
Power to the (SQL) people: Python UDFs in DBSQL
Abstract: 

Databricks SQL (DBSQL) allows customers to leverage the simple and powerful Lakehouse architecture with up to 12x 
better price/performance compared to traditional cloud data warehouses. Analysts can use standard SQL to easily query 
data and share insights using a query editor, dashboards or a BI tool of their choice, and analytics engineers can build 
and maintain efficient data pipelines, including with tools like dbt.

While SQL is great at querying and transforming data, sometimes you need to extend its capabilities with the power of 
Python, a full programming language. Users of Databricks notebooks already enjoy seamlessly mixing SQL, Python and 
several other programming languages. Use cases include masking or encrypting and decrypting sensitive data, complex 
transformation logic, using popular open source libraries or simply reusing code that has already been written elsewhere 
in Databricks. In many cases, it is simply prohibitive or even impossible to rewrite the logic in SQL.

Up to now, there was no way to use Python from within DBSQL. We are removing this restriction with the introduction of 
Python User Defined Functions (UDFs). DBSQL users can now create, manage and use Python UDFs using standard SQL. 
UDFs are registered in Unity Catalog, which means they can be governed and used throughout Databricks, including in 
notebooks.



Stefania Leone, Martin Grund
Sr. Manager Product Management, Databricks Sr Staff Software Engineer  

Power to the (SQL) 
people: 
Python UDFs in DBSQL



Product Safe Harbor Statement

This information is provided to outline Databricks’ general product 
direction and is for informational purposes only. Customers who 
purchase Databricks services should make their purchase 
decisions relying solely upon services, features, and functions that 
are currently available. Unreleased features or functionality 
described in forward-looking statements are subject to change at 
Databricks discretion and may not be delivered as planned or at all.

3



Agenda

Data Warehousing on the Lakehouse: Databricks SQL and Unity Catalog

Extensibility in Databricks & Databricks SQL: User-defined functions today

Python UDFs in Databricks SQL incl. demo



Data Warehousing 
on the Lakehouse:
 
DBSQL & 
Unity Catalog



The best data warehouse is a lakehouse
Powered by Databricks SQL

Ease of Use

Real-world Performance

Open and Reliable Data Lake as the Foundation

Centralized Governance 

Seamless Integration with the Ecosystem



Centrally govern all your data with standard SQL
Unity Catalog + Databricks SQL 

• Standardize with a unified fine-grained 
governance model

• Easily search, discover and access all data 
assets from data explorer

• Securely share live data across platforms 
with Delta Sharing 

• Built-in data lineage across tables, columns, 
notebooks, workflows, dashboards

• Captured in real time across 
all workloads—SQL, Python, Scala, and R

GA Coming Soon



Extensibility in 
Databricks: 
User-defined 
functions 



User-defined functions (UDFs)
Extensibility in Spark

User defined functions allow to extend 
Spark with custom business logic:

- Define functions as UDFs
- Use UDFs in Spark 

PySpark UDF used on a Dataframe

...



Extensibility in Spark
(User-defined) functions in the language of your choice

PySpark Python UDFs

Pandas UDFs, Pandas API

Scala/Java UDFs

SQL Built-in & Lambda functions

SQL UDFs 

Use registered Python/Pandas/Scala UDFs



-----------------------------------------------

Python UDF example
Redacting PII data from JSON fields

Python UDF

Define UDF:

- Arbitrary code as Python functions

- PySpark: annotate as UDF

- Spark SQL: register in Spark session

→ UDFs are session-based (not cataloged)

Run UDF:

- Use in SQL, PySpark

- Row-at-a-time processing

Characteristics



Pandas UDF example
Redacting PII data from JSON fields

-----------------------------------------------

-

Pandas UDF Characteristics

- Arbitrary Python code

- Session-based

- Vectorized UDF: runs the UDF on 

batches (pandas.Series)

- Faster than Python UDFs, especially for 

row-independent state



DBSQL 
Extensibility



DBSQL Extensibility

- Support for SQL built-in and Lambda functions
- SQL UDFs
- No support for non-SQL UDFs



SQL UDF Example
Example: Email Masking

CREATE OR REPLACE FUNCTION mycatalog.finance.mask_email(email string)

RETURNS STRING LANGUAGE SQL 

RETURN SELECT substring(split_part(email, "@", 1), 1, 2) || '...'

 || substring(split_part(email, "@", 1), -2)

 || '@' || substring(split_part(email, "@", 2), 1, 2) ||  '...'

 || substring(split_part(split_part(email, "@", 2), '.', 1), -2) || '.' 

 || split_part(split_part(email, "@", 2), '.', -1);

● Create a reusable SQL expression to mask emails.
● SQL UDFs are cataloged
● Created by a user        with USAGE and CREATE 

permission on the schema, USAGE on the catatalog

john.doe@laview.com

martin.grund@databricks.com

email

jo...oe@la...ew.com

ma...nd@da…ks.com

email

mask_email()



SQL UDF Example
Example: Email Masking

GRANT EXECUTE on mycatalog.finance_db.mask_email 

TO ‘finance_analysts’

SELECT first_name, last_name, mask_email(email)

FROM account_info;

● GRANT SQL analyst        permission to run the 
function 

● Use mask_email() as part of a query

john.doe@laview.com

martin.grund@databricks.com

email

jo...oe@la...ew.com

ma...nd@da…ks.com

email

mask_email()



More power to the SQL people
Beyond SQL UDFs

- Some logic is hard or impossible to express in SQL

Redact example in Python Redact example in SQL



More power to the SQL people
Beyond SQL UDFs

- Some logic is hard or impossible to express in SQL
- A lot of business logic has already been implemented in Python, 

by all of you!

