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Product Safe Harbor Statement

This information is provided to outline Databricks’ general product 
direction and is for informational purposes only. Customers who 
purchase Databricks services should make their purchase 
decisions relying solely upon services, features, and functions that 
are currently available. Unreleased features or functionality 
described in forward-looking statements are subject to change at 
Databricks discretion and may not be delivered as planned or at all.
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Motivation



Workload and Storage Trends

Modeling + ETL

SQL, data science, ML over 
open formats like Parquet

“Faster” SQL over 
proprietary formats

Data sources

DATA LAKE

ADLS      AWS S3      GCP

ENTERPRISE DW

Structured

Unstructured

Semi-Structured

Businesses are moving faster, organizations want to spend less time in 
data modeling and more time querying



Unifying Data Lake and Warehouse

Data sources

DATA LAKEHOUSE

ADLS      AWS S3      GCP

Structured

Unstructured

Semi-Structured

SQL, data science, ML over 
open formats like Parquet

SQL Analytics

Data Science / 
ML

Data Sharing

Lakehouse can provide same or better performance as proprietary warehouses over open 
formats and cheap, elastic cloud storage



Simple
Unify your data warehousing and AI 
use cases on a single platform 

Open
Built on open source and open standards

Multicloud
One consistent data platform across clouds

Databricks
Lakehouse Platform

Lakehouse Platform

Data
Warehousing

Data 
Engineering

Data Science
and ML

Data 
Streaming

All structured and unstructured data
Cloud Data Lake

Unity Catalog
Fine-grained governance for data and AI

Delta Lake
Data reliability and performance



Query engine challenge: data in many stages

Modeled, structured, 
cleaned, and ETL’d

Optimized data layout (e.g., 
large files with clustering), but 
no normalization

Raw data with small 
files, no clustering or 
normalization

The query engine must deliver good performance for all of these.



Cheaper and faster Built for all use cases No code changes

Built from the ground-up for the 
fastest performance at lower 

costs, Photon provides up to 80% 
TCO savings while accelerating 
data and analytics workloads - 

up to 12x faster

Photon is the first engine 
that enables data teams to 
standardize on one set of 

APIs for all workloads - ETL, 
analytics, and data science - 

in batch or streaming

Photon is an ANSI SQL 
compliant engine designed to 
be compatible with modern 

Apache Spark™ APIs, and just 
works with your existing code - 
SQL, Python, R, Scala, and Java 

- no rewrite required

What is Photon?
The next-generation engine for the Lakehouse
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Why build a new MPP execution engine?
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What are 
customers saying?



Insurance Company

5 minute query on Redshift 
took 35 seconds on Photon

Retailer

Leveraged Photon with DLT and 
reduced their latency by 5x

Manufacturer

13x speed-up and a 74% 
TCO reduction

Media Service

Saved 30% of their total EC2 
compute hours in their first 

night after enabling Photon for 
all of their ETL

FinTech

5x perf improvement for 
their streaming workloads 

after they turned on Photon!

Automaker

Saw a 3x speedup; then 
enabled Photon for a 

bunch of jobs



• Marketing analyst needs to generate reports from clickstream data provided by partners

• ETL comprises of 700GB of CSV files, lightweight transformation, and write to a Delta table

• Result: 19% TCO reduction and 2.7x latency improvement

Streaming Ingestion and Photon
AutoLoader is making ingestion easier and faster at a media company

CSV 
Analysts

Photon

AutoLoader

Bronze

DLT Runtime Latency (min) Total Cost

Databricks Runtime (DBR) 7:18 $19.28

Databricks Photon 2:42 $15.60



• Business wanted faster access to datasets for inventory and accounting reports

• Delta Lake Merge between bronze and silver tables; LowShuffleMerge and Change Data Feed (CDF)

• Result: 55% TCO reduction and 5x latency improvement

Runtime Latency (min) Total Cost

Databricks Runtime (DBR) 15:32 $14.55

Databricks Photon 3:32 $6.51

Inventory

Accounting

Reporting

ETL and Photon
Delta Live Tables (DLT) at a large warehouse retailer

Photon

Delta Live Tables (DLT)

