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Basic information about me

• Career focus: Databases from pre-relational to SQL to Analytic DBMS
• Most recent: ClickHouse, a SQL data warehouse released under Apache 

2.0 license
• Academic background: Classics, History, and Languages (Human)
• Day job: CEO of Altinity, an enterprise provider for ClickHouse
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Framing the 1 
trillion row 
problem
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Seeing is believing
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Demo Time!



Some definitions to guide discussion

Enabling Fast, Unmediated End User 
Access to Trillion-Row Datasets
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Consistent, sub-second response 
that scales linearly with resources Direct access to source data

Market TICK data, DNS queries, weblogs, network flow 
logs, service logs, CDN telemetry, real-time ad bids, … 



Why do we need fast access to source data?
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Question Answer
Quick, 

Iterative 
Exploration

Why do temperature 
sensors fail 

intermittently?

Slice and dice 
queries on detailed 

sensor data

Bad firmware 
upgrade



The solution: One table* to rule them all
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Unaggregated 
table data

Keep intermediate 
results in RAM

Minimize I/O Overhead

Maximize applied CPU

Parallelize everything

Results

Query

And make the scans really fast

* Joins are OK! Just not 
big ones. 



Read this before asking for your money back
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“BEGIN AT THE BEGINNING, and go on until 
you find the right key; then stop. . . We shall 
see that sequential searching involves 
some very interesting ideas, in spite of its 
simplicity. 

AOCP, Volume 3, Page 396



Blocking and 
tackling

Storing and 
querying 1 
trillion rows
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ClickHouse Server Architecture
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Query Parser Query Interpreter Query PipelineQuery

Table Primary 
Key Indexes

Scanned 
column 

blocks from 
storage

Joined data 
(hash 
tables)

Intermediate 
Query Results 
(hash tables)

Columnar data in block storage Columnar data in object 
storage

OS Page Cache



Round up the usual performance suspects
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Data 
Partitioning

Codecs

Compression Skip 
Indexes

Projections

Sharding

Distributed Query

Data 
Types

Read 
Replicas

Tiered Storage

Primary key indexIn-RAM dictionaries 



Table organization in ClickHouse
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MergeTree table 

Parts

Sparse 
index

Sorted, compressed, 
indexed column

Skip 
indexes

Minmax

Bloom



Let’s start by making a table!
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CREATE TABLE IF NOT EXISTS readings_unopt (

    sensor_id Int64,

    sensor_type Int32,

    location String,

    time DateTime,

    date Date DEFAULT toDate(time),

    reading Float32

) Engine = MergeTree

PARTITION BY tuple()

ORDER BY tuple();
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Sub-optimal 
datatypes!

No codecs!

No partitioning 
or ordering!



Here is a better table with lower I/O cost
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CREATE TABLE IF NOT EXISTS readings_zstd (

    sensor_id Int32 Codec(DoubleDelta, ZSTD(1)),

    sensor_type UInt16 Codec(ZSTD(1)),

    location LowCardinality(String) Codec(ZSTD(1)),

    time DateTime Codec(DoubleDelta, ZSTD(1)),

    date ALIAS toDate(time),

    temperature Decimal(5,2) Codec(T64, ZSTD(10))

) Engine = MergeTree

PARTITION BY toYYYYMM(time)

ORDER BY (location, sensor_id, time);
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Optimized data 
types

Codecs + ZSTD 
compression

Time-based 
partitioning

Sorting by key 
columns + time



On-disk table size for different schemas
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Many apps keep entity sources in the row
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m
sg_type

tem
perature

tim
e

date

{
  "sensor_id": "0",
  "time": "2019-01-01 00:00:00",
  "msg_type": "reading",
  "temperature": "46.31",
  "message": "",
  "device_type": "0",
  "firmware": "frx23.0.22"
}

m
essage

sensor_type
sensor_id

Materialized 
columns

Source 
data

1.34 bytes/row 4.14 bytes/ row
~96% compression with ZSTD(1)



ClickHouse single node query model
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Query

Result

ClickHouse Server

Parse/Plan

Merge/Sort

Vectorized 
Scan

In-RAM 
Hash 

Tables

Parts in 
Storage



Demonstration of linear local CPU scaling
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set max_threads = 16;
SELECT
    toYYYYMM(time) AS month,
    countIf(msg_type = 'reading') AS readings,
    countIf(msg_type = 'restart') AS restarts,
    min(temperature) AS min,
    round(avg(temperature)) AS avg,
    max(temperature) AS max
FROM test.readings_multi
WHERE sensor_id BETWEEN 0 and 10000
GROUP BY month ORDER BY month ASC;

-- Query over 1.01 billion rows



Adding 
razzle-dazzle

Unique tricks 
for large 
datasets
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Pattern: multiple entities in a single table
Large table joins are an anti-pattern in low-latency apps
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Restart
● msg_type=’restart’
● sensor_id
● timeReading

● msg_type=’reading’
● sensor_id
● time
● temperature

Error
● msg_type=’err’
● sensor_id
● time
● message



Aggregation is the key technique to scale

=  2

Sum = 6
Count = 3

1 2 3 1 3 5 0 5 0 0

Sum = 9
Count = 3

Sum = 5
Count = 4

6 + 9 + 5

3 + 3 + 4
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No need to 
move data

Parallelizes!