-

Let’s bring the  Power of Python & 

your existing business logic to Databricks SQL 

as fully cataloged and governed UDFs!



Introducing 
Python UDFs for 
Databricks SQL



Scalar Python UDFs in Databricks SQL
Power to the SQL People

Bring Python’s expressive power           
to Databricks SQL.

● Permanent, first-class object in Unity Catalog.
○ UDFs can be governed using GRANT/REVOKE syntax.
○ Accessible using the standard three level namespace syntax.

● Fully sandboxed and isolated execution mode without cross-query 
interference.



Scalar Python UDFs in Databricks SQL
Syntax Composition

def function_name(arg1, arg2):
   if arg1 > 2:
      return arg2
   else:
      return arg1

CREATE FUNCTION function_name(
arg1 DOUBLE, arg2 DOUBLE)

RETURNS DOUBLE LANGUAGE PYTHON
AS $$
  if arg1 > 2:
    return arg1
  else:
    return arg2
$$

Mapping between Python and SQL code. 



Python UDF Example
Redacting PII data from JSON fields

Example: Redact all fields in the 
JSON string where the keys are in a 
deny-list with “REDACTED”

redact()



Seamless 
transition from 
Spark UDFs to 
Python UDFs



From Spark UDFs to Python UDFs in DBSQL
Step 1: CREATE FUNCTION (instead of spark.udf.register)

1



From Spark UDFs to Python UDFs in DBSQL
Step 2: Function body

2

Multiple functions: Keep all definitions, and only inline the outermost function 
(or call return outermost()  from global scope)⚠



From Spark UDFs to Python UDFs in DBSQL
Step 3: Import dependencies

3

Spark UDF in Notebook Python UDF in DBSQL



From Spark UDFs to Python UDFs in DBSQL
Alternative: Functions with multiple dependencies

1

⚠ 2



Demo
Online Model Scoring In

Databricks SQL



ML Example
Leveraging Model Scoring in Databricks SQL

Goal: Define a UDF that leverages an integrated Scikit-Learn model for 
predicting housing prices in Berlin.

Path to UDF:

● Training data (blog) from a publicly available dataset.
● Train the model, serialize the model, create UDF.

https://github.com/diogomatoschaves/berlin-house-prices-analysis
https://towardsdatascience.com/berlin-house-rental-market-analysis-18dfc0c2ca9


ML Example
Training the model

Execution in a regular Notebook 
or Python REPL using 
Scikit-Learn,  PySpark, Pandas.

1. Load the data
2. Train the Model
3. Generate the SQL Code for 

the UDF

# Load Data from a table stored in Unity Catalog.
df = spark.read.table("berlin_housing_data")
# Convert result to Pandas DataFrame, selecting only the features 
# to use for training.
X = df.select(df.living_space.cast(FloatType()), 

 df.number_rooms.cast(IntegerType())).toPandas().to_numpy()
# Select target column.
Y = df.select(df.cold_price.cast(FloatType())).toPandas()
y = Y["cold_price"].values

# Prepare the training data
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.1, random_state=13
)
params = { "n_estimators": 500, "max_depth": 4, "min_samples_split": 5,

    "learning_rate": 0.01, "loss": "ls"}
# Run the training.
reg = ensemble.GradientBoostingRegressor(**params)
reg.fit(X_train, y_train)

# Build a UDF based on the serialized model.
data = base64.b64encode(zlib.compress(pickle.dumps(reg)))
template = f"""CREATE OR REPLACE FUNCTION score(sqm float, rooms int)
RETURNS FLOAT
LANGUAGE PYTHON
RETURN $$
import zlib, pickle, base64
data = {data}
pred = pickle.loads(zlib.decompress(base64.b64decode(data)))
return float(pred.predict([[sqm, rooms]])[0])
$$
"""
display(template)

1

2

3



ML Example
Create the UDF

● From the SQL Query editor in Databricks SQL paste the previously 
generated query.

⚠ This shows the power of UDFs, but computation cost is
high on every iteration.



ML Example
Run predictions!

● Run the predictions in batch 
directly in Databricks SQL.

● Use the UDF like any other 
built-in function.

● Consume the result in 
custom visualizations and 
dashboards.



https://docs.google.com/file/d/1rjBGFMhz2nVFEzg_CO0Le6z_GxEUVH9F/preview


Conclusion and 
Outlook



Summary

● Power to the SQL people: Python UDFs in DBSQL bring the expressive 
power of Python to Databricks SQL

● UDFs are registered as UC objects with fine-grained access control

● Existing code and application logic in Python UDFs can be seamlessly 
created in Databricks SQL



Outlook

● Private Preview Sign-Up: https://dbricks.co/udfpreview
● Public preview planned for Q3

Roadmap

● Pandas UDFs in DB SQL
● User-defined dependencies
● Governed UDFs in Notebooks
● Remote functions

https://forms.gle/8r5KAkQU2SVoEcts7


Stefania Leone
Senior Manager, Product Management

Thank you
Martin Grund
Sr Staff Software Engineer


