
Enabling Fast, Unmediated End User
Access to Trillion-Row Datasets

1

Robert Hodges
CEO, Altinity

Opening the
Floodgates

Basic information about me

• Career focus: Databases from pre-relational to SQL to Analytic DBMS
• Most recent: ClickHouse, a SQL data warehouse released under Apache

2.0 license
• Academic background: Classics, History, and Languages (Human)
• Day job: CEO of Altinity, an enterprise provider for ClickHouse

2

Framing the 1
trillion row
problem

3

Seeing is believing

4

Demo Time!

Some definitions to guide discussion

Enabling Fast, Unmediated End User
Access to Trillion-Row Datasets

5

Consistent, sub-second response
that scales linearly with resources Direct access to source data

Market TICK data, DNS queries, weblogs, network flow
logs, service logs, CDN telemetry, real-time ad bids, …

Why do we need fast access to source data?

6

Question Answer
Quick,

Iterative
Exploration

Why do temperature
sensors fail

intermittently?

Slice and dice
queries on detailed

sensor data

Bad firmware
upgrade

The solution: One table* to rule them all

7

Unaggregated
table data

Keep intermediate
results in RAM

Minimize I/O Overhead

Maximize applied CPU

Parallelize everything

Results

Query

And make the scans really fast

* Joins are OK! Just not
big ones.

Read this before asking for your money back

8

“BEGIN AT THE BEGINNING, and go on until
you find the right key; then stop. . . We shall
see that sequential searching involves
some very interesting ideas, in spite of its
simplicity.

AOCP, Volume 3, Page 396

Blocking and
tackling

Storing and
querying 1
trillion rows

9

ClickHouse Server Architecture

10

Query Parser Query Interpreter Query PipelineQuery

Table Primary
Key Indexes

Scanned
column

blocks from
storage

Joined data
(hash
tables)

Intermediate
Query Results
(hash tables)

Columnar data in block storage Columnar data in object
storage

OS Page Cache

Round up the usual performance suspects

11

Data
Partitioning

Codecs

Compression Skip
Indexes

Projections

Sharding

Distributed Query

Data
Types

Read
Replicas

Tiered Storage

Primary key indexIn-RAM dictionaries

Table organization in ClickHouse

12

MergeTree table

Parts

Sparse
index

Sorted, compressed,
indexed column

Skip
indexes

Minmax

Bloom

Let’s start by making a table!

13

CREATE TABLE IF NOT EXISTS readings_unopt (

 sensor_id Int64,

 sensor_type Int32,

 location String,

 time DateTime,

 date Date DEFAULT toDate(time),

 reading Float32

) Engine = MergeTree

PARTITION BY tuple()

ORDER BY tuple();

1

2

3

4

5

6

7

8

9

10

Sub-optimal
datatypes!

No codecs!

No partitioning
or ordering!

Here is a better table with lower I/O cost

14

CREATE TABLE IF NOT EXISTS readings_zstd (

 sensor_id Int32 Codec(DoubleDelta, ZSTD(1)),

 sensor_type UInt16 Codec(ZSTD(1)),

 location LowCardinality(String) Codec(ZSTD(1)),

 time DateTime Codec(DoubleDelta, ZSTD(1)),

 date ALIAS toDate(time),

 temperature Decimal(5,2) Codec(T64, ZSTD(10))

) Engine = MergeTree

PARTITION BY toYYYYMM(time)

ORDER BY (location, sensor_id, time);

1

2

3

4

5

6

7

8

9

10

Optimized data
types

Codecs + ZSTD
compression

Time-based
partitioning

Sorting by key
columns + time

On-disk table size for different schemas

15

Many apps keep entity sources in the row

16

m
sg_type

tem
perature

tim
e

date

{
 "sensor_id": "0",
 "time": "2019-01-01 00:00:00",
 "msg_type": "reading",
 "temperature": "46.31",
 "message": "",
 "device_type": "0",
 "firmware": "frx23.0.22"
}

m
essage

sensor_type
sensor_id

Materialized
columns

Source
data

1.34 bytes/row 4.14 bytes/ row
~96% compression with ZSTD(1)

ClickHouse single node query model

18

Query

Result

ClickHouse Server

Parse/Plan

Merge/Sort

Vectorized
Scan

In-RAM
Hash

Tables

Parts in
Storage

Demonstration of linear local CPU scaling

19

set max_threads = 16;
SELECT
 toYYYYMM(time) AS month,
 countIf(msg_type = 'reading') AS readings,
 countIf(msg_type = 'restart') AS restarts,
 min(temperature) AS min,
 round(avg(temperature)) AS avg,
 max(temperature) AS max
FROM test.readings_multi
WHERE sensor_id BETWEEN 0 and 10000
GROUP BY month ORDER BY month ASC;

-- Query over 1.01 billion rows

Adding
razzle-dazzle

Unique tricks
for large
datasets

21

Pattern: multiple entities in a single table
Large table joins are an anti-pattern in low-latency apps

22

Restart
● msg_type=’restart’
● sensor_id
● timeReading

● msg_type=’reading’
● sensor_id
● time
● temperature

Error
● msg_type=’err’
● sensor_id
● time
● message

Aggregation is the key technique to scale

= 2

Sum = 6
Count = 3

1 2 3 1 3 5 0 5 0 0

Sum = 9
Count = 3

Sum = 5
Count = 4

6 + 9 + 5

3 + 3 + 4

23

No need to
move data

Parallelizes!

