Query Embedding

Trainable (neural network) Encoder

Static user
features

User Session
History

User Click
History

TensorFlow has the tensorflow-recommenders library to train two-tower embedding models.
Our training data, transactions.csv, consists of customer and article pairs. You need to provide only positive pairs, where the
customer purchased an article. Training produces 2 models: an item encoder model and a user encoder model.

The dot product of a user embedding and item
embedding pair that interacted is high and the
dot product of a non interacting pair is close to 0

https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_4.pdf

Ranking Model
Model should predict best order with user/item features

19

Each instance (user-item pair)
is represented with a list of
features, retrieved from the
feature store.

Training data is the user-item
features and the label is the
relevance ratings.

Ranking models should be fast
- low latency to rank 100s of
candidates, so decision trees
are popular.

Training Models

20

Feature Views

Ranking

Retrieval

Feature Store

Training Data

retrieval.csv ranking.csv

Ranking
User/Query
Embedding

Item
Embedding

Model Registry

Models

Hopsworks Retrieval and Ranking

21

Feature Store
HOPSWORKS

Feature Pipeline

Precomputed Features
(Context, Historical)

Training Data

Retrieval and
Ranking

Recommendations
(Click or Search)

Online API

Offline API

Model
Registry

OpenSearch

KServe

a. User Query

1. Enrich Query with
User History, Profile, and
Context

Hopsworks
Feature Store

OpenSearch

2. Compute
User/Query
Embedding

3. Retrieve Candidates

4. Enrich Candidates
using Feature Store

5. Score Candidates
with Ranking Model

KServe

Query,
Req-ID

Ranked
Results

<ReqID,
outcome>

Feature Loggingb. Item Selected

22

Hopsworks Ranking and Retrieval

Benchmarking
Retrieval and Ranking at Scale with Spotify

23

Goal:
Support Spotify Personalized Search in a Retrieval and
Ranking Architecture.
Benchmark the highest throughput, lowest latency
key-value stores to identify one that could scale to handle
millions of concurrent lookups per second on Spotify’s
workloads.

Systems:
Aerospike and RonDB were identified as the only systems
capable of meeting the triple goals of High Throughput,
Low Latency, and High Availability. Other databases such
as Redis, Cassandra, BigTable were not considered for
availability or latency or throughput reasons.

Feature Store

Ranking
and

Retrieval

Lookup Features

Feature Values

Feature Pipelines

Benchmarking
Experiment setup

24

Hardware Benchmark Setup on GCP: RonDB (NDB) vs Aerospike. The Java Client
nodes are the clients performing the reads/writes on the Data Nodes. When the
cluster is provisioned with 8 RonDB (NDB) data nodes, it has 832GB of usable
in-memory storage, when a replication factor of 2 is used.

Benchmarking
Throughput

25

Throughput: higher is better. Each feature store operation was a batch of 250 key-value lookups,
meaning with 8 clients for a 8-node RonDB cluster, there are >2m lookups/sec.

Average throughput of the clients in both 6 and 8 node setup of RonDB
and Aerospike

N. of clients

RonDB 8 Nodes

RonDB 6 Nodes

Aerospike 6 nodes

Aerospike 8 nodes

1250

1000

750

500

250

1 2 4 8

O
ps

/S
ec

Benchmarking
Latency

26

Latency: lower is better. Each feature store operation was a batch of 250 key-value lookups. So, for
RonDB, the P99 when performing 250 primary operations in a single transaction is under 30ms.

Average latency of the clients in both 6 node setup of RonDB and Aerospike

N. of clients

RonDB P75

RonDB P99 Aerospike P99

Aerospike P75

50

40

30

20

10

0
1 2 4 8

La
te

nc
y

(m
s)

Benchmarking
Spotify Online Feature Store Comparison

27

RonDB 35% Higher Throughput
RonDB 30% Better Latency

Based on Public Report from Spotify
comparing Aerospike and RonDB (NDB Cluster) as Feature Stores

http://kth.diva-portal.org/smash/get/diva2:1556387/FULLTEXT01.pdf

http://kth.diva-portal.org/smash/get/diva2:1556387/FULLTEXT01.pdf

DEMO
H&M Dataset from Kaggle

28

create feature groups for articles, customers, transactions

● articles.csv
● customers.csv
● transactions_train.csv

create feature view for retrieval model (training data)

build opensearch KNN index with embeddings for all articles

train two-tower model - user and article embedding models

create feature view for retrieval model (training data)

train ranking model

deploy models to KServe + glue code for Hopsworks, OpenSearch

https://github.com/logicalclocks/hopsworks-tutorials

https://github.com/logicalclocks/hopsworks-tutorials

H&M Dataset from Kaggle - Demo

29

Feature Groups

transactions.csv

Customers

Articles

Transactions

Feature Views

retrieval

Feature Store

Transaction = (customer_id, article_id, timestamp, channel)

1_feature_engineering.ipynb 2a_create_retrieval_feature_views.ipynb

articles.csv

customers.csv

H&M Dataset from Kaggle - Demo

30

OpenSearch kNN
ANN Index

Python Program
with Item
Embedding Model

Item Corpus

Encode all items

Insert all pairs
(ID, embedding)

3_build_index.ipynb

Model Registry
Customer Embedding Model

Article Embedding Model

TensorFlow
Two-Tower
Training

Training Data

Register User & Item
Embedding Models

2b_train_retrieval_model.ipynb

H&M Dataset from Kaggle - Demo

31

4a_create_ranking_feature_views.ipynb 4b_train_ranking_model.ipynb

Feature Groups

Customers

Articles

Transactions

Feature Views

Ranking

Feature Store

Transaction = (customer_id, article_id, timestamp, channel)

Model Registry
Ranking Model

TensorFlow Program
with Item
Embedding Model

Register Ranking
Model

Training
Data

H&M Dataset from Kaggle - Demo

32

Logs: Inputs, Predictions

predict
(https)

Predictor

devices

Kafka

Istio

Feature Store

Transformer

Metrics

5_create_deployment.ipynb

Transformer
Predictor

Ranking Model

User/Query Model1

2

3

4 2, 4

5

67

What’s next?
Data for AI Flywheel

33

Feature
Store

Recommender
(Website, etc)

Models &
Embeddings

Model
Training

Feature
Pipeline

Feature
Store

Enterprise
Data

logs

Online API Offline API

Now available at:

https://app.hopsworks.ai

Our Promise to you:

Free Forever

Build Prediction Services, not just Models
Hopsworks Serverless

34

35

www.hopsworks.ai

Open &
modular

Efficiency
At Scale

Compliance
Governance

36

References

Hopsworks Feature Store

OpenSearch k-NN (Embeddings Store)

TFRanking tutorial

Augmented Two-Tower Embedding Model

Ranking and Filtering by Zhang

https://docs.hopsworks.ai/
https://opensearch.org/docs/latest/search-plugins/knn/index/
http://bendersky.github.io/res/TF-Ranking-ICTIR-2019.pdf
https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_4.pdf
http://wnzhang.net/teaching/cs420/slides/7-ranking-filtering.pdf