Intermediate 
results are 
reusable



What about queries over all entities?
Use conditional aggregation to cover multiple types
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SELECT toYYYYMM(time) AS month, 

    countIf(msg_type = 'reading') AS readings,

    countIf(msg_type = 'restart') AS restarts, 

    min(temperature) AS min, 

    round(avg(temperature)) AS avg, max(temperature) AS max

FROM test.readings_multi WHERE sensor_id = 3

GROUP BY month ORDER BY month ASC

┌──month─┬─readings─┬─restarts─┬───min─┬─avg─┬────max─┐
│ 201901 │    44640 │        1 │     0 │  75 │ 118.33 │
│ 201902 │    40320 │        0 │ 68.09 │  81 │  93.98 │
│ 201903 │    15840 │        0 │ 73.19 │  84 │   95.3 │
└────────┴──────────┴──────────┴───────┴─────┴────────┘
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sensor_id restart_timetime temperature
sensor_id restart_timetime temperature

msg_type sensor_id time temperature
msg_type sensor_id time temperature

What about joins on distributed data?
Use case: join restarts with temperature readings
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sensor_id uptimetime temperature

Restart times

msg_type sensor_id time

msg_type sensor_id time temperature

Temperature readings

Temperatures after restart

JOIN key



msg_type sensor_id time temperature
msg_type sensor_id time temperature

Aggregation can implement joins!
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sensor_id uptimetime temperature

Restart and temperature records

msg_type sensor_id time

msg_type sensor_id time temperature

Temperatures after restart

sensor_id

restart_time: t1

reading_time: [t1, t2, t3, t4, …] 

temp: [76.44, 90.39, 82.08, 48.12, ..]

236
236
236
236
…

t1
t2
t3
t4
...

76.44
90.39
82.08
48.12
...

30
90
150
210
...

GROUP BY
 key

Grouped array values

ARRAY JOIN to 
pivot on arrays



And here’s the code!
(Possibly not for everyone, but it works.)
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SELECT sensor_id, reading_time, temp, reading_time - restart_time AS uptime

FROM (

WITH toDateTime('2019-04-17 11:00:00') as start_of_range

SELECT sensor_id, groupArrayIf(time, msg_type = 'reading') AS reading_time,

    groupArrayIf(temperature, msg_type = 'reading') AS temp,

    anyIf(time, msg_type = 'restart') AS restart_time

FROM test.readings_multi rm

WHERE (sensor_id = 2555)

  AND time BETWEEN start_of_range AND start_of_range + 600

GROUP BY sensor_id)

ARRAY JOIN reading_time, temp
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How about locating key events in tables? 

28

What was the 
last error on 
sensor 236?

SELECT message
FROM readings_multi
WHERE (msg_type, sensor_id, time) IN
  (SELECT msg_type, sensor_id, max(time)
   FROM readings_multi
   WHERE msg_type = 'err' 
     AND sensor_id = 236
   GROUP BY msg_type, sensor_id)

Expensive on 
large datasets!



Finding the last error is an aggregation task!
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236 2019-01-10 20:00:13 Segfault

sensor_id time err 236 2019-01-10 21:07:56 OOM

sensor_id time err

236 2019-01-10 21:07:56 OOM

sensor_id time err

Merge

GROUP BY key

Max value Matching 
row value



Use materialized views to “index” data
Finding the last error on a sensor
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Block lands 
in source 

table

Block(s) land 
in materialized 

view target 
table

SELECT
  sensor_id,
  max(time) AS last_time,
  argMaxState(message, time)
    AS last_message
FROM readings_multi rm
WHERE msg_type = 'err'
GROUP BY sensor_id

“Last point query”MergeTree Table

AggregatingMergeTree
 Table



Opening up the 
gate

End user access 
patterns
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Traditional approaches to end user access
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Custom UIs - MUX.com video analytics*

* 
https://www.mux.com/blog/from-russia-with-love-how-clickhouse-saved-our-data)
** https://www.metabase.com/product/ 

 Dashboards - Superset, Grafana

 Data Exploration Tools - Tableau, Metabase**

https://www.mux.com/blog/from-russia-with-love-how-clickhouse-saved-our-data
https://www.metabase.com/product/


Leverage existing query/visualization tools
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Grafana 
Daemon

Grafana UI
(Loki Data 
Source)

End 
User

LogQL

Loki 
Gateway

LogQL

ClickHouse 
Server

SQL

Aka subverting dominant UI paradigms

(Surprise! It’s 
not Loki.)



Wrap Up and 
Acknowledgements
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Learnings from large ClickHouse installations

Use a single large table to hold all entities

Make sound implementation choices to get baseline performance

Aggregation is a secret ClickHouse power: use it to scan, join, index data

Build gateways from LogQL, PromQL, etc. to leverage powerful search UIs

Your reward:  Linear scaling, high cost-efficiency, and 
happy users
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Thank you!
rhodges at altinity.com

https://altinity.com 
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Robert Hodges
Altinity CEO

https://altinity.com

