
The journey towards data
democratization

1

Ricardo Wagenmaker
Senior Data Engineer, Wehkamp

Powering Up The
Business with a
Lakehouse

Who am I

2

- Portuguese & Dutch 󰐨󰐗
- Korfbal player
- NBA and golf
- Wehkamp is one of the biggest online

retailers in the Netherlands

Wehkamp

3

>300.000
different products

>600.000
daily visitors

729,5 million
sales 20/21

11 million
packages sent each

year

>1.000
colleagues

75%
of all customers shop

via mobile

72%
of our customers

are female

Over 2.500 brands
WE Fashion // Vingino //Mango // Tommy Hilfiger // Scotch & Soda // ONLY // Private Label

wehkamp home // HK living // Woood // Zuiver // Riverdale // House Doctor

Agenda

- Where we started
- Lakehouse architecture @ Wehkamp
- Vent-Ingest: Ingestion Framework
- Pseudonymization
- Alerting -> Slack

4

Where we started

5

The journey
Traditional BI environment with DWs

6

- Stable & high quality
environment

- Single source of truth
- Limited to structured data
- On Premise environment

The journey
Databricks gets introduced in the company

7

- New uses cases are
unlocked

- New data sources are
added to S3

- Self service environment
for data exploration

CloudOn-premises

8

- Good quality data joins
distributed computing

- More power to data users,
same old trustworthy
data

The journey
Old data. New world.

CloudOn-premises

9

- Keeping our DWs in the
pipeline was becoming a
bottleneck for some use
cases

- Shortcuts and temporary
implementations were
made

- Speed
Quality ？
Stability

The journey
Same data… New routes?

CloudOn-premises

10

- Wider adoption meant
even more data sources
and even more teams
starting to create their
own independent
pipelines

The journey
Even more data

CloudOn-premises

11

- Lakehouse powered by a
Delta Lake

- Unified and governed
data usage

- Simplified architecture

The journey
Endstation: The Lakehouse.

12

The journey
The honest lens

CloudOn-premises

13

The journey
The honest lens

CloudOn-premises

Lakehouse

14

High performance
Scalability,

cost-efficiency, and
flexibility

Data Warehouses Data Lakes

❤
By Databricks

Lakehouse Architecture
@ Wehkamp

15

Lakehouse Architecture @ Wehkamp
Unifying the data access

- Delta Lake as storage layer

- Incremental ingestion

- Incremental processing with the Medallion Architecture: Bronze -> Silver -> Gold
- All PII data in the Delta Lake should be pseudonymised
- Column naming standards
- Easy way to let data users apply

the best practices

16

Lakehouse Architecture @ Wehkamp
Unifying the data access

Lakehouse Architecture @ Wehkamp
Inside the delta lake

18

Vent-Ingest

19

Vent Ingest
Idea And Design: Framework + Library

20

- Custom python library (.whl)
- Modular Pyspark code with VSC
- Easy ingestion via JSON config files
- Pseudonymization of all PII fields
- Stream ingestion with Spark’s

Structured Streaming API
- Current support: Kafka & S3 + autoloader
- Batch is supported through Trigger.Once

Vent Ingest
How does it run

- Each new ingestion source is defined
 by 2 sets of configurations
- Read options
- Data specific + Write options

- Several jobs run independently and at
a different frequency. Each one ingests
the sources that are defined to run at
that frequency.
- Parallel execution within the job via a

spark scheduler pool

21

Vent Ingest
connections.json

1

{
 "$schema": "../schemas/config-schema.json",
 "connections": [

{
 "name": "awesome-bucket",
 "url": "dbfs:/mnt/awesome-bucket",
 "format": "autoloader-json",
 "options": {
 "cloudFiles.format": "json",
 "cloudFiles.region": "eu-west-1",
 "cloudFiles.includeExistingFiles": "true",
 "cloudFiles.useNotifications": "true",
 "cloudFiles.triggerOnceQueueFlushTimeout": "5s"
 }

]
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Vent Ingest
wishlist.json

23

{
 "$schema": "../../schemas/table.schema.json",
 "table": "wishlist",
 "database": "dl_brz_sourceA",
 "connection": "awesome-bucket",
 "folder": "wishlist",
 "frequency": "realstream",
 "retention": "7 years",
 "mode": "append",
 "comment": "JSON | Data from wishlist service",
 "trigger_options": { "processingTime": "1 minute" },
 "partition_by": ["dateAdded"],
 "fields": [
 {
 "metadata": {"pii_field": "customer_number"},
 "name":"customerNumber",
 "nullable":true,
 "type":"string"
 },
 {
 "metadata": {},
 "name": "dateAdded",
 "nullable": true,
 "type": "string"
 },

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

2

 {
 "metadata": {},
 "name": "priceWhenAdded",
 "nullable": true,
 "type": "long"
 },
 {
 "metadata": {},
 "name": "productNumber",
 "nullable": true,
 "type": "string"
 },
 {
 "metadata": {

 "comment": "Size specification"
},

 "name": "sizeCode",
 "nullable": true,
 "type": "string"
 },
]
}

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Vent Ingest
In action

- In place transformation for
flat and nested schemas

- Using explicit schemas
means that schema evolution
needs to be handled by the
owner of such config

24

Pseudonymization

25

Pseudonymization
The logic behind it

- Democratize data access by restricting access to PII data to
specific purposes

- One-way cryptographic hashing and salting
- Use the concept of PII types to differentiate the purposes for

accessing PII data.
a. E.g. customer_number, customer_email, employee_name, etc

- Encode the hashes with base64 for storage efficiency

26

def pseudonymization_expression(pii_type, column) -> str:
 normalized = f"Normalize in lowercase the {column} as a string"
 sha = f"sha1({pii_type} + secure_salt + {normalized}))"
 # save storage space
 return f"translate hexadecimal encoding to base64({sha})"

1
2
3
4
5

Pseudonymization
Updating the lookup table

27

def apply(self, microbatch_df: DataFrame, write_callback):
 if schema has pii fields:

 schedule_pii_records_for_lookup(microbatch_df, self)
 ps_df = pseudonymize(microbatch_df, self)
 write_callback(self, ps_df)

 else:
 write_callback(self, microbatch_df)

1
2
3
4
5
6
7
8
9

- All streams write concurrently to the
PII Queue table with append mode

- A separate job updates the PII
lookup table

Alerting:
Runtime & Quality -> Slack

28

Alerting -> Slack
Keeping the incidents where people are

- Slack at Wehkamp is crucial for incident management
- For managing the delta lake we have 2 channels

- Runtime alerts
- Quality alerts via PyDeequ

- Slack Webhook + Databricks secrets
- Alerting on table level instead on job level

29

Alerting -> Slack
Keeping the incidents where people are

30

Conclusions and
next steps

31

Looking Back

- Traditional BI -> Lakehouse journey
- 100+ streams with insignificant downtime
- Adoption of the delta lake is steadily increasing
- Good foundation for improving the performance of our older

pipelines and facilitate future use cases the business requires

32

Whats Next?

- Continue to fill the delta lake with the necessary data to make the
migration possible

- Continue to iterate and improve the platform itself
- Expand the platform for support multi label
- New kids to the Databricks E2 party. Integrate some of the new

features into our Lakehouse toolkit

33

34

Ricardo Wagenmaker
Senior Data Engineer, Wehkamp

Thank you