SilverBronze



Runtime Latency (min) Total Cost

Databricks Runtime (DBR) 330 $265

Databricks Photon 30 $85

▪ Business wanted more reliable and fresher data from production sites around the world
▪ Complicated Architecture with nearly 120 tables in the workflow. 
▪ Result: 67% TCO reduction and 11x latency improvement

ETL and Photon
Saving on cost, latency, and accelerating time to Decision

Inventory

Accounting

Reporting

Photon SilverBronze



Sample TCO breakdown 

$1.00
$DBU

$3.00
VM

$1.45
$DBU

$1.50
VM

TCO $4.00

TCO $2.95

Spark Photon

• Since Photon finishes queries faster, 
it consumes less compute resources
• Making it a lower TCO per job

• 2x faster means that you spend half 
on the infrastructure costs

• 26% TCO reduction due to cloud 
infrastructure costs

26% TCO Savings



Inner workings



Query Parsing
Catalyst: Query Analysis, Planning, Optimization, Spark → Photon Plan Conversion

Driver Node

Client submits Query

Execution Framework

Execute Task

Photon

Task Scheduling, Shuffle Service (Shared Nothing)

Execute Task

Photon

Execute Task

Photon

Execute Task

Photon

Metadata Caching Service, Auto-Compaction, Partition Pruning

Execution 
Engine 



•   Hybrid Photon/Spark Plans
•  Use Photon when possible, fall back to Spark for unsupported operations

•  Completely transparent to users

•   Native code using off-heap memory
•  Natural access to memory and intrinsics (no fiddling with Java Unsafe)

•  No JVM GC, large heaps ok

•  No JVM JIT performance cliffs / limitations

•   Fully integrated with Spark’s memory manager

•   Rich per-operator performance metrics

Key Photon Characteristics
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Design choices to improve performance

Implemented in the JVM

Code generation for performance

Row-oriented execution

Implemented in Native Code

Interpreted-vectorized execution

Column-oriented execution

New Engine (Photon)Old Engine



Apache Spark today: code generation

Scan
c1: Int

Project
c1 + 1 as c2

Filter 
c1 > 5

next()

next()

def query(): Iterator[Row] = {
  Row r = scanner.next();
  if (r.get(‘c1’) > 5) {
    yield new Row(r.get(‘c1’) + 1);
  } 
}

Problem: fast, but very complex to 
implement and debug!

Spark 2.x: Code generated query execution model



Interpreted vectorization: Simpler, but still fast

Scan
c1: Int

Project
c1 + 1 as c2

Filter 
c1 > 5

next()

next()

def next(): ColumnBatch = {
  ColumnBatch b = child.next()
  ColumnBatch out = new ColumnBatch(b)
  for (int i = 0; i < b.num_rows; ++i) {
    out[‘c1’][i] = b[‘c1’][i] + 1;
  }
  return out;
}

Simplicity of interpretation, speed of 
code gen (highly optimizable loops)

Photon: interpreted vectorized model



Example benefit: Grouping Hash Aggregation

4

5

3

4

5

g2

h2

h1

h1

h2

h1

hashes

Vectorized Hashing 
(SIMD)

Vectorized Probing
(Instruction/Memory Parallelism)

h2

h1

h1

h2

h1

hashes buckets
Hash Table

Payload 1

Payload 2



Exploiting Instruction Level Parallelism

47

84
23

23

● Tight kernels with independent 
loads → HW loads multiple 
memory addresses in parallel

● Minimize TLB misses with huge pages



Benefits of vectorized execution vs. code-gen

Advantage 1: Human Factor. Code is “just C++” with templating: easy to 
read, optimize, debug (code generation: code that generates code)

Advantage 2: Operators maintain abstraction boundaries → richer metrics 
(code generation: everything “squished” together)

Advantage 3: Easy to adapt to diverse Lakehouse data by choosing 
executed code on the fly (code generation: need to recompile everything)



Why integrate with the existing engine at all?

