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The Goal: Personalized Treatment
Customize treatment based on predicted outcomes

• Predict with high accuracy patients who will relapse and return to 
substance abuse treatment

• Use model explainers to find individual-level prediction contributors

• Personalize treatment to maximize success
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Background



The Problem: Substance Abuse at a Glance
Overdose deaths and admissions from hard drugs are rising
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Treatment Episode Dataset (TEDS)
Model trained with substance use treatment admission data

• Built with publicly available data from the 
Substance Abuse and Mental Health 
Services Administration (SAMHSA)

• Includes all state and federally funded 
substance abuse treatment admissions
• Model best used on high-risk populations

• Observations at an admission level
• A limitation because historical behavior 

cannot be tracked
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Target Variable for 
Prediction:

• Whether an admission 
is a: 
• First admission

• Repeat admission
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Final Model & 
Evaluation



Final Model: Random Forest Classifier
Multiple models were tested using a grid search

• Tested multiple model types:
• Random Forest

• Gradient Boosted Trees

• XGBoost

• Deep Neural Networks

• Lasso and Ridge Regression
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• Accuracy: 0.88

• Precision: 0.89

• Recall: 0.91

• F-Score: 0.90

• AUC: 0.87

Final Model 
Evaluation Metrics



Model Evaluation
Prediction accuracy is 
high on unseen data

• True Negative: 
Correctly predicted 
first admission

• Predicted Incorrectly

• True Positives: 
Correctly predicted 
repeat admission 
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Feature Importance
Certain features more effectively predict repeat admissions

• Top two factors associated with 
higher probability of repeat 
admission are:
• Higher education

• Lower frequency of use

• The highly educated are less 
likely to complete treatment

• Frequent users are less likely to 
seek or complete treatment
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Feature Importance

1) Education 8%

2) Frequency of Use 6%

3) Age Group 5%

4) Age of First Use 5%

5) Gender: Female 4%

6) Residing in the Pacific Division 4%

Increasing value = increased probability

Increasing value = decreased probability
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Technical Deep 
Dive



Technologies Used
Used a variety of technologies for modeling and dashboards

• Used Python on 
Databricks to do 
a grid search of 
100+ models 

Databricks
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• Created a Power 
BI dashboard to:

• Inform clinical 
decision making

• Provide model 
explainability

Power BI

• Tracked models 
using MLFlow

• Recorded model 
metrics and 
logged artifacts 
for evaluation

MLFlow

• Trained multiple 
Scikit-Learn and 
TensorFlow 
models

Scikit-Learn & 
TensorFlow



Future Goals of Clinician Solution
Personalize and improve patient treatment

• Predict with high accuracy patients were readmitted to treatment

• Use model explainers to find the most important features contributing to 
readmission risk

• Personalize treatment to meet patient needs:
• Vary treatment length to maximize success

• Focus on addressing factors contributing to high patient predictions
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Health Care Provider Journey
An analytics solution for providing personalized treatment
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Patient Intake

Gather Patient 
Characteristics

Obtain Predicted 
Readmission Risk & 

Explainers

Give Tailored 
Treatment

Explore Patient Trends 
& Characteristics
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Dashboard Demo



Machine Learning Model Explainers
Explaining individual readmission predictions

• Shapley values quantify 
the contribution of each 
feature

• Report feature 
contributions for each 
patient

• On right, age group 
reduced this patient’s 
predicted readmission 
probability by 0.11
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Age 21-24

Employed Full-Time

No Self-Help Attendance

1-3 Years of College

Cocaine Present

Does Not Have Mental Illness

Marijuana Present

Independent Living

Residing in West North Central

Other Features

Prediction = 0.25

Avg Prediction = 0.67
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