DATA+AI SUMMIT 2022

Improving Substance Abuse Treatment Outcomes

Predicting Repeat Admissions with Machine Learning

Kelsey Emnett, MPH Lead Data Scientist, Kimberly Clark

Jennifer Morizzo Associate Data Scientist, Maritz

The Goal: Personalized Treatment

Customize treatment based on predicted outcomes

- Predict with high accuracy patients who will relapse and return to substance abuse treatment
- Use model explainers to find individual-level prediction contributors
- Personalize treatment to maximize success

Background

The Problem: Substance Abuse at a Glance

Overdose deaths and admissions from hard drugs are rising

Contains data from publicly-funded treatment admissions

DATA+AI SUMMIT 2022

Treatment Episode Dataset (TEDS)

Model trained with substance use treatment admission data

- Built with publicly available data from the Substance Abuse and Mental Health Services Administration (SAMHSA)
- Includes all state and federally funded substance abuse treatment admissions
 - Model best used on high-risk populations
- Observations at an admission level
 - A limitation because historical behavior cannot be tracked

Target Variable for Prediction:

- Whether an admission is a:
 - First admission
 - Repeat admission

Final Model & Evaluation

Final Model: Random Forest Classifier

Multiple models were tested using a grid search

- Tested multiple model types:
 - Random Forest
 - Gradient Boosted Trees
 - XGBoost
 - Deep Neural Networks
 - Lasso and Ridge Regression

- Accuracy: 0.88
- Precision: 0.89
- Recall: 0.91
- F-Score: 0.90
- AUC: 0.87

Model Evaluation

8

Feature Importance

Certain features more effectively predict repeat admissions

- Top two factors associated with higher probability of repeat admission are:
 - Higher education
 - Lower frequency of use
- The highly educated are less likely to complete treatment
- Frequent users are less likely to seek or complete treatment

Feature	Importance
1) Education	8%
2) Frequency of Use	6%
3) Age Group	5%
4) Age of First Use	5%
5) Gender: Female	4%
6) Residing in the Pacific Division	4%

Increasing value = increased probability

Increasing value = decreased probability

Technical Deep Dive

Technologies Used

Used a variety of technologies for modeling and dashboards

Databricks

 Used Python on Databricks to do a grid search of 100+ models

Sector Secto

 Trained multiple Scikit-Learn and TensorFlow models

learn

MLFlow

•

- Tracked models using MLFlow
- Recorded model metrics and logged artifacts for evaluation

mlflow

Power Bl

- Created a Power Bl dashboard to:
 - Inform clinical decision making
 - Provide model explainability

Future Goals of Clinician Solution

Personalize and improve patient treatment

- Predict with high accuracy patients were readmitted to treatment
- Use model explainers to find the most important features contributing to readmission risk
- Personalize treatment to meet patient needs:
 - Vary treatment length to maximize success
 - Focus on addressing factors contributing to high patient predictions

Health Care Provider Journey

An analytics solution for providing personalized treatment

Dashboard Demo

Machine Learning Model Explainers

Explaining individual readmission predictions

- Shapley values quantify the contribution of each feature
- Report feature contributions for each patient
- On right, age group reduced this patient's predicted readmission probability by 0.11

DATA+AI

SUMMIT 2022

DATA+AI SUMMIT 2022

Thank you

Kelsey Emnett, MPH Lead Data Scientist, Kimberly Clark

Jennifer Morizzo Associate Data Scientist