● Support existing Lakehouse workloads built using DataFrame APIs

● Incremental rollout to get real-world experience ASAP

MapReduce-like APIs 
(RDDs)

SQL Warehouse 
workloads

Spectrum of Databricks Lakehouse workloads



Hybrid Photon/Apache Spark plans

Scan

Filter

Aggregate

BatchEvalPython

Scan

Filter

Aggregate

BatchEvalPython

Adapter

ColToRow

JVM/Apache Spark C++/Photon

Catalyst Rule

JNI Boundary



Result: TPC-DS World Record

● Performance metric uses mixed workload
● Data loading
● Power run (run queries back-to-back)
● Concurrent query run
● Data maintenance run (INSERT/DELETE)

● First audited cloud-storage based run

● Databricks + Photon beat previous 
performance record with 10% less TCO

Audited



Current and 
the Future



Photon recent releases
Dec 2021
• Photon on GCP 

(Public Preview)

• Additional AWS instance 
types (r5d/n, i3en, m5d/n)

Jan 2022

• Better query plan display

Feb 2022

• Additional GCP instances 
(n2-standard)

• More math and string 
functions (GA)

• Array/Map data types with 
basic function support

Mar 2022
• Sort/Window (Private Preview)

• Structured Streaming (Private 
Preview)

• Adapter for CSV, AVRO, and JSON 
(Private Preview)

Apr 2022

• Low Shuffle Merge (GA)

• Delta/Parquet 
scan performance 
(Private Preview)

• Additional array 
aggregate functions (GA)

• AWS Graviton instances

Battle tested: processed Billions of queries and exabytes of data from large set of 
customers, providing up to order-of-magnitude performance improvements



Vectorized Sort

Accelerated Window Functions

Data Source Expansion

General Availability of Photon for 
Workspaces in the next few weeks.



Data types Operators

✅ Byte/Short/Int/Long
✅ Boolean
✅ String/Binary
✅ Decimal
✅ Float/Double
✅ Date/Timestamp
✅ Struct
✅ Array
✅ Map

✅ Scan, Filter, Project
✅ Hash Aggregate/Join/Shuffle
✅ Nested-Loop Join
✅ Null-Aware Anti Join
✅ Union, Expand, ScalarSubquery
✅ Delta/Parquet Write Sink
✅ Sort
✅ Window Function

      RDD Scan
     

Expressions

✅ Comparison / Logic
✅ Arithmetic / Math (most)
✅ Conditional (IF, CASE, etc.)
✅ String (common ones)
✅ Casts
✅ Aggregates(most common ones)
✅ Date/Timestamp

      Scala UDFs

Photon coverage (DBR 11.1)



Best in class analytics

• Low Latency improvements for BI workloads

• Faster window functions and Top K queries

• Python and Pandas UDF support

Easier and faster ingestion

• Query from Kafka, Kinesis, EventHub with enhanced deduplication support

• Native JSON Scan

Continued Price/Performance Focus 

• Native Vectorized Scans for Delta/Parquet

• Shuffle Improvements

Photon—what’s coming next?



How to enable Photon?

Cluster manager

Use 11.0 and select the ‘Use Photon Acceleration’ box

data "databricks_node_type" "photon" {
  photon_worker_capable = true
}

data "databricks_spark_version" "photon_lts" 
{
  long_term_support = true
  photon            = true
}

resource "databricks_cluster" "photon" {
  cluster_name            = "Photon Cluster"
  spark_version           = 
data.databricks_spark_version.photon_lts.id
  node_type_id            = 
data.databricks_node_type.photon.id
  autotermination_minutes = 20
  num_workers             = 3

}

Terraform



• Cheaper and faster; save up to 80% and up to 12x better Price/Perf

• Built for all use cases; BI, Stream, Ingestion and ETL

• No code changes necessary

Check the “Use Photon Accelerate” box today and speed up your workloads

Next generation execution engine for the Lakehouse

Key Takeaways



Thank you
Justin Breese
PM for Photon and SQL, Databricks

Sriram Krishnamurthy
Sr Eng Mgr for Photon, Databricks