Intermediate
results are
reusable

What about queries over all entities?
Use conditional aggregation to cover multiple types

24

SELECT toYYYYMM(time) AS month,

 countIf(msg_type = 'reading') AS readings,

 countIf(msg_type = 'restart') AS restarts,

 min(temperature) AS min,

 round(avg(temperature)) AS avg, max(temperature) AS max

FROM test.readings_multi WHERE sensor_id = 3

GROUP BY month ORDER BY month ASC

┌──month─┬─readings─┬─restarts─┬───min─┬─avg─┬────max─┐
│ 201901 │ 44640 │ 1 │ 0 │ 75 │ 118.33 │
│ 201902 │ 40320 │ 0 │ 68.09 │ 81 │ 93.98 │
│ 201903 │ 15840 │ 0 │ 73.19 │ 84 │ 95.3 │
└────────┴──────────┴──────────┴───────┴─────┴────────┘

1

2

3

4

5

6

7

sensor_id restart_timetime temperature
sensor_id restart_timetime temperature

msg_type sensor_id time temperature
msg_type sensor_id time temperature

What about joins on distributed data?
Use case: join restarts with temperature readings

25

sensor_id uptimetime temperature

Restart times

msg_type sensor_id time

msg_type sensor_id time temperature

Temperature readings

Temperatures after restart

JOIN key

msg_type sensor_id time temperature
msg_type sensor_id time temperature

Aggregation can implement joins!

26

sensor_id uptimetime temperature

Restart and temperature records

msg_type sensor_id time

msg_type sensor_id time temperature

Temperatures after restart

sensor_id

restart_time: t1

reading_time: [t1, t2, t3, t4, …]

temp: [76.44, 90.39, 82.08, 48.12, ..]

236
236
236
236
…

t1
t2
t3
t4
...

76.44
90.39
82.08
48.12
...

30
90
150
210
...

GROUP BY
 key

Grouped array values

ARRAY JOIN to
pivot on arrays

And here’s the code!
(Possibly not for everyone, but it works.)

27

SELECT sensor_id, reading_time, temp, reading_time - restart_time AS uptime

FROM (

WITH toDateTime('2019-04-17 11:00:00') as start_of_range

SELECT sensor_id, groupArrayIf(time, msg_type = 'reading') AS reading_time,

 groupArrayIf(temperature, msg_type = 'reading') AS temp,

 anyIf(time, msg_type = 'restart') AS restart_time

FROM test.readings_multi rm

WHERE (sensor_id = 2555)

 AND time BETWEEN start_of_range AND start_of_range + 600

GROUP BY sensor_id)

ARRAY JOIN reading_time, temp

1

2

3

4

5

6

7

8

9

10

11

How about locating key events in tables?

28

What was the
last error on
sensor 236?

SELECT message
FROM readings_multi
WHERE (msg_type, sensor_id, time) IN
 (SELECT msg_type, sensor_id, max(time)
 FROM readings_multi
 WHERE msg_type = 'err'
 AND sensor_id = 236
 GROUP BY msg_type, sensor_id)

Expensive on
large datasets!

Finding the last error is an aggregation task!

29

236 2019-01-10 20:00:13 Segfault

sensor_id time err 236 2019-01-10 21:07:56 OOM

sensor_id time err

236 2019-01-10 21:07:56 OOM

sensor_id time err

Merge

GROUP BY key

Max value Matching
row value

Use materialized views to “index” data
Finding the last error on a sensor

30

Block lands
in source

table

Block(s) land
in materialized

view target
table

SELECT
 sensor_id,
 max(time) AS last_time,
 argMaxState(message, time)
 AS last_message
FROM readings_multi rm
WHERE msg_type = 'err'
GROUP BY sensor_id

“Last point query”MergeTree Table

AggregatingMergeTree
 Table

Opening up the
gate

End user access
patterns

31

Traditional approaches to end user access

32

Custom UIs - MUX.com video analytics*

*
https://www.mux.com/blog/from-russia-with-love-how-clickhouse-saved-our-data)
** https://www.metabase.com/product/

 Dashboards - Superset, Grafana

 Data Exploration Tools - Tableau, Metabase**

https://www.mux.com/blog/from-russia-with-love-how-clickhouse-saved-our-data
https://www.metabase.com/product/

Leverage existing query/visualization tools

33

Grafana
Daemon

Grafana UI
(Loki Data
Source)

End
User

LogQL

Loki
Gateway

LogQL

ClickHouse
Server

SQL

Aka subverting dominant UI paradigms

(Surprise! It’s
not Loki.)

Wrap Up and
Acknowledgements

34

Learnings from large ClickHouse installations

Use a single large table to hold all entities

Make sound implementation choices to get baseline performance

Aggregation is a secret ClickHouse power: use it to scan, join, index data

Build gateways from LogQL, PromQL, etc. to leverage powerful search UIs

Your reward: Linear scaling, high cost-efficiency, and
happy users

35

Appreciations

• Arnaud Adant
• Mikhail Filimonov
• Anurag Gupta
• Lorenzo Mangani
• Alexey Milovidov
• Alexander Zaitsev
• The entire Altinity team

36

Thank you!
rhodges at altinity.com

https://altinity.com

37

Robert Hodges
Altinity CEO

https://altinity.com

