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Who am I
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- Portuguese & Dutch 󰐨󰐗
- Korfbal player
- NBA and golf
- Wehkamp is one of the biggest online 

retailers in the Netherlands



Wehkamp
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>300.000
different products 

>600.000
daily visitors

729,5 million 
sales 20/21

11 million
packages sent each 

year  

>1.000
colleagues

75%
of all customers shop 

via mobile 

72%
of our customers 

are female 

Over 2.500 brands 
WE Fashion // Vingino //Mango // Tommy Hilfiger // Scotch & Soda // ONLY // Private Label 

wehkamp home // HK living // Woood // Zuiver // Riverdale // House Doctor



Agenda

- Where we started
- Lakehouse architecture @ Wehkamp
- Vent-Ingest: Ingestion Framework
- Pseudonymization
- Alerting -> Slack
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Where we started
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The journey 
Traditional BI environment with DWs
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- Stable & high quality 
environment

- Single source of truth 
- Limited to structured data
- On Premise environment



The journey 
Databricks gets introduced in the company
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- New uses cases are 
unlocked

- New data sources are 
added to S3

- Self service environment 
for data exploration

CloudOn-premises
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- Good quality data joins 
distributed computing

- More power to data users, 
same old trustworthy 
data

The journey 
Old data. New world.

CloudOn-premises
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- Keeping our DWs in the 
pipeline was becoming a 
bottleneck for some use 
cases 

- Shortcuts and temporary 
implementations were 
made

- Speed     
Quality ？ 
Stability

The journey 
Same data… New routes?

CloudOn-premises
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- Wider adoption meant 
even more data sources 
and even more teams 
starting to create their 
own independent 
pipelines

The journey 
Even more data

CloudOn-premises
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- Lakehouse powered by a 
Delta Lake

- Unified and governed 
data usage

- Simplified architecture

The journey 
Endstation: The Lakehouse.  
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The journey 
The honest lens

CloudOn-premises
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The journey 
The honest lens

CloudOn-premises



Lakehouse 
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High performance 
Scalability, 

cost-efficiency, and 
flexibility

Data Warehouses Data Lakes

❤
By Databricks



Lakehouse Architecture 
@ Wehkamp
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Lakehouse Architecture @ Wehkamp
Unifying the data access

- Delta Lake as storage layer 

- Incremental ingestion 

- Incremental processing with the Medallion Architecture: Bronze -> Silver -> Gold 
- All PII data in the Delta Lake should be pseudonymised
- Column naming standards 
- Easy way to let data users apply 

the best practices 
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Lakehouse Architecture @ Wehkamp
Unifying the data access



Lakehouse Architecture @ Wehkamp
Inside the delta lake
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Vent-Ingest 
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Vent Ingest
Idea And Design: Framework + Library
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- Custom python library (.whl)
- Modular Pyspark code with VSC
- Easy ingestion via JSON config files
- Pseudonymization of all PII fields 
- Stream ingestion with Spark’s 

Structured Streaming API
- Current support: Kafka & S3 + autoloader
- Batch is supported through Trigger.Once



Vent Ingest
How does it run

- Each new ingestion source is defined
 by 2 sets of configurations
- Read options
- Data specific + Write options

- Several jobs run independently and at 
a different frequency. Each one ingests 
the sources that are defined to run at 
that frequency. 
- Parallel execution within the job via a 

spark scheduler pool 
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Vent Ingest
connections.json
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{
 "$schema": "../schemas/config-schema.json",
 "connections": [

{
 "name": "awesome-bucket",
 "url": "dbfs:/mnt/awesome-bucket",
 "format": "autoloader-json",
 "options": {
   "cloudFiles.format": "json",
   "cloudFiles.region": "eu-west-1",
   "cloudFiles.includeExistingFiles": "true",
   "cloudFiles.useNotifications": "true",
   "cloudFiles.triggerOnceQueueFlushTimeout": "5s"
 }

     ]
}
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Vent Ingest
wishlist.json
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{
 "$schema": "../../schemas/table.schema.json",
 "table": "wishlist",
 "database": "dl_brz_sourceA",
 "connection": "awesome-bucket",
 "folder": "wishlist",
 "frequency": "realstream",
 "retention": "7 years",
 "mode": "append",
 "comment": "JSON | Data from wishlist service",
 "trigger_options": { "processingTime": "1 minute" },
 "partition_by": [ "dateAdded" ],
 "fields": [
   {
     "metadata": {"pii_field": "customer_number"},
     "name":"customerNumber",
     "nullable":true,
     "type":"string"
   },
   {
     "metadata": {},
     "name": "dateAdded",
     "nullable": true,
     "type": "string"
   },
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   {
     "metadata": {},
     "name": "priceWhenAdded",
     "nullable": true,
     "type": "long"
   },
   {
     "metadata": {},
     "name": "productNumber",
     "nullable": true,
     "type": "string"
   },
   {
     "metadata": {

 "comment": "Size specification"
},

     "name": "sizeCode",
     "nullable": true,
     "type": "string"
   },  
 ]
}

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47



Vent Ingest
In action 

- In place transformation for 
flat and nested schemas

- Using explicit schemas 
means that schema evolution 
needs to be handled by the 
owner of such config
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Pseudonymization
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Pseudonymization
The logic behind it

- Democratize data access by restricting access to PII data to 
specific purposes

- One-way cryptographic hashing and salting
- Use the concept of PII types to differentiate the purposes for 

accessing PII data. 
a. E.g. customer_number, customer_email, employee_name, etc

- Encode the hashes with base64 for storage efficiency
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def pseudonymization_expression(pii_type, column) -> str:
   normalized = f"Normalize in lowercase the {column} as a string"
   sha = f"sha1({pii_type} + secure_salt + {normalized}))"
   # save storage space
   return f"translate hexadecimal encoding to base64({sha})"
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Pseudonymization
Updating the lookup table
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def apply(self, microbatch_df: DataFrame, write_callback):
   if schema has pii fields:
       
       schedule_pii_records_for_lookup(microbatch_df, self) 
       ps_df = pseudonymize(microbatch_df, self)
       write_callback(self, ps_df)
   
   else:
       write_callback(self, microbatch_df)
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- All streams write concurrently to the 
PII Queue table with append mode

- A separate job updates the PII 
lookup table



Alerting: 
Runtime & Quality -> Slack
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Alerting -> Slack
Keeping the incidents where people are

- Slack at Wehkamp is crucial for incident management
- For managing the delta lake we have 2 channels

- Runtime alerts
- Quality alerts via PyDeequ

- Slack Webhook + Databricks secrets
- Alerting on table level instead on job level
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Alerting -> Slack
Keeping the incidents where people are

30



Conclusions and 
next steps 
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Looking Back 

- Traditional BI -> Lakehouse journey
- 100+ streams with insignificant downtime
- Adoption of the delta lake is steadily increasing
- Good foundation for improving the performance of our older 

pipelines and facilitate future use cases the business requires

 

32



Whats Next? 

- Continue to fill the delta lake with the necessary data to make the 
migration possible 

- Continue to iterate and improve the platform itself
- Expand the platform for support multi label
- New kids to the Databricks E2 party. Integrate some of the new 

features into our Lakehouse toolkit
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Ricardo Wagenmaker
Senior Data Engineer, Wehkamp

Thank you